首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Phytochrome system perceives the reduction in the ratio of red to far-red light when plants are grown under dense canopy. This signal, regarded as a warning of competition, will trigger a series of phenotypic changes to avoid shade. Progress has been made for several phytochrome signaling intermediates acting as positive regulators of accelerated elongation growth and promotion of flowering in shade-avoidance has been identified. Recently, a FPF1 homolog GhFPF1 was identified in upland cotton. Our data supported that transgenic Arabidopsis of over-expressing GhFPF1 displayed a constitutive shade-avoiding phenotype resembling phyB mutants in several respects such as accelerated elongation of hypocotyl and petioles, upward of leaf movement, and promoted flowering. In this addendum, by dissection of GhFPF1 acting as a component of shade-avoidance responses we suppose that GhFPF1 might influence the timing of the floral transition independently of shade-mediated early flowering. Furthermore, the opposite changes of IAA content in transgenic leaves and stems suggested that alteration of IAA storage and release took place during shade-avoidance responses.  相似文献   

2.
3.
A dominant mutant line characterized by abnormal leaf venation pattern was isolated from a transgenic Arabidopsis plant pool that was generated with Agrobacterium culture harboring an Arabidopsis antisense cDNA library. In the mutant line, the phenotype was due to antisense suppression of a gene we named VEP1 (Vein Patterning). The predicted amino acid sequence of the gene contained a motif related to the mammalian death domain that is found in the apoptotic machinery. Reduced expression of the VEP1 gene resulted in the reduced complexity of the venation pattern of the cotyledons and foliar leaves, which was mainly due to the reduced number of the minor veins and their incomplete connection. The analysis of mutant embryos indicated that the phenotype was originated, at least in part, from a defect in the procambium patterning. In the mutant, the stem and root were thinner than those in wild type. This phenotype was associated with reduced vascular development. The promoter activity of the VEP1 gene was detected preferentially in the vascular regions. We propose that the death domain-containing protein VEP1 functions as a positive element required for vascular strand development in Arabidopsis thaliana.  相似文献   

4.
The assembly of iron-sulfur (Fe-S) clusters involves several pathways and in prokaryotes the mobilization of the sulfur (SUF) system is paramount for Fe-S biogenesis and repair during oxidative stress. The prokaryotic SUF system consists of six proteins: SufC is an ABC/ATPase that forms a complex with SufB and SufD, SufA acts as a scaffold protein, and SufE and SufS are involved in sulfur mobilization from cysteine. Despite the importance of Fe-S proteins in higher plant plastids, little is known regarding plastidic Fe-S cluster assembly. We have recently shown that Arabidopsis harbors an evolutionary conserved plastidic SufC protein (AtNAP7) capable of hydrolyzing ATP and interacting with the SufD homolog AtNAP6. Based on this and the prokaryotic SUF system we speculated that a SufB-like protein may exist in plastids. Here we demonstrate that the Arabidopsis plastid-localized SufB homolog AtNAP1 can complement SufB deficiency in Escherichia coli during oxidative stress. Furthermore, we demonstrate that AtNAP1 can interact with AtNAP7 inside living chloroplasts suggesting the presence of a plastidic AtNAP1.AtNAP6.AtNAP7 complex and remarkable evolutionary conservation of the SUF system. However, in contrast to prokaryotic SufB proteins with no associated ATPase activity we show that AtNAP1 is an iron-stimulated ATPase and that AtNAP1 is capable of forming homodimers. Our results suggest that AtNAP1 represents an atypical plastidic SufB-like protein important for Fe-S cluster assembly and for regulating iron homeostasis in Arabidopsis.  相似文献   

5.
Photosynthesis Research - Chlorophyll (Chl) breakdown is a diagnostic visual process of leaf senescence, which furnishes phyllobilins (PBs) by the PAO/phyllobilin pathway. As Chl breakdown disables...  相似文献   

