首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human Tamm-Horsfall glycoprotein has been purified from the urine of one male. The Asn-linked carbohydrate chains were enzymically released by peptide-N4-(N-acetyl-beta-glucosaminyl)asparagine amidase F, and separated from the remaining protein by gel-permeation chromatography on Bio-Gel P-100. Fractionation of the intact (sulfated) sialylated carbohydrate chains was achieved by a combination of three liquid-chromatographic techniques, namely, anion-exchange FPLC on Q-Sepharose, amine-adsorption HPLC on Lichrospher-NH2, and high-pH anion-exchange chromatography on CarboPac PA1. In total, more than 150 carbohydrate-containing fractions were obtained, some of which still contained mixtures of oligosaccharides. The primary structure of 30 N-glycans, including 10 novel oligosaccharides, were determined by one- and two-dimensional 1H-NMR spectroscopy at 500 MHz or 600 MHz. The types of compounds identified range from non-fucosylated, monosialylated, diantennary to fucosylated, tetrasialylated, tetraantennary carbohydrate chains, possessing the following terminal structural elements: [formula: see text]  相似文献   

2.
The synthesis of sulfated proteoglycans in small explants from various parts of late blastulae fromAmbystoma mexicanum orXenopus laevis was investigated by incorporation of radioactive sulfate or glucosamine and galactosamine in media of low, normal or high tonicity. The explants differentiated into ciliated aggregates or fibroblast-like cells, or remained undifferentiated depending upon their origin in the embryo. High tonicity induces the explants to dissociated and prevents morphological differentiation, while low tonicity hardly affects this process. Yet, both types of media decrease the incorporation into glycosaminoglycans to various degrees, ranging from 40 to 80%, depending upon the species. InXenopus, the uptake of sulfate is inhibited by as much as 90% in high tonicity media. The rate of incorporation of label is approximately twice as much in mesodermal as in animal or vegetal aggregates, which do not differ significantly. Animal aggregates fromAmbystoma, however, revealed an exceptionally high uptake of sulfate. The relative distribution of chondroitin sulfates and heparan sulfates is not affected by changes in tonicity, except inXenopus where high tonicity severely suppresses the synthesis of heparan sulfates, and is independent of the type of aggregate. The relationship between the synthesis of sulfated proteoglycans and processes involved in cell differentiation, especially cell adhesion, is discussed.  相似文献   

3.
The asparagine-linked oligosaccharides on bovine lutropin (bLH) are unusual, containing GalNAc and sulfate but no galactose or sialic acid. Oligosaccharides from metabolically radiolabeled or purified bLH consist of non- (neutral), mono- (S-1), and di- (S-2) sulfated structures. We have previously shown that S-2 is a complex type oligosaccharide bearing two peripheral branches with the sequence SO4----GalNAc----GlcNAc attached to a typical Man3GlcNAc2 core (Green, E.D., van Halbeek, H., Boime, I., and Baenziger, J.U. (1985) J. Biol. Chem. 260, 15623-15630). We have now characterized the S-1 oligosaccharides on bLH which, in contrast to S-2, consist of several different structures of both the hybrid and complex types. The sulfate on S-1 oligosaccharides is located exclusively within the peripheral sequence SO4----GalNAc----GlcNAc. The GalNAc bearing hybrid structures, either with or without sulfate, cannot be processed to mono- or disulfated complex oligosaccharides due to the inability of either alpha-mannosidase II or GlcNAc-transferase II to act on GalNAc containing oligosaccharides. Since both Gal and GalNAc are added to oligosaccharides on some pituitary hormones, for example bovine and ovine follitropin and human lutropin, the Gal- and GalNAc-transferases appear to be key elements in regulating the synthesis of sulfated oligosaccharides on bLH and the other pituitary glycoprotein hormones.  相似文献   

