首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Oxidation of proteins is a common phenomenon in the inflammatory process mediated by highly reactive agents such as hypochlorite (HOCl/OCl(-)) produced by activated neutrophils. For instance, in rheumatoid arthritis hypochlorite plays an important role in joint destruction. One of the major targets for HOCl/OCl(-) is collagen type II (CII) - the primary cartilage protein. In our study, HOCl/OCl(-) mediated collagen II modifications were tested using various methods: circular dichroism (CD), HPLC, ELISA, dynamic light scattering (DLS), fluorimetry and spectrophotometry. It was shown that hypochlorite action causes deamination with consecutive carbonyl group formation and transformation of tyrosine residues to dichlorotyrosine. Moreover, it was shown that ammonium chloramine (NH(2)Cl) formed in the reaction mixture reacts with CII. However, in this case the yield of carbonyl groups and dichlorotyrosine is lower than that observed for HOCl/OCl(-) by 50%. CD data revealed that collagen II exists as a random coil in the samples and that chlorination is followed by CII fragmentation. In the range of low HOCl/OCl(-) concentrations (up to 1 mM) 10-90 kDa peptides are predominant whereas massive production of shorter peptides was observed for high (5 mM) hypochlorite concentration. DLS measurements showed that chlorination with HOCl/OCl(-) decreases the radius of collagen II aggregates from 30 to 6.8 nm. Taking into account the fact that chlorinated collagen is partially degraded, the DLS results suggest that smaller micelles are formed of the 10-90 kDa peptide fraction. Moreover, collagen chlorination results in epitope modification which affects CII recognition by anti-CII antibodies. Finally, since in the synovial fluid the plausible hypochlorite concentration is smaller than that used in the model the change of size of molecular aggregates seems to be the best marker of hypochlorite-mediated collagen oxidation.  相似文献   

2.
Amino acids present in blood plasma may be targets for oxidation and chlorination by HOCl/OCl(-). N-Chloroamino acids have been reported to be less reactive, but more selective than HOCl/OCl(-) in their reactions; therefore, they may act as secondary mediators of HOCl/OCl(-)-induced injury. This study compared the effects of five N-chloroamino acids (AlaCl, LysCl, SerCl, AspCl and PheCl) on erythrocytes with the action of HOCl/OCl(-). The N-chloroamino acids differed in stability and reactivity. They had a weaker haemolytic action than HOCl/OCl(-); HOCl/OCl(-), AlaCl and PheCl increased osmotic fragility of erythrocytes at a concentration of 1 mm. Oxidation of glutathione, formation of protein-glutathione mixed disulphides and efflux of GSSG from erythrocytes were observed for erythrocytes treated with all the employed chloroderivatives, while increased oxidation of 2',7'-dichlorofluorescin was detected only after treatment of the cells with 1 mm HOCl/OCl(-), AlaCl and PheCl. Generally, the reactivity of at least some N-chloroamino acids may be not much lower with respect to HOCl/OCl(-).  相似文献   

3.
N-acetyl-L-tyrosine (N-acTyr), with the alpha amine residue blocked by acetylation, can mimic the reactivity of exposed tyrosyl residues incorporated into polypeptides. In this study chlorination of N-acTyr residue at positions 3 and 5 in reactions with NaOCl, chloramines and the myeloperoxidase (MPO)-H2O2-Cl- chlorinating system were invesigated. The reaction of N-acTyr with HOCl/OCl- depends on the reactant concentration ratio employed. At the OCl-/N-acTyr (molar) ratio 1:4 and pH 5.0 the chlorination reaction yield is about 96% and 3-chlorotyrosine is the predominant reaction product. At the OCl-/N-acTyr molar ratio 1:1.1 both 3-chlorotyrosine and 3,5-dichlorotyrosine are formed. The yield of tyrosine chlorination depends also on pH, amounting to 100% at pH 5.5, 91% at pH 4.5 and 66% at pH 3.0. Replacing HOCl/OCl- by leucine/chloramine or alanine/chloramine in the reaction system, at pH 4.5 and 7.4, produces trace amount of 3-chlorotyrosine with the reaction yield of about 2% only. Employing the MPO-H2O2-Cl- chlorinating system at pH 5.4, production of a small amount of N-acTyr 3-chloroderivative was observed, but the reaction yield was low due to the rapid inactivation of MPO in the reaction system. The study results indicate that direct chlorination of tyrosyl residues which are not incorporated into the polypeptide structure occurs with excess HOCl/OCl- in acidic media. Due to the inability of the myeloperoxidase-H2O2-Cl- system to produce high enough HOCl concentrations, the MPO-mediated tyrosyl residue chlorination is not effective. Semistable amino-acid chloramines also appeared not effective as chlorine donors in direct tyrosyl chlorination.  相似文献   