6.
7.
Nitrate (NO3) and ammonium (NH4+) are the main forms of nitrogen available in the soil for plants. Excessive NH4+ accumulation in tissues is toxic for plants and exclusive NH4+-based nutrition enhances this effect. Ammonium toxicity syndrome commonly includes growth impairment, ion imbalance and chlorosis among others. In this work, we observed high intraspecific variability in chlorophyll content in 47 Arabidopsis thaliana natural accessions grown under 1 mM NH4+ or 1 mM NO3 as N-source. Interestingly, chlorophyll content increased in every accession upon ammonium nutrition. Moreover, this increase was independent of ammonium tolerance capacity. Thus, chlorosis seems to be an exclusive effect of severe ammonium toxicity while mild ammonium stress induces chlorophyll accumulation.  相似文献   

8.
Chlorophyll a and chlorophyll b are interconverted in the chlorophyll cycle. The initial step in the conversion of chlorophyll b to chlorophyll a is catalyzed by the chlorophyll b reductases NON‐YELLOW COLORING 1 (NYC1) and NYC1‐like (NOL), which convert chlorophyll b to 7‐hydroxymethyl chlorophyll a. This step is also the first stage in the degradation of the light‐harvesting chlorophyll a/b protein complex (LHC). In this study, we examined the effect of chlorophyll b on the level of NYC1. NYC1 mRNA and NYC1 protein were in low abundance in green leaves, but their levels increased in response to dark‐induced senescence. When the level of chlorophyll b was enhanced by the introduction of a truncated chlorophyllide a oxygenase gene and the leaves were incubated in the dark, the amount of NYC1 was greatly increased compared with that of the wild type; however, the amount of NYC1 mRNA was the same as in the wild type. In contrast, NYC1 did not accumulate in the mutant without chlorophyll b, even though the NYC1 mRNA level was high after incubation in the dark. Quantification of the LHC protein showed no strong correlation between the levels of NYC1 and LHC proteins. However, the level of chlorophyll fluorescence of the dark adapted plant (Fo) was closely related to the accumulation of NYC1, suggesting that the NYC1 level is related to the energetically uncoupled LHC. These results and previous reports on the degradation of chlorophyllide a oxygenase suggest that the a feedforward and feedback network is included in chlorophyll cycle.  相似文献   

9.
报告了钙流通抑制剂钌红对缺氧条件下拟南芥中ADH基因表达的诱导和植株存活的影响。结果表明 ,缺氧早期ADH基因的激活和表达需要钙离子 ,钌红处理可以延长缺氧条件下拟南芥植株的存活期。据此推测 :拟南芥中缺氧诱导的细胞死亡是一个钙离子介导的主动过程 ,钌红通过阻止细胞内钙离子浓度的增加而抑制这一过程。延长缺氧处理的时间会导致拟南芥叶片细胞内发生核凝聚和染色体断裂的现象 ,也进一步验证了这种构想。表明缺氧处理引起的叶片细胞损伤直至植株死亡是一个程序化的过程  相似文献   

10.
11.
Serine (Ser) biosynthesis in C(3) plants can occur via several pathways. One major route involves the tetrahydrofolate (THF)-dependent activities of the glycine decarboxylase complex (GDC, EC 2.1.1.10) and serine hydroxymethyltransferase (SHMT, EC 2.1.2.1) with glycine (Gly) as one-carbon (1-C) source. An alternative THF-dependent pathway involves the C1-THF synthase/SHMT activities with formate as 1-C source. Here, we have investigated aspects of the regulation of these two folate-mediated pathways in Arabidopsis thaliana (L.) Heynh. Columbia using two approaches. Firstly, transgenic plants overexpressing formate dehydrogenase (FDH, EC 1.2.1.2) were used to continue our previous studies on the function of FDH in formate metabolism. The formate pool size was approximately 73 nmol (g FW)(-1) in wild type (WT) Arabidopsis plants; three independent transgenic lines had similar-sized pools of formate. Transgenic plants produced more (13)CO(2) from supplied [(13)C]formate than did WT plants but were not significantly different from WT plants in their synthesis of Ser. We concluded that FDH has no direct role in the regulation of the above two pathways of Ser synthesis; the breakdown of formate to CO(2) by the FDH reaction is the primary and preferred fate of the organic acid in Arabidopsis. The ratio between the GDC/SHMT and C1-THF synthase/SHMT pathways of Ser synthesis from [alpha-(13)C]Gly and [(13)C]formate, respectively, in Arabidopsis shoots was 21 : 1; in roots, 9 : 1. In shoots, therefore, the pathway from formate plays only a small role in Ser synthesis; in the case of roots, results indicated that the