4.
For consideration of their conformations and interactions, carbohydrate chains can conveniently be divided into 3 classes on the basis of their covalent structure; namely periodic (a), interrupted periodic (b), and aperiodic (c) types. In aqueous solution carbohydrate chains often exist as highly disordered random coils. Under appropriate conditions, however, polysaccharides of types (a) and (b) can adopt a variety of ordered conformations. Physical methods, and in particular optical rotation, circular dichroism, and nuclear magnetic resonance, provide sensitive probes for the study of the mechanism and specificity of these disorder-order transitions in aqueous solution. Intermolecular interactions between such polysaccharide chains arise from co-operative associations of long structurally regular regions which adopt the ordered conformations. For acidic polysaccharides these cooperative associations may involve alignment of extended ribbons with cations sandwhiched between them. In other systems the interactions involve double belices which may then aggregate further, and geometric “matching” of different polysaccharide chains can also occur. These ordered, associated regions are generally terminated by deviations from structural regularity or by “kinks” which prevent complete aggregation of the molecules. The complex carbohydrate chains which occur at the periphery of animal cells have very different, aperiodic structures and although their conformations are as yet poorly understood, preliminary indications are considered.  相似文献   

5.
We developed a simple methodology for labeling sulfated glycosaminoglycans (GAGs) in adult Drosophila melanogaster and studied some aspects of the biosynthesis and metabolism of these polymers during development. Adult D. melanogaster flies were fed with Na(2)(35)SO(4) for 72 h. During this period, (35)S-sulfate was incorporated into males and females and used to synthesize (35)S-sulfate-heparan sulfate (HS) and (35)S-sulfate-chondroitin sulfate (CS). The incorporation of (35)S-sulfate into HS was higher when compared to CS. In a pulse-chase experiment, we observed that (35)S-sulfate incorporated into adult female was recovered in embryos and used for the synthesis of new (35)S-sulfate-GAGs after 2 h of embryonic development. The synthesis of CS was higher than that of HS, indicating a change in the metabolism of these glycans from adult to embryonic and larval stages. Analysis of the CS in embryonic and larval tissues revealed the occurrence of nonsulfated and 4-sulfated disaccharide units in embryos, L1 and L2. In L3, in addition to these disaccharides, we also detected significant amount of 6-sulfated units that are reported here for the first time. Immunohistochemical analysis indicated that HS and CS were present in nonequivalent structures in adult and larval stages of the fly. Overall, these results indicate that (35)S-sulfate-precursors are transferred from adult to embryonic and larval tissues and used to assemble different morphological structures during development.  相似文献   

6.
7.
The α chains of collagen are synthesized like other proteins by the sequential addition of amino acids beginning at the amino-terminal end and continuing for over 1000 amino acids. In addition to amino acid assembly, hydroxylation of certain prolyl and lysyl residues is required to complete the molecule. Approximately 4.8 minutes is necessary for the entire process. After extrusion from the cell, specific lysyl residues are oxidatively deaminated to the aldehyde allysine. An analogous conversion probably occurs with hydroxylysine. Cross-linking results from the condensation of an aldehyde on one chain with an aldehyde or an ?-amino group on another chain.  相似文献   

8.
A problem of conformations of carbohydrate chains of glycoconjugates-glycoproteins and glycolipids--is reviewed. Experimental data (NMR, X-Ray) and theoretical conformational analysis data are discussed. Spatial structures of O-linked oligosaccharides from blood-group glycoproteins, N-linked oligosaccharides of different types (oligomannosidic, complex, hybrid, bisect) and carbohydrate chains of glycosphingolipids are considered.  相似文献   

9.
10.
11.
Biosynthesis of the carbohydrate portions of immunoglobulin M   总被引:12,自引:5,他引:7       下载免费PDF全文
1. Alkaline-earth-metal cations at low concentrations form soluble complexes with bovine caseins. The relative order of binding capacities is: Mg(2+)>Ca(2+)>Ba(2+)>Sr(2+). 2. The cations interact with both free ionized carboxyl groups of aspartic acid and glutamic acid and with monoester phosphate groups covalently bound to serine and threonine; at low concentrations of the cations interactions are predominantly with the phosphate groups. 3. The order of binding capacities for purified components of the casein complex is: alpha(s1)-casein>beta-casein>kappa-casein.  相似文献   