4.
Chlorination of proteins by the myeloperoxidase-H2O2-Cl- system results in light emission. Out of all amino acids present in proteins only tryptophan delivers light during chlorination. Chlorination of tryptophan by the myeloperoxidase-H2O2-Cl- system, as well as by HOCl or taurine chloramine is associated with chemiluminescence. pH dependence and time pattern of light emission is similar for chlorination of tryptophan by the myeloperoxidase system and taurine, but appears to be different for chlorination by HOCl. Aerobic conditions are necessary for chemiluminescence of chlorinated tryptophan.  相似文献   

5.
The human integrin VLA (very late activation antigens)-4 (CD49d/CD29), the leukocyte receptor for both the CS-1 region of plasma fibronectin (Fn) and the vascular cell surface adhesion molecule-1 (VCAM-1), also mediates homotypic aggregation upon triggering with specific anti-VLA-4 monoclonal antibody (mAb). Epitope mapping of this integrin on the human B-cell line Ramos, performed with a wide panel of anti-VLA-4 mAb by both cross-competitive cell binding and protease sensitivity assays, revealed the existence of three topographically distinct epitopes on the alpha 4 chain, referred to as epitopes A-C. By testing this panel of anti-VLA-4 mAb for inhibition of cell binding to both a 38-kDa Fn fragment containing CS-1 and to VCAM-1, as well as for induction and inhibition of VLA-4 mediated homotypic cell adhesion, we have found overlapping but different functional properties associated with each epitope. Anti-alpha 4 mAb recognizing epitope B inhibited cell attachment to both Fn and VCAM-1, whereas mAb against epitope A did not block VCAM-1 binding and only partially inhibited binding to Fn. In contrast, mAb directed to epitope C did not affect cell adhesion to either of the two VLA-4 ligands. All mAb directed to site A, as well as a subgroup of mAb recognizing epitope B (called B2), were able to induce cell aggregation, but this effect was not exerted by mAb specific to site C and by a subgroup against epitope B (called B1). Moreover, although anti-epitope C and anti-epitope B1 mAb did not trigger aggregation, those mAb blocked aggregation induced by anti-epitope A or B2 mAb. In addition, anti-epitope A mAb blocked B2-induced aggregation, and conversely, anti-epitope B2 mAb blocked A-induced aggregation. Further evidence for multiple VLA-4 functions is that anti-Fn and anti-VCAM-1 antibodies inhibited binding to Fn or to VCAM-1, respectively, but did not affect VLA-4-mediated aggregation. In summary, we have demonstrated that there are at least three different VLA-4-mediated adhesion functions, we have defined three distinct VLA-4 epitopes, and we have correlated these epitopes with the different functions of VLA-4.  相似文献   

