首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
In obesity, adipocyte hypertrophy is often associated with recrutement of new fat cells (adipogenesis) under the control of circulating and local regulatory factors. Among the different lipids released in the extracellular compartment of adipocytes, our group found the presence of lysophosphatidic acid (LPA). LPA is a bioactive phospholipid able to regulate several cell responses via the activation of specific G-protein coupled membrane receptors. Our group found that LPA increases preadipocyte proliferation and inhibits adipogenesis via the activation of LPA1 receptor subtype. Extracellular LPA-synthesis is catalyzed by a lysophospholipase D secreted by adipocytes: autotaxin (ATX). Adipocyte ATX expression strongly increases with adipogenesis as well as in individuals exhibiting type 2 diabetes associated with massive obesity. A possible contribution of ATX and LPA as paracrine regulators of adipogenesis and obesity associated diabetes is proposed.  相似文献   

4.
Abstract

Lysophosphatidic acid (LPA) is a bioactive phospholipid that is involved in signal transduction between cells. Plasma and ascites levels of LPA are increased in ovarian cancer patients even in the early stages and thus LPA is considered as a potential diagnostic marker for this disease. This review presents the current knowledge regarding LPA signaling in epithelial ovarian cancer. LPA stimulates proliferation, migration and invasion of ovarian cancer cells through regulation of vascular endothelial growth factor, matrix metalloproteinases, urokinase plasminogen activator, interleukin-6, interleukin-8, CXC motif chemokine ligand 12/CXC receptor 4, COX2, cyclin D1, Hippo-Yap and growth-regulated oncogene α concentrations. In this article, all of these targets and signal pathways involved in LPA influence are described.  相似文献   

5.
Lysophosphatidic acid (LPA) is a bioactive lipid with diverse physiological effects via activation of G protein-coupled receptors (GPCRs). It has been implicated as a specific dedifferentiation factors that can promote phenotypic modulation of cultured vascular smooth muscle cells (VSMCs) which is critically involved in various vascular disease. However, the role of LPA receptors and details of their signaling in LPA induced phenotypic modulation are largely unexplored. In this study we detect the expression of LPA1 and LPA3 in rat aortic smooth muscle cells (RASMCs). LPA promoted RASMCs phenotypic modulation in a dose-dependent manner and coordinated induced the phosphorylation of p38 mitogen-activated protein kinase (p38MAPK) and extracellular signal-regulated kinase (ERK). LPA-induced cell phenotypic modulation was significantly inhibited by specific LPA1/LPA3-receptor antagonist dioctyl-glycerol pyrophosphate (DGPP8:0) at concentration, but this inhibitive effect was lost when the antagonist was coadministered with a highly selective LPA3 agonist,1-oleoyl-2-Omethyl-rac-glycero-phosphothionate (OMPT). In addition, pertussis toxin (PTX), a Gi protein inhibitor had little affect on the LPA-induced phenotypic modulation in RASMC. These data suggest that LPA-induced phenotypic modulation is mediated through the PTX-insensitive G-protein(s), possibly Gq-coupled LPA3 receptor.  相似文献   

6.
Lysophosphatidic acid (LPA) is a bioactive phospholipid that affects various biological functions, such as cell proliferation, migration, and survival, through LPA receptors. Among them, the motility of cancer cells is an especially important activity for invasion and metastasis. Recently, AMP-activated protein kinase (AMPK), an energy-sensing kinase, was shown to regulate cell migration. However, the specific role of AMPK in cancer cell migration is unknown. The present study investigated whether LPA could induce AMPK activation and whether this process was associated with cell migration in ovarian cancer cells. We found that LPA led to a striking increase in AMPK phosphorylation in pathways involving the phospholipase C-β3 (PLC-β3) and calcium/calmodulin-dependent protein kinase kinase β (CaMKKβ) in SKOV3 ovarian cancer cells. siRNA-mediated knockdown of AMPKα1, PLC-β3, or (CaMKKβ) impaired the stimulatory effects of LPA on cell migration. Furthermore, we found that knockdown of AMPKα1 abrogated LPA-induced activation of the small GTPase RhoA and ezrin/radixin/moesin proteins regulating membrane dynamics as membrane-cytoskeleton linkers. In ovarian cancer xenograft models, knockdown of AMPK significantly decreased peritoneal dissemination and lung metastasis. Taken together, our results suggest that activation of AMPK by LPA induces cell migration through the signaling pathway to cytoskeletal dynamics and increases tumor metastasis in ovarian cancer.  相似文献   