12.
Sulfated N-linked carbohydrate chains in porcine thyroglobulin   总被引:3,自引:0,他引:3  
N-linked carbohydrate chains of porcine thyroglobulin were released by the hydrazinolysis procedure. The resulting mixture of oligosaccharide-alditols was fractionated by high-voltage paper electrophoresis, the acidic fractions were further separated by high-performance liquid chromatography on Lichrosorb-NH2, and analyzed by 500-MHz 1H-NMR spectroscopy and, partially, by permethylation analysis. Of the acidic oligosaccharide-alditols, the following sulfated carbohydrate chains could be identified: NeuAc alpha 2----6Gal beta 1----4GlcNAc beta 1----2Man alpha 1----3[(SO3Na----3)Gal beta 1----4GlcNAc beta1----2-Mana alpha 1----6]Man beta 1----4GlcNAc beta 1----4[Fuc alpha 1----6]GlcNAc-ol and NeuAc alpha 2----6Gal beta 1----4(SO3Na----)0-1 GlcNAc beta 1----2-Man alpha 1----3[NeuAc alpha 2----6Gal beta 1----4(SO3Na----6)1-0GlcNAc beta 1----2Man alpha 1----6]Man beta 1----4GlcNAc beta 1----4[Fuc alpha 1----6]GlcNAc- ol. The sulfated structural elements for porcine thyroglobulin form novel details of N-linked carbohydrate chains. They contribute to the fine structure of these oligosaccharides and are another type of expression of microheterogeneity.  相似文献   

13.
The endometrial scrapings obtained from the uteri of estrogen-treated rabbits were incubated with N-acetyl-d[1-3H]glucosamine and [35S]sulfate, and then the incubation medium (M-Fr) was separated from the tissue. The tissue was subsequently homogenized exhaustively in 0.25m sucrose, and the insoluble residue (R-Fr) was separate. The supernatant at 8,500Xg for 10 min of the homogenate was subjected to subcelular fractionation by discontinuous sucrose gradient ultracentrifugation, and a thiamine pyrophosphatase-rich fraction (g-fr) was obtained. Complex carbohydrates were then separated from M-Fr, R-Fr, and G-Fr. The radioactivities incorporated into these complex carbohydrates suggested that sulfated glycoprotein synthesized in G-Fr was secreted into M-Fr. In order to confirm the above observation, labelled sulfated glycoprotein was isolated from the incubation medium. Subsequently, N-ACETYL-D[1-3H]glucosamine was incorporated into N-acetylglucosamine residues and [35S]sulfate into sulfates located most probably at the 6-position of N-acetylglucosamine residues of sulfated glycoprotein.  相似文献   

14.
Theoretical conformational analysis of bi- and three-antennary carbohydrate chains of H-specific group substances has been carried out. It has been shown that O-glycosylating oligosaccharides can form compact Y-shaped structures with effective non-bonded interactions between the antennae residues.  相似文献   

15.
Immobilization of glycoenzymes through carbohydrate side chains.   总被引:1,自引:0,他引:1  
Glucoamylase, peroxidase, glucose oxidase, and carboxypeptidase Y were covalently bound to water-insoluble supports through their carbohydrate side chains. Two approaches were used. First, the carbohydrate portions of the enzymes were oxidized with periodate to generate aldehyde groups. Treatment with amines (ethylenediamine or glycyltyrosine) and borohydride provided groups through which the protein could be immobilized. Ethylenediamine was attached to glucoamylase, peroxidase, glucose oxidase, and carboxypeptidase Y to the extent of 24, 20, 30, and 15 mol/mol of enzyme, respectively. These derivatives were coupled to an aminocaproate adduct of CL-Sepharose via an N-hydroxysuccinimide ester or to CNBr-activated Sepharose. Coupling yields were in the range of 37–50%. Retained activities of the bound aminoalkyl-enzymes were 41% (glucoamylase), 79% (peroxidase), 71% (glucose oxidase), 83% (carboxypeptidase Y). A glycyltyrosine derivative of carboxypeptidase Y was bound to diazotized arylamine-glass. Coupling yield was 42% and retained esterase activity was 84%. In the second approach, the enzyme was adsorbed to immobilized concanavalin A and the complex was crosslinked. Adsorption of carboxypeptidase Y on immobilized concanavalin A followed by crosslinking with glutaraldehyde was also effective. The bound enzyme retained 96% of the native esterase activity and showed very good operational stability.  相似文献   