6.
Reactive oxygen species produced by activated neutrophils and monocytes are thought to be involved in mediating the loss of collagen and other matrix proteins at sites of inflammation. To evaluate their potential to oxidize the pyridinoline (Pyd) cross-links found in collagen types I and II, we reacted hydrogen peroxide (H(2)O(2)), hypochlorous acid/hypochlorite (HOCl/OCl(-)), and singlet oxygen (O(2)((1)delta g)) with the Pyd substitutes, pyridoxamine dihydrochloride and vitamin B(6), which share the same chemical structure and spectral properties of Pyd cross-links. Neither H(2)O(2) (125-500 microm) nor O(2)((1)delta g) (10-25 microm) significantly changed the spectral properties of pyridoxamine or vitamin B(6). Reaction of HOCl/OCl(-) (12.5-50 microm) with pyridoxamine at pH 7.2 resulted in a concentration-dependent appearance of two new absorbance peaks and a decrease in fluorescence at 400 nm (excitation 325 nm). The new absorbance peaks correlated with the formation of an N-chloramine and the product of its subsequent reaction with pyridoxamine. In contrast, the extent to which HOCl reacted with vitamin B(6), which lacks a primary amine group, was variable at this pH. At lysosomal pH 5.5, Cl(2)/HOCl/OCl(-) reacted with both pyridoxamine and vitamin B(6). Four of the chlorinated products of this reaction were identified by gas chromatography-mass spectrometry and included 3-chloropyridinium, an aldehyde, and several chlorinated products with disrupted rings. To evaluate the effects of Cl(2)/HOCl/OCl(-) on Pyd cross-links in collagen, we exposed bone collagen type I and articular cartilage type II to HOCl. Treatment of either collagen type with HOCl at pH 5. 0 or 7.2 resulted in the oxidation of amine groups and, for collagen type II, the specific decrease in Pyd cross-link fluorescence, suggesting that during inflammation both oxidations may be used by neutrophils and monocytes to promote the loss of matrix integrity.  相似文献   

7.
Hypochlorous acid (HOCl) is formed by the action of the enzyme myeloperoxidase on hydrogen peroxide and chloride ions. It has been shown to be highly bactericidal and cytotoxic by a variety of mechanisms, one of which, may be the modification of DNA. Previously we have demonstrated by GC-MS analysis that exposure of calf thymus DNA to HOCl causes extensive pyrimidine modification, including 5-chlorocytosine formation. Using GC-MS analysis, we now demonstrate the formation of an additional chlorinated base product, 8-Cl adenine. The addition of 50 μM HOCl was sufficient to produce a significant increase in this product. The reaction of HOCl with adenine in calf thymus DNA was shown to be rapid with the reaction complete after 1 min. pH-dependence studies suggest HOCl rather than its conjugate base (OCl-) to be responsible for 8-Cl adenine formation. Other commercially available chlorinated base products, 6-Cl guanine or 2-Cl adenine were not detected. Therefore, 8-Cl adenine might prove a useful biomarker for studying the role of reactive chlorine species (RCS) during inflammatory processes.  相似文献   

8.
Hypochlorous acid (HOCl) is formed by the action of the enzyme myeloperoxidase on hydrogen peroxide and chloride ions. It has been shown to be highly bactericidal and cytotoxic by a variety of mechanisms, one of which, may be the modification of DNA. Previously we have demonstrated by GC-MS analysis that exposure of calf thymus DNA to HOCl causes extensive pyrimidine modification, including 5-chlorocytosine formation. Using GC-MS analysis, we now demonstrate the formation of an additional chlorinated base product, 8-Cl adenine. The addition of 50 μM HOCl was sufficient to produce a significant increase in this product. The reaction of HOCl with adenine in calf thymus DNA was shown to be rapid with the reaction complete after 1 min. pH-dependence studies suggest HOCl rather than its conjugate base (OCl-) to be responsible for 8-Cl adenine formation. Other commercially available chlorinated base products, 6-Cl guanine or 2-Cl adenine were not detected. Therefore, 8-Cl adenine might prove a useful biomarker for studying the role of reactive chlorine species (RCS) during inflammatory processes.  相似文献   

9.

Background

BBK32 is a surface expressed lipoprotein and fibronectin (Fn)-binding microbial surface component recognizing adhesive matrix molecule (MSCRAMM) of Borrelia burgdorferi, the causative agent of Lyme disease. Previous studies from our group showed that BBK32 is a virulence factor in experimental Lyme disease and located the Fn-binding region to residues 21–205 of the lipoprotein.

Methodology/Principal Findings

Studies aimed at identifying interacting sites between BBK32 and Fn revealed an interaction between the MSCRAMM and the Fn F3 modules. Further analysis of this interaction showed that BBK32 can cause the aggregation of human plasma Fn in a similar concentration-dependent manner to that of anastellin, the superfibronectin (sFn) inducing agent. The resulting Fn aggregates are conformationally distinct from plasma Fn as indicated by a change in available thermolysin cleavage sites. Recombinant BBK32 and anastellin affect the structure of Fn matrices formed by cultured fibroblasts and inhibit endothelial cell proliferation similarly. Within BBK32, we have located the sFn-forming activity to a region between residues 160 and 175 which contains two sequence motifs that are also found in anastellin. Synthetic peptides mimicking these motifs induce Fn aggregation, whereas a peptide with a scrambled sequence motif was inactive, suggesting that these motifs represent the sFn-inducing sequence.