7.
Yang JH  Jiang W  Pan CS  Qi YF  Wu QZ  Pang YZ  Tang CS 《Regulatory peptides》2004,121(1-3):49-56
Lysophosphatidic acid (LPA) is a bioactive phospholipid having growth factor-like activity on fibroblasts and is involved in cardiovascular diseases such as hypertension and heart failure by inducing vascular remodeling, characterized by fibroblast proliferation and migration in adventitia. Among various bioactive factors that LPA works with, adrenomedullin (ADM) is a multiple functional peptide with an important cytoprotective effect against cardiovascular damage. We studied rat aortic adventitia to explore the possible paracrine/autocrine interaction between endogenous ADM and LPA. LPA stimulation of the adventitia to secrete ADM and express its mRNA was concentration dependent. ADM inhibited LPA-induced proliferation in adventitial cells and attenuated the activity of mitogen-activated protein kinase (MAPK) stimulated by LPA. In contrast, treatment with specific antagonists of the ADM receptor potentiated the LPA-induced proliferation in adventitial cells. We concluded that LPA stimulates the adventitia to produce and secrete ADM, which in turn regulates the vascular biological effects of LPA.  相似文献   

8.
Lysophosphatidic acid (LPA) is a bioactive lipid mediator with diverse physiological and pathological actions on many types of cells. Originally, LPA was thought to elicit its biological functions through three subtypes of endothelial differentiation gene (Edg) family G protein-coupled receptors (LPA1, LPA2 and LPA3) until our group identified a fourth subtype, LPA4. The discovery of this receptor, which is structurally distinct from the Edg family LPA receptors, led to the identification of two additional LPA receptors, LPA5 and LPA6, homologous to LPA4. These 'non-Edg family' LPA receptors now provide a new framework for understanding the diverse functions of LPA, including vascular development, platelet activation and hair growth. In this review, we summarize the identification, intracellular signalling and biological functions of this novel cluster of LPA receptors.  相似文献   

9.
The (lyso)phospholipid mediators sphingosine-1-phosphate (S1P), lysophosphatidic acid (LPA), sphingosylphosphorylcholine (SPC), and phosphatidic acid (PA) regulate diverse cellular responses such as proliferation, survival and death, cytoskeletal rearrangements, cell motility, and differentiation among many others. Signaling is complex and many signaling events are mediated through the activation of cell surface seven transmembrane (7TM) G protein coupled receptors. Five high affinity receptors for S1P have been identified so far and named S1P(1, 2,3,4,5) (formerly referred to as endothelial differentiation gene (edg)1, 5, 3, 6, 8). Recently, the orphan receptor GPR63 was identified a low affinity S1P receptor structurally distant from the S1P(1-5) family. The orphan GPR3, 6, 12 cluster, phylogenetically related to the edg and melanocortin receptors appears to be subject to modulation by S1P and SPC although all three receptors are strong constitutive stimulators of the Galphas-adenylyl cyclase (AC) pathway and would not require additional ligand stimulation but rather inverse agonism to control activity. Ovarian cancer G protein coupled receptor 1 (OGR1) and GPR4, two structurally closely related receptors were assigned in functional and binding studies as high affinity molecular targets for SPC. Very recently, however, both OGR1 and GPR4 were described as receptors endowed with the ability to signal cells in response to protons. LPA exerts its biological effects through the activation of G protein coupled LPA(1-3) receptors (formerly referred to as edg2, 4, 7). A fourth high affinity LPA receptor has been identified: P2Y9 (GPR23) structurally related to nucleotide receptors and phylogenetically quite distant from the high affinity LPA(1-3) cluster. This review attempts to give an overview about the existing families of lysophosholipid receptors and the spectrum of lipid agonists they use as high or low affinity ligands to relay extracellular signals into intracellular responses. Recently deorphaned lipid receptors, within and outside the known lipid receptor clusters will receive particular attention.  相似文献   

10.
Recently, a family of phospholipid mediators has received much attention because of its variety of biological activities. Lysophosphatidic acid (LPA) is a central member of the phospholipid autacoid family that exerts diverse effects through binding to and activation of several specific receptors coupled to G-proteins. In accordance with its function as a receptor agonist, there are pathways for extracellular generation of LPA in vivo. One pathway involves a novel lysophospholipase D activity that was originally found in rat plasma. LPA is also produced in significant amounts after incubation of various plasma-derived body fluids such as human follicular fluid at 25-37 degrees C. In animal models, LPA was shown to stimulate oocyte maturation, embryonic development and transport in the oviduct. An increase in serum lysophospholipase D activity was observed during pregnancy in human. These results suggest that LPA generated by lysophospholipase D is likely to play an important role in reproductive biology. LPA produced by lysophospholipase D activity in body fluids has also been observed under pathophysiological conditions: serum and ascitic fluid from ovarian cancer patients and serum from hypercholesterolemic rabbits. Hence, excess generation of LPA by lysophospholipase D activity in body fluids has been suggested to be relevant to the pathogenesis of cancer and atherosclerosis.  相似文献   

11.
Lysophospholipids in the limelight: autotaxin takes center stage   总被引:10,自引:0,他引:10  
Lysophosphatidic acid (LPA) is a serum phospholipid that evokes growth factor-like responses in many cell types through the activation of its G protein-coupled receptors. Although much is known about LPA signaling, it has remained unclear where and how bioactive LPA is produced. Umezu-Goto et al. (2002)(this issue, page 227) have purified a serum lysophospholipase D that generates LPA from lysophosphatidylcholine and found it to be identical to autotaxin, a cell motility-stimulating ectophosphodiesterase implicated in tumor progression. This result is surprising, as there was previously no indication that autotaxin could act as a phospholipase.  相似文献   

12.
Mechanisms of lysophosphatidic acid production   总被引:6,自引:0,他引:6  
Lysophosphatidic acid is one of the most attractive phospholipid mediator with multiple biological functions and is implicated in various human diseases. In the past ten years much has been learned about the physiological roles of LPA through series of studies on LPA actions and its receptors. However, the molecular mechanisms of LPA have been poorly understood. LPA is produced in various conditions both in cells and in biological fluids, where multiple synthetic reactions occur. At least two pathways are postulated. In serum and plasma, LPA is mainly converted from lysophospholipids. By contrast, in platelets and some cancer cells, LPA is converted from phosphatidic acid. In each pathway, at least two phospholipase activities are required: phospholipase A1 (PLA1)/PLA2 plus lysophospholipase D (lysoPLD) activities are involved in the first pathway and phospholipase D (PLD) plus PLA1/PLA2 activities are involved in the second pathway. Now multiple phospholipases are identified that account for PLA1, PLA2, PLD, and lysoPLD activities. In the absence of specific inhibitors and genetically modified animals and individuals, the contribution of each phospholipase to LPA production can not be easily determined. However, apparently certain extracellular phospholipases such as secretory PLA2 (sPLA2-IIA), membrane-associated PA-selective PLA1 (mPA-PLA1), lecithin-cholesterol acyltransferase (LCAT), and lysoPLD are involved in LPA production.  相似文献   

13.
Jeon ES  Kim JH  Ryu H  Kim EK 《Cellular signalling》2012,24(6):1241-1250
Granular corneal dystrophy type 2 (GCD2) is an autosomal dominant disease caused by a R124H point mutation in the transforming growth factor-β-induced gene (TGFBI). However, the cellular role of TGFBI and the regulatory mechanisms underlying corneal dystrophy pathogenesis are still poorly understood. Lysophosphatidic acid (LPA) refers to a small bioactive phospholipid mediator produced in various cell types, and binds G protein-coupled receptors to enhance numerous biological responses, including cell growth, inflammation, and differentiation. LPA levels are elevated in injured cornea and LPA is involved in proliferation and wound healing of cornea epithelial cells. Accumulating evidence has indicated a crucial role for LPA-induced expression of TGFBI protein (TGFBIp) through secretion of transforming growth factor-beta1 (TGF-β1). In the current study, we demonstrate that LPA induces TGFBIp expression in corneal fibroblasts derived from normal or GCD2 patients. LPA-induced TGFBIp expression was completely inhibited upon pretreatment with the LPA(1/3) receptor antagonists, VPC32183 and Ki16425, as well as by silencing LPA(1) receptor expression with small hairpin RNA (shRNA) in corneal fibroblasts. LPA induced secretion of TGF-β1 in corneal fibroblasts, and pretreatment with the TGF-β type I receptor kinase inhibitor SB431542 or an anti-TGF-β1 neutralizing antibody also inhibited LPA-induced TGFBIp expression. Furthermore, we show that LPA requires Smad2/3 proteins for the induction of TGFBIp expression. LPA elicited phosphorylation of Smad2/3, and Smad3 specific inhibitor SIS3 or siRNA-mediated depletion of endogenous Smad2/3 abrogates LPA-induced TGFBIp expression. Finally, we demonstrate that LPA-mediated TGFBIp induction requires JNK activation, but not ERK signaling pathways. These results suggest that LPA stimulates TGFBIp expression through JNK-dependent activation of autocrine TGF-β1 signaling pathways and provide important information for understanding the role of phospholipids involved in cornea related diseases.  相似文献   

14.
Chen J  Chen Y  Zhu W  Han Y  Han B  Xu R  Deng L  Cai Y  Cong X  Yang Y  Hu S  Chen X 《Journal of cellular biochemistry》2008,103(6):1718-1731
Lysophosphatidic acid (LPA) is a bioactive phospholipid with diverse functions mediated via G-protein-coupled receptors (GPCRs). In view of the elevated levels of LPA in acute myocardial infarction (MI) patients we have conducted studies aimed at identifying specific LPA receptor subtypes and signaling events that may mediate its actions in hypertrophic remodeling. Experiments were carried out in cultured neonatal rat cardiomyocytes (NRCMs) exposed to LPA and in a rat MI model. In NRCMs, LPA-induced hypertrophic growth was completely abrogated by DGPP, an LPA1/LPA3 antagonist. The LPA3 agonist OMPT, but not the LPA2 agonist dodecylphosphate, promoted hypertrophy as examined by 3[H]-Leucine incorporation, ANF-luciferase expression and cell area. In in vivo experiments, LPA1, LPA2 and LPA3 mRNA levels as well as LPA1 and LPA3 protein levels increased together with left ventricular remodeling (LVRM) after MI. In addition, LPA stimulated the phosphorylation of Akt and p65 protein and activated NF-kappaB-luciferase expression. Inhibitors of PI3K (wortmannin), mTOR (rapamycin), and NF-kappaB (PDTC or SN50) effectively prevented LPA-induced 3[H]-Leucine incorporation and ANF-luciferase expression. Furthermore, ERK inhibitors (U0126 and PD98059) suppressed LPA-stimulated activation of NF-kappaB and p65 phosphorylation whereas wortmannin showed no effect on NF-kappaB activation. Our findings indicate that LPA3 and/or LPA1 mediate LPA-induced hypertrophy of NRCMs and that LPA1 and LPA3 may be involved in LVRM of MI rats. Moreover, Akt and NF-kappaB signaling pathways independently implicate in LPA-stimulated myocardial hypertrophic growth.  相似文献   

15.
Osteoclasts (bone resorbing cells) and osteoblasts (bone forming cells) play essential roles in skeletal development, mineral homeostasis and bone remodeling. The actions of these two cell types are tightly coordinated, and imbalances in bone formation and resorption can result in disease states, such as osteoporosis. Lysophosphatidic acid (LPA) is a potent bioactive phospholipid that influences a number of cellular processes, including proliferation, survival and migration. LPA is also involved in wound healing and pathological conditions, such as tumor metastasis and autoimmune disorders. During trauma, activated platelets are likely a source of LPA in bone. Physiologically, osteoblasts themselves can also produce LPA, which in turn promotes osteogenesis. The capacity for local production of LPA, coupled with the proximity of osteoblasts and osteoclasts, leads to the intriguing possibility that LPA acts as a paracrine mediator of osteoblast–osteoclast signaling. Here we summarize emerging evidence that LPA enhances the differentiation of osteoclast precursors, and regulates the morphology, resorptive activity and survival of mature osteoclasts. These actions arise through stimulation of multiple LPA receptors and intracellular signaling pathways. Moreover, LPA is a potent mitogen implicated in promoting the metastasis of breast and ovarian tumors to bone. Thus, LPA released from osteoblasts is potentially an important autocrine and paracrine mediator — physiologically regulating skeletal development and remodeling, while contributing pathologically to metastatic bone disease. This article is part of a Special Issue entitled Advances in Lysophospholipid Research.  相似文献   

16.
Lysophosphatidic acid is a bioactive mediator in ovarian cancer   总被引:14,自引:0,他引:14  
Lysophosphatidic acid (LPA) is a naturally occurring phospholipid that exhibits pleiotrophic biological activities, ranging from rapid morphological changes to long-term cellular effects such as induction of gene expression and stimulation of cell proliferation and survival on a wide spectrum of cell types. LPA binds and activates distinct members of the Edg/LP subfamily of G protein-coupled receptors that link to multiple G proteins including Gi, Gq and G12/13 to elicit cellular responses. LPA plays a critical role as a general growth, survival and pro-angiogenic factor, in the regulation of physiological and pathophysiological processes in vivo and in vitro. Our previous work indicates that abnormalities in LPA metabolism and function in ovarian cancer patients may contribute to the initiation and progression of the disease. Thus, LPA could be a potential target for cancer therapy. This review summarizes evidence that implicates LPA in the pathophysiology of human ovarian cancer and likely other types of human malignancies.  相似文献   

17.
Lysophosphatidic acid (LPA, 1- or 2-acyl-sn-glycerol 3-phosphate) is a simple phospholipid but displays an intriguing cell biology that is mediated via interactions with G protein-coupled seven transmembrane receptors (GPCRs). So far, five GPCRs, designated LPA(1-5), and, more recently, two additional GPCRs, GPR87 and P2Y5, have been identified as receptors for LPA. These LPA receptors can be classified into two families, the EDG and P2Y families, depending on their primary structures. Recent studies on gene targeting mice and family diseases of these receptors revealed that LPA is involved in both pathological and physiological states including brain development (LPA(1)), neuropathy pain (LPA(1)), lung fibrosis (LPA(1)), renal fibrosis (LPA(1)) protection against radiation-induced intestinal injury (LPA(2)), implantation (LPA(3)) and hair growth (P2Y5). LPA is produced both in cells and biological fluids, where multiple synthetic reactions occur. There are at least two pathways for LPA production. In serum or plasma, LPA is predominantly produced by a plasma enzyme called autotaxin (ATX). ATX is a multifunctional ectoenzyme and is involved in many patho-physiological conditions such as cancer, neuropathy pain, lymphocyte tracking in lymph nodes, obesity, diabetes and embryonic blood vessel formation. LPA is also produced from phosphatidic acid (PA) by its deacylation catalyzed by phospholipase A (PLA)-type enzymes. However, the physiological roles of this pathway as well as the enzymes involved remained to be solved. A number of phospholipase A(1) and A(2) isozymes could be involved in this pathway. One PA-selective PLA(1) called mPA-PLA(1)alpha/LIPH is specifically expressed in hair follicles, where it has a critical role in hair growth by producing LPA through a novel LPA receptor called P2Y5.  相似文献   

18.
Autotaxin (ATX) is a tumor cell motility-stimulating factor originally isolated from melanoma cell supernatant that has been implicated in regulation of invasive and metastatic properties of cancer cells. Recently, we showed that ATX is identical to lysophospholipase D, which converts lysophosphatidylcholine to a potent bioactive phospholipid mediator, lysophosphatidic acid (LPA), raising the possibility that autocrine or paracrine production of LPA by ATX contributes to tumor cell motility. Here we demonstrate that LPA and ATX mediate cell motility-stimulating activity through the LPA receptor, LPA(1). In fibroblasts isolated from lpa(1)(-/-) mice, but not from wild-type or lpa(2)(-/-), cell motility stimulated with LPA and ATX was completely absent. In the lpa(1)(-/-) cells, LPA-stimulated lamellipodia formation was markedly diminished with a concomitant decrease in Rac1 activation. LPA stimulated the motility of multiple human cancer cell lines expressing LPA(1), and the motility was attenuated by an LPA(1)-selective antagonist, Ki16425. The present study suggests that ATX and LPA(1) represent potential targets for cancer therapy.  相似文献   

19.
Lysophosphatidic acid (LPA) is a simple phospholipid derived from cell membranes that has extracellular signaling properties mediated by at least five G protein-coupled receptors referred to as LPA(1)-LPA(5). In the nervous system, receptor-mediated LPA signaling has been demonstrated to influence a range of cellular processes; however, an unaddressed aspect of LPA signaling is its potential to produce specific secondary effects, whereby LPA receptor-expressing cells exposed to, or "primed," by LPA may then act on other cells via distinct, yet LPA-initiated, mechanisms. In the present study, we examined cerebral cortical astrocytes as possible indirect mediators of the effects of LPA on developing cortical neurons. Cultured astrocytes express at least four LPA receptor subtypes, known as LPA(1)-LPA(4). Cerebral cortical astrocytes primed by LPA exposure were found to increase neuronal differentiation of cortical progenitor cells. Treatment of unprimed astrocyte-progenitor cocultures with conditioned medium derived from LPA-primed astrocytes yielded similar results, suggesting the involvement of an astrocyte-derived soluble factor induced by LPA. At least two LPA receptor subtypes are involved in LPA priming, since the priming effect was lost in astrocytes derived from LPA receptor double-null mice (LPA(1)((-/-))/LPA(2)((-/-))). Moreover, the loss of LPA-dependent differentiation in receptor double-null astrocytes could be rescued by retrovirally transduced expression of a single deleted receptor. These data demonstrate that receptor-mediated LPA signaling in astrocytes can induce LPA-dependent, indirect effects on neuronal differentiation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号