16.
M W Collard  M D Griswold 《Biochemistry》1987,26(12):3297-3303
Sulfated glycoprotein 2 (SGP-2) is the major protein secreted by rat Sertoli cells. Pulse-chase labeling shows that SGP-2 is synthesized as a cotranslationally glycosylated 64-kDa precursor that is modified to a negatively charged 73-kDa form before intracellular cleavage to the mature 47- and 34-kDa subunits. A plasmid cDNA library was constructed from immunopurified mRNA, and a recombinant clone containing the entire protein coding sequence of SGP-2 was isolated. The 1857-nucleotide cDNA consists of a 297-nucleotide 5' noncoding segment, a 1341-nucleotide coding segment, and a 219-nucleotide 3' noncoding sequence. The 5' noncoding region contains five ATG codons followed by four short open reading frames. The derived SGP-2 sequence has a molecular weight of 51,379 and contains six potential N-glycosylation sites. Proteolytic processing sites for the preproprotein were determined by amino-terminal sequencing of the isolated SGP-2 subunits. Northern blots show a wide tissue distribution for the 2.0-kb SGP-2 message, and computer sequence analysis indicates a significant relationship between SGP-2 and human apolipoprotein A-I.  相似文献   

17.
Current state of research on the mechanism of biosynthesis of carbohydrate chains of N- and O-glycoproteins is reviewed. Functional predetermination of a multistage mechanism of the carbohydrate components' biosynthesis in N-glycosylproteins is suggested. Origin and character of heterogeneity of the carbohydrate chains in these biopolymers are discussed.  相似文献   

18.
19.
A human, alveolar glycoprotein having an apparent mol. wt. of 250 000 gave two major glycopeptide fractions (I and II) by Pronase digestion, followed by gel filtration, DEAE-cellulose column chromatography, paper chromatography, and paper electrophoresis. Glycopeptide I contained d-galactose, d-mannose, 2-acetamido-2-deoxy-d-glucose, and N-acetylneuraminic acid in the molar ratio of 2:3:4:1, whereas these sugars were present in Glycopeptide II in the molar ratio of 2:3:4:2.l-Fucose was present only in Glycopeptide II at a concentration of one l-fucose per three d-mannose residues. In both glycopeptides, 2-acetamido-2-deoxy-d-glucose was linked to an asparagine residue of the peptide chain. Based on the results of alkaline borohydride treatment, periodate oxidation, methlylation analysis, and sequential glycosidase degradation of the glycopeptides, tentative structures are proposed for both glycopeptides.  相似文献   

20.
Recombinant human tissue plasminogen activator expressed in murine epithelial cells carries, in part, sulfated N-glycans, which are characterized by the presence of a NeuAc alpha 3[SO4-6]Gal unit. In order to study the biosynthesis of this novel structural element, corresponding sulfated asialooligosaccharide alditols were resialylated in vitro using a crude sialyltransferase preparation from murine liver which was shown to contain Gal beta 1,3(4)GlcNAc alpha 2,3-sialyltransferase activity. Products were analyzed for transfer of sialic acid residues by anion-exchange HPLC. The results demonstrated that resialylation of SO4-6Gal-residues did not occur. Therefore, it may be concluded that transfer of the sulfate group is the final step in the biosynthesis of this structural epitope.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号