Conclusions/Significance

We conclude that BBK32 induces the formation of Fn aggregates that are indistinguishable from those formed by anastellin. The results of this study provide evidence for how bacteria can target host proteins to manipulate host cell activities.  相似文献   

10.
Most studies of protein oxidation have typically focused on the reactivity of single amino acid side chains while ignoring the potential importance of adjacent sequences in directing the reaction pathway. We previously showed that hypochlorous acid (HOCl), a specific product of myeloperoxidase, inactivates matrilysin by modifying adjacent tryptophan and glycine (WG) residues in the catalytic domain. Here, we use model peptides that mimic the region of matrilysin involved in this reaction, VVWGTA, VVWATA, and the library VVWXTA, to determine whether specific sequence motifs are targeted for chlorination or oxygenation by myeloperoxidase. Our results demonstrate that HOCl generated by myeloperoxidase or activated neutrophils converts the peptide VVWGTA to a chlorinated product, WG+32(Cl). Tandem mass spectrometry in concert with high resolution 1H and two-dimensional NMR analysis revealed that the modification required cross-linking of the tryptophan to the amide of glycine followed by chlorination of the indole ring of tryptophan. In contrast, when glycine in the peptide was replaced with alanine, the major products were mono- and dioxygenated tryptophan residues. When the peptide library VVWXTA (where X represents all 20 common amino acids) was exposed to HOCl, only WG produced a high yield of the chloroindolenine derivative. However, when glycine was replaced by other amino acids, oxygenated tryptophan derivatives were the major products. Our observations indicate that WG may represent a specific sequence motif in proteins that is targeted for chlorination by myeloperoxidase.  相似文献   

11.
The interaction of hypochlorite (HOCl/OCl-) with tert-butyl hydroperoxide ((CH3)3COOH) was investigated by chemiluminescence. It was shown that the addition of HOCl/OCl- to (CH3)3COOH induces a fast chemiluminescent flash. The intensity of this flash increases with the increase in both HOCl/OCl- and (CH3)3COOH concentration. The chemiluminescence is quenched in a concentration-dependent manner in the presence of free radical spin traps N-tert-butyl nitrone and alpha-(4-pyridyl-1-oxyl)-N-tert-butyl nitrone. This fact proves that free radicals take part in the interaction of HOCl/OCl- and (CH3)3COOH. Hypochlorite yielded a very similar chemiluminescence spectrum in its reaction with (CH3)3COOH as Ce4+. It differed considerably from the spectrum in the system H2O2 and HOCl/OCl-. It is well known that the interaction of Ce4+ and (CH3)3COOH produces peroxyl radicals. These results confirm the hyothesis that the interaction of HOCl/OCl- and (CH3)3COOH is mediated by peroxyl radicals. Thus, organic hydroperoxides always present in unsaturated lipids can induce lipid peroxidation processes in the reaction with HOCl/OCl-.  相似文献   

12.
Myeloperoxidase (MPO) catalyzes the two-electron oxidation of chloride, thereby producing hypochlorous acid (HOCl). Taurine (2-aminoethane-sulfonic acid, Tau) is thought to act as a trap of HOCl forming the long-lived oxidant monochlorotaurine [(N-Cl)-Tau], which participates in pathogen defense. Here, we amend and extend previous studies by following initial and equilibrium rate of formation of (N-Cl)-Tau mediated by MPO at pH 4.0-7.0, varying H(2)O(2) concentration. Initial rate studies show no saturation of the active site under assay conditions (i.e. [H(2)O(2)] > or = 2000 [MPO]). Deceleration of Tau chlorination under equilibrium is quantitatively described by the redox equilibrium established by H(2)O(2)-mediated reduction of compound I to compound II. At equilibrium regime the maximum chlorination rate is obtained at [H(2)O(2)] and pH values around 0.4mM and pH 5. The proposed mechanism includes known acid-base and binding equilibria taking place at the working conditions. Kinetic data ruled out the currently accepted mechanism in which a proton participates in the molecular step (MPO-I+Cl(-)) leading to the formation of the chlorinating agent. Results support the formation of a chlorinating compound I-Cl(-) complex (MPO-I-Cl) and/or of ClO(-), through the former or even independently of it. ClO(-) diffuses away and rapidly protonates to HOCl outside the heme pocket. Smaller substrates will be chlorinated inside the enzyme by MPO-I-Cl and outside by HOCl, whereas bulkier ones can only react with the latter.  相似文献   

13.
The ability of hypochlorous acid (HOCl) (anion form - hypochlorite, OCl-) and HOCl/OCl- -modified human blood low density lipoproteins (HOCl-LDLs) to stimulate erythrocyte adhesion to endothelial cell monolayers was studied. LDLs were modified by incubating at different HOCl/OC- concentrations. This led to a damage of proteins and lipids. We found (1) a more than 20-fold decrease of LDL fluorescence intensity (extinction at 285 nm, emission at 340 nm), (2) accumulation of secondary (TBA-reactive substances) and final (Schiff bases) products of lipid peroxidation, and (3) increase in the electrophoretic mobility of LDLs. Preincubation of endothelial cells (ECs) with HOCI/OCl- (up to 50 microM) enhanced erythrocyte adhesion to the EC monolayer. Preincubation of ECs with HOCl-LDLs (up to 250 microM of HOCI//OCl- during LDL modification) (1) caused an increase in the cholesterol/phospholipid molar ratio in EC and (2) enhanced adhesion of erythrocytes to endothelium. Application of HOCl/OCl- at concentrations above 50 microM or treatment of LDLs with 500 microM HOCl resulted in the cytotoxic effect on ECs and led to a decrease in the molar cholesterol/phospholipid ratio in ECs and adhesion of erythrocytes to endothelium. The results suggest that HOCl/OCl- at physiological concentrations stimulates the adhesion of blood cells to the endothelium and cholesterol accumulation in the vessel wall ECs either directly or due to LDL modification. Both effects could be important in the development of many vascular diseases.  相似文献   

14.
The flavin-dependent halogenase RebH catalyzes the formation of 7-chlorotryptophan as the initial step in the biosynthesis of antitumor agent rebeccamycin. The reaction of FADH2, Cl-, and O2 in the active site generates the powerful oxidant HOCl, which was presumed to carry out the chlorination reaction. Herein, we demonstrate the formation of a long-lived chlorinating intermediate (t1/2 = 63 h at 4 degrees C) when RebH, FADH2, Cl-, and O2 react in the absence of substrate tryptophan. This intermediate remained on the enzyme after removal of FAD and transferred chlorine to tryptophan with kinetically competent rates. The identity of this intermediate is suggested by the X-ray crystal structure of RebH, which revealed an active site Lys79 located in a central position between flavin and tryptophan binding sites and just 4.1 A above C7 of tryptophan. The chlorinating species is proposed to be a Lys-epsilonNH-Cl (lysine chloramine) from reaction of enzyme-generated HOCl with the active site Lys79. This covalent enzyme chloramine likely plays a key role in directing regiospecific chlorination of substrate in this important class of biosynthetic enzymes.  相似文献   

15.
Oxidation by reactive species can cause changes in protein function and affect cell signalling pathways. Phosphatase and tensin homologue (PTEN) is a negative regulator of the PI3K/AKT pathway and is known to be inhibited by oxidation, but its oxidation by the myeloperoxidase-derived oxidant hypochlorous acid (HOCl) has not previously been investigated. PTEN-GST was treated with HOCl:protein ratios from 15:1 to 300:1. Decreases in PTEN phosphatase activity were observed at treatment ratios of 60:1 and higher, which correlated with the loss of the intact protein band and appearance of high molecular weight aggregates in SDS-PAGE. LC-MSMS was used to map oxidative modifications (oxPTMs) in PTEN-GST tryptic peptides and label-free quantitative proteomics used to determine their relative abundance. Twenty different oxPTMs of PTEN were identified, of which 14 were significantly elevated upon HOCl treatment in a dose-dependent manner. Methionine and cysteine residues were the most heavily oxidised; the percentage modification depended on their location in the sequence, reflecting differences in susceptibility. Other modifications included tyrosine chlorination and dichlorination, and hydroxylations of tyrosine, tryptophan, and proline. Much higher levels of oxidation occurred in the protein aggregates compared to the monomeric protein for certain methionine and tyrosine residues located in the C2 and C-terminal domains, suggesting that their oxidation promoted protein destabilisation and aggregation; many of the residues modified were classified as buried according to their solvent accessibility. This study provides novel information on the susceptibility of PTEN to the inflammatory oxidant HOCl and its effects on the structure and activity of the protein.  相似文献   

16.
Activated human neutrophils secrete myeloperoxidase, which generates HOCl from H2O2 and Cl(-). We have found that various (2'-deoxy)nucleosides react with HOCl to form chlorinated (2'-deoxy)nucleosides, including novel 8-chloro(2'-deoxy)guanosine, 5-chloro(2'-deoxy)cytidine, and 8-chloro(2'-deoxy)adenosine formed in yields of 1.6, 1.6, and 0.2%, respectively, when 0.5 mM nucleoside reacted with 0.5 mM HOCl at pH 7.4. The relative chlorination, oxidation, and nitration activities of HOCl, myeloperoxidase, and activated human neutrophils in the presence and absence of nitrite were studied by analyzing 8-chloro-, 8-oxo-7,8-dihydro-, and 8-nitro-guanosine, respectively, using guanosine as a probe. 8-Chloroguanosine was always more easily formed than 8-oxo-7,8-dihydro- or 8-nitro-guanosine. Using electrospray ionization tandem mass spectrometry, we show that several chlorinated nucleosides including 8-chloro(2'-deoxy)guanosine are formed following exposure of isolated DNA or RNA to HOCl. Micromolar concentrations of tertiary amines such as nicotine and trimethylamine dramatically enhanced chlorination of free (2'-deoxy)nucleosides and nucleosides in RNA by HOCl. As the G-463A polymorphism of the MPO gene, which strongly reduces myeloperoxidase mRNA expression, is associated with a reduced risk of lung cancer, chlorination damage of DNA /RNA and nucleosides by myeloperoxidase and its enhancement by nicotine may be important in the pathophysiology of human diseases associated with tobacco habits.  相似文献   

17.
Oxidized lipoproteins may play an important role in the pathogenesis of atherosclerosis. Elevated levels of 3-chlorotyrosine, a specific end product of the reaction between hypochlorous acid (HOCl) and tyrosine residues of proteins, have been detected in atherosclerotic tissue. Thus, HOCl generated by the phagocyte enzyme myeloperoxidase represents one pathway for protein oxidation in humans. One important target of the myeloperoxidase pathway may be high density lipoprotein (HDL), which mobilizes cholesterol from artery wall cells. To determine whether activated phagocytes preferentially chlorinate specific sites in HDL, we used tandem mass spectrometry (MS/MS) to analyze apolipoprotein A-I that had been oxidized by HOCl. The major site of chlorination was a single tyrosine residue located in one of the protein's YXXK motifs (where X represents a nonreactive amino acid). To investigate the mechanism of chlorination, we exposed synthetic peptides to HOCl. The peptides encompassed the amino acid sequences YKXXY, YXXKY, or YXXXY. MS/MS analysis demonstrated that chlorination of tyrosine in the peptides that contained lysine was regioselective and occurred in high yield if the substrate was KXXY or YXXK. NMR and MS analyses revealed that the N(epsilon) amino group of lysine was initially chlorinated, which suggests that chloramine formation is the first step in tyrosine chlorination. Molecular modeling of the YXXK motif in apolipoprotein A-I demonstrated that these tyrosine and lysine residues are adjacent on the same face of an amphipathic alpha-helix. Our observations suggest that HOCl selectively targets tyrosine residues that are suitably juxtaposed to primary amino groups in proteins. This mechanism might enable phagocytes to efficiently damage proteins when they destroy microbial proteins during infection or damage host tissue during inflammation.  相似文献   

18.
Hen egg white lysozyme (HEL), an antibacterial enzyme, is a prototype protein for studying the physical and chemical events that underlie the formation of amyloid fibril aggregates. Here, we studied alterations in enzymatic activity and aggregation provoked by oxidation of HEL by hypochlorous acid (HOCl), hypobromous acid (HOBr), taurine chloramine (Tau-NHCl), taurine monobromamine (Tau-NHBr), and taurine dibromamine (Tau-NBr(2)). Addition of only 4-fold molar excess of Tau-NHBr or Tau-NBr(2) to HEL caused complete depletion of its intrinsic fluorescence, whereas HOCl and HOBr caused 40%-50% bleaching. Tau-NHCl was unable to oxidize lysozyme. The selective effect of bromamines on tryptophan residues had a direct effect on enzymatic activity; bromamines were about two-fold more effective as inhibitors of lysozyme than the acid precursors. The oxidation of HEL by HOCl and HOBr was more effective regarding the aggregation of the protein, which was evidenced by increased turbidity, Rayleigh scattering, and anisotropy. The aggregates presented spectroscopic properties that suggested the formation of amyloid fibrils, as measured by the thioflavin assay. In conclusion, the capacity of Tau-NHBr and Tau-NBr(2) as inhibitors of the bactericidal activity of HEL could represent a role in the exacerbation of pulmonary infection, since leukocytes are rich sources of both taurine and HOBr. Moreover, the oxidation of HEL by just a small excess of hypohalous acids, a condition that could be found in inflammatory sites, may represent a new pathway for initiation of aggregation.  相似文献   

19.

Background

Advanced oxidation protein products (AOPPs) are dityrosine cross-linked and carbonyl-containing protein products formed by the reaction of plasma proteins with chlorinated oxidants, such as hypochlorous acid (HOCl). Most studies consider human serum albumin (HSA) as the main protein responsible for AOPP formation, although the molecular composition of AOPPs has not yet been elucidated. Here, we investigated the relative contribution of HSA and fibrinogen to generation of AOPPs.

Methods

AOPP formation was explored by SDS-PAGE, under both reducing and non-reducing conditions, as well as by analytical gel filtration HPLC coupled to fluorescence detection to determine dityrosine and pentosidine formation.

Results

Following exposure to different concentrations of HOCl, HSA resulted to be carbonylated but did not form dityrosine cross-linked high molecular weight aggregates. Differently, incubation of fibrinogen or HSA/fibrinogen mixtures with HOCl at concentrations higher than 150 μM induced the formation of pentosidine and high molecular weight (HMW)-AOPPs (> 200 kDa), resulting from intermolecular dityrosine cross-linking. Dityrosine fluorescence increased in parallel with increasing HMW-AOPP formation and increasing fibrinogen concentration in HSA/fibrinogen mixtures exposed to HOCl. This conclusion is corroborated by experiments where dityrosine fluorescence was measured in HOCl-treated human plasma samples containing physiological or supra-physiological fibrinogen concentrations or selectively depleted of fibrinogen, which highlighted that fibrinogen is responsible for the highest fluorescence from dityrosine.

Conclusions

A central role for intermolecular dityrosine cross-linking of fibrinogen in HMW-AOPP formation is shown.

General significance

These results highlight that oxidized fibrinogen, instead of HSA, is the key protein for intermolecular dityrosine formation in human plasma.  相似文献   

20.
Limited proteolysis of buffalo plasma fibronectin (FN) by thermolysin yielded four gelatin-binding fragments of which, the major 59 kDa fragment, GBF1, was isolated by gelatin-Sepharose and heparin-Sepharose affinity columns. GBF1 appeared during early phase of thermolysin digestion and remained intact even after 4 hr of digestion. GBF1 may be similar to 56 kDa gelatin-binding fragment of FNs from human and hamster plasma. But, it is more resistant to thermolysin cleavage. The fragment binds to heparin with low affinity. On the basis of the structure of human plasma FN, the modular structure of GBF1 may be given as: 6Fn1 1Fn2 2Fn2 7Fn1 8Fn1 9Fn1 1Fn3. Biophysical properties of GBF1 suggest an expanded native conformation. The interaction of the fragment with gelatin is pH-dependent and independent of NaCl concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号