首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
M Inuzuka 《FEBS letters》1985,181(2):236-240
DNA replication of plasmid R6K initiates at three unique sites, ori alpha, ori beta, and ori gamma. Replicating DNA molecules of a deletion derivative of R6K were synthesized in an in vitro system containing pi protein fraction from cells carrying a mini-R6K derivative that produced only this initiation protein as an R6K-encoded protein and analyzed by electron miscroscopy. Requirement of pi protein for the activity of all these three replication origins in vitro was verified. Frequencies of initiation at the three origins were almost equal.  相似文献   

2.
Conformational changes in a replication origin induced by an initiator protein   总被引:37,自引:0,他引:37  
S Mukherjee  I Patel  D Bastia 《Cell》1985,43(1):189-197
The replication initiator protein of the plasmid R6K binds to seven contiguous 22 bp direct repeats that form an indispensable part of the three replication origins alpha, beta, and gamma. Binding of the initiator to the direct repeats induced a marked bending of the region of gamma replication origin. Binding of the initiator also promoted unwinding of the origin DNA by at least two turns. Distamycin appeared to antagonize the binding of the initiator to the seven 22 bp direct repeats. At the appropriate DNA and protein concentrations the initiator enhanced topoisomerase-induced catenation of the origin containing supercoiled DNA but not of DNA lacking the origin sequence. Thus, the initiator protein caused significant changes in the secondary and tertiary structures of the replication origin.  相似文献   

3.
The plasmid R6K contains three distinct origins of replication: alpha, beta, and gamma. The gamma sequence is essential in cis and acts as an enhancer that activates the distant alpha and beta origins. R6K therefore represents a favorable procaryotic model system with which to unravel the biochemical mechanisms underlying selective origin activation, particularly activation involving distant sites on the same chromosome. We have discovered that plasmids containing the origins alpha and gamma required the Escherichia coli DnaA initiator protein in addition to the R6K-encoded initiator protein, Pi, and other host replisomal proteins for their maintenance in vivo. Plasmids initiating replication from origin beta required only the Pi initiator protein and other host replisomal proteins. We have exploited the differential requirement for the DnaA protein by origins gamma and beta to selectively study and localize the minimal origin beta sequences by deletion analysis as one test of a looping model of origin activation. A 64-bp region spanning the extreme -COOH terminal coding sequence of the Pi protein was found to be essential for replication in vivo in the absence of DnaA protein, consistent with the approximate physical location of the beta origin. Replication emanating from origin beta could be abolished in vivo by deletion of the 9-bp target site for Pi protein-mediated DNA looping between the gamma origin/enhancer and the distant beta origin. Electron microscopy of nascent replication intermediates generated in vivo directly confirmed our genetic localization of the beta origin. Our results strongly suggest that activation of the beta origin by a distant replication enhancer element requires a small target sequence essential for initiator protein-mediated DNA looping.  相似文献   

4.
Y B Lu  H J Datta    D Bastia 《The EMBO journal》1998,17(17):5192-5200
Unlike the chromosome of Escherichia coli that needs only one replication initiator protein (origin recognition protein) called DnaA, many plasmid replicons require dual initiators: host-encoded DnaA and a plasmid-encoded origin recognition protein, which is believed to be the major determinant of replication control. Hitherto, the relative mechanistic roles of dual initiators in DNA replication were unclear. Here, we present the first evidence that DnaA communicates with the plasmid-encoded pi initiator of R6K and contacts the latter at a specific N-terminal region. Without this specific contact, productive unwinding of plasmid ori gamma and replication is abrogated. The results also show that DnaA performs different roles in host and plasmid replication as revealed by the finding that the ATP-activated form of DnaA, while indispensable for oriC replication, was not required for R6K replication. We have analyzed the accessory role of the DNA bending protein, integration host factor (IHF), in promoting initiator-origin interaction and have found that IHF significantly enhances the binding of DnaA to its cognate site. Collectively, the results further advance our understanding of replication initiation.  相似文献   

5.
We have investigated the role of integration host factor (IHF) in the replication of plasmid R6K by studying the maintainance of the plasmid in a strain of Escherichia coli that lacks both subunits of IHF and in an isogenic wild type strain and found that all three origins, alpha, beta, and gamma, were functional in the absence of IHF; however, loss of IHF reduced the copy number of those replicons initiating solely from ori gamma by 5-fold. Concomitant loss of direct repeats within the origin that bind the R6K replication initiator protein, Pi, resulted in a further reduction in copy number. Using gel mobility shift analysis, we showed that IHF bound specifically only to one site within the A/T rich region of the minimal origin adjacent to the Pi binding sites. The origin region possessed no intrinsic DNA curvature although IHF induced a strong bend upon binding. Combination footprinting with different orders of addition of Pi and IHF suggested that there was no cooperativity between the two proteins with regard to DNA binding. Hydroxyl-radical footprinting revealed hypersensitive asymmetric periodic cleavage sites within the origin region in the presence of IHF that extended over 200 base pairs and a localized perturbation of cleavage chemistry. The presence of periodic cleavages was dependent upon the presence of the wild type R6K origin sequence and was not observed when the IHF binding site was positioned adjacent to a heterologous sequence. We observed that the conformational changes induced by IHF upon binding to the R6K origin were negatively correlated with the observed decrease in copy number, and therefore, origin conformation altered by protein-DNA interaction may play an important role in the regulation of replication initiation.  相似文献   

6.
A Miron  S Mukherjee    D Bastia 《The EMBO journal》1992,11(3):1205-1216
We have isolated mutants of the pi initiator protein of the plasmid R6K that are defective in DNA looping in vitro but retain their normal DNA binding affinity for the primary binding sites (iterons) at the gamma origin/enhancer. One such looping defective mutant called R6 was determined to be a proline to leucine change at position 46 near the N terminus of the pi protein. Using a set of genetic assays that discriminate between the activation of the gamma origin/enhancer from those of the distantly located alpha and beta origins, we show that the looping defective initiator protein fails to activate the alpha and beta origins but derepresses initiation from the normally silent gamma origin in vivo. The results conclusively prove that DNA looping is required to activate distant replication origins located at distances of up to 3 kb from the replication enhancer.  相似文献   

7.
The nucleotide sequence of the replication origin beta of the plasmid R6K   总被引:11,自引:0,他引:11  
We h ave identified by molecular cloning a region of 283 base pairs of the HindIII 2 fragment of R6K which corresponds to the region of the replication origin beta. This 283 base-pair DNA fragment, when present contiguously with the structural gene for the replication initiation protein of R6K, encoded in the HindIII 9-15 and part of HindIII 2 restriction fragments, will support the replication of a plasmid chimera containing the pBR322 replicon in a pol Ats host at the nonpermissive temperature. The nucleotide sequence of the region of replication origin beta has been determined. The nucleotide sequence has some homology with the ori gamma region of R6K; it has a 15-base-pair homology with the replication origin of Escherichia coli.  相似文献   

8.
Understanding the role of Escherichia coli histone-like protein integration host factor (IHF) in replication of R6K plasmid (Dellis, S., and Filutowicz, M. (1991) J. Bacteriol. 173, 1279-1286) requires detailed analyses of the interaction of IHF protein with the plasmid's replication origin (gamma ori). We describe an electron microscopic analysis which shows that a compact structure can be formed in the presence of IHF, in which, on average, a 102-base pair (bp) ori segment is involved. IHF.gamma ori complexes also undergo a two-step conformational change in an IHF concentration-dependent manner when analysed by band shift assay. We believe that the DNA is bent at low IHF concentrations, but folded at high IHF concentrations. This idea is supported by the fact that electrophoretic mobility of the IHF.gamma ori complexes is faster at higher concentrations of IHF. Furthermore, it is shown that the formation of a compact nucleoprotein structure depends on the two regions flanking the AT-rich segment; the iterons to the right and the 106-bp ori domain to the left. Finally we show that IHF protects the entire AT-rich segment of the ori against nuclease cleavage. In addition to the protection, an altered cleavage pattern by DNase I, in the presence of high levels of IHF, was observed within the iterons but not within the 106-bp domain of the ori. Implications of the IHF-mediated gamma ori folding as a possible mechanism protecting the ori from replication inhibition by R6K initiator protein tau are discussed.  相似文献   

9.
10.
Replicating molecules of plasmid RSF1040, a deletion mutant of R6K, were synthesized in vitro and analyzed by electron microscopy. Initiation of replication occurs at three unique sites, ori alpha, ori beta, and ori gamma, within a 3900-base pair segment of the R6K genome. These sites are indistinguishable from the origins that are active in vivo. Frequencies of initiation at these three origins, however, are different from those observed in vivo. Replication proceeds unidirectionally in either direction from ori beta and ori gamma and in one direction from ori alpha. The replication terminus of the R6K genome is inactive in the in vitro system.  相似文献   

11.
12.
DNA opening is an essential step in the initiation of replication via the Cairns mode of replication. The opening reaction was investigated in a gamma ori system by using hyperactive variants of plasmid R6K-encoded initiator protein, pi. Reactivity to KMnO4 (indicative of opening) within gamma ori DNA occurred in both strands of a superhelical template upon the combined addition of wt pi, DnaA and integration host factor (IHF), each protein known to specifically bind gamma ori. IHF, examined singly, enhanced reactivity to KMnO4. The IHF-dependent reactive residues, however, are distinct from those dependent on pi (wt and hyperactive variants). Remarkably, the DNA helix opening does not require IHF and/or DnaA when hyperactive variants of pi were used instead of wt protein. We present three lines of evidence consistent with the hypothesis that DNA strand separation is facilitated by pi monomers despite the fact that both monomers and dimers of the protein can bind to iterons (pi binding sites). Taken together, our data suggest that pi elicits its ability to modulate plasmid copy number at the DNA helix-opening step.  相似文献   

13.
Examination of the effect of the himA and himD mutants of E. coli on the maintenance of plasmid R6K has revealed that the gamma origin-containing replicons cannot be established in any of the mutants deficient in the production of E. coli Integration Host Factor (IHF). Contrary, the R6K derivatives containing other origins of the plasmid (alpha and/or beta) replicate in a host lacking functional IHF protein. We show that IHF protein binds specifically to a segment of the replication region which is essential for the activity of all three R6K origins. Mapping the IHF binding sequence with neocarzinostatin showed that the protein protects three segments of the origin: two strong binding sites reside within an AT-rich block, while the third, considerably weaker site is separated from the other two by a cluster of the seven 22 bp direct repeats. These seven repeats have been shown previously to bind the R6K-encoded initiator protein pi. We also demonstrate that the establishment of pi-origin complexes prior to IHF addition prevents the binding of the IHF protein to the gamma origin. The binding sequences of IHF and pi proteins do not overlap, therefore, we propose that the binding of pi protein alters the structure of the DNA and thereby prevents the subsequent binding of IHF protein.  相似文献   

14.
J Germino  D Bastia 《Cell》1983,32(1):131-140
We have tagged the replication initiator protein of the plasmid R6K near the C-terminal end by fusion, in the correct reading frame, with the 89 amino acid long N-terminal alpha-donor polypeptide of beta-galactosidase of E. coli. This fusion was carried out with recombinant DNA methods. The protein chimera thus generated retained the activities of both initiation of DNA replication in vivo at the replication origin gamma of R6K and hydrolysis of beta-galactopyranoside when complemented in vivo with the alpha-acceptor polypeptide coded by the lac Z gene containing the M15 deletion. Using the simple and convenient assay for detecting beta-galactosidase, we have partially purified the tagged replication initiator, and have demonstrated that the protein binds to specific DNA sequences of the R6K chromosome. The protein bound to DNA sequences located at two places in the 5' untranslated leader region of the initiator protein cistron.  相似文献   

15.
J Germino  D Bastia 《Cell》1983,34(1):125-134
Initiation of DNA replication in plasmid R6K is potentiated by the plasmid-encoded 35 kd replication initiator protein. We had previously reported that the initiator bound to two regions of R6K DNA called Site I and Site II. Using DNAase I footprinting technique we have demonstrated that the initiator bound to seven tandem repeats of a 22 bp long sequence in Site I. In Site II, the initiator bound to a single repeat having the same consensus sequence and to two partial repeats that most likely overlap the promoter of the initiation protein cistron. Using dimethyl sulfate as a chemical probe, we have determined the purine residues of Site I and Site II that make contact with the initiator protein. The results show that eight out of nine contact points per repeat in Site I were located on one of the two strands of the DNA. The binding of the initiator to the Site II sequence could explain the observed autoregulation of the synthesis of the initiator protein by promoter occlusion.  相似文献   

16.
17.
A typical plasmid replicon of Escherichia coli, such as ori γ of R6K, contains tandem iterons (iterated initiator protein binding sites), an AT-rich region that melts upon initiator-iteron interaction, two binding sites for the bacterial initiator protein DnaA, and a binding site for the DNA-bending protein IHF. R6K also contains two structurally atypical origins called α and β that are located on either side of γ and contain a single and a half-iteron, respectively. Individually, these sites do not bind to initiator protein π but access it by DNA looping-mediated interaction with the seven π-bound γ iterons. The π protein exists in 2 interconvertible forms: inert dimers and active monomers. Initiator dimers generally function as negative regulators of replication by promoting iteron pairing (“handcuffing”) between pairs of replicons that turn off both origins. Contrary to this existing paradigm, here we show that both the dimeric and the monomeric π are necessary for ori α-driven plasmid maintenance. Furthermore, efficient looping interaction between α and γ or between 2 γ iterons in vitro also required both forms of π. Why does α-γ iteron pairing promote α activation rather than repression? We show that a weak, transitory α-γ interaction at the iteron pairs was essential for α-driven plasmid maintenance. Swapping the α iteron with one of γ without changing the original sequence context that caused enhanced looping in vitro caused a significant inhibition of α-mediated plasmid maintenance. Therefore, the affinity of α iteron for π-bound γ and not the sequence context determined whether the origin was activated or repressed.  相似文献   

18.
We have reconstituted a multiprotein system consisting of 22 purified proteins that catalyzed the initiation of replication specifically at ori gamma of R6K, elongation of the forks, and their termination at specific replication terminators. The initiation was strictly dependent on the plasmid-encoded initiator protein pi and on the host-encoded initiator DnaA. The wild type pi was almost inert, whereas a mutant form containing 3 amino acid substitutions that tended to monomerize the protein was effective in initiating replication. The replication in vitro was primed by DnaG primase, whereas in a crude extract system that had not been fractionated, it was dependent on RNA polymerase. The DNA-bending protein IHF was needed for optimal replication and its substitution by HU, unlike in the oriC system, was less effective in promoting optimal replication. In contrast, wild type pi-mediated replication in vivo requires IHF. Using a template that contained ori gamma flanked by two asymmetrically placed Ter sites in the blocking orientation, replication proceeded in the Cairns type mode and generated the expected types of termination products. A majority of the molecules progressed counterclockwise from the ori, in the same direction that has been observed in vivo. Many features of replication in the reconstituted system appeared to mimic those of in vivo replication. The system developed here is an important milestone in continuing biochemical analysis of this interesting replicon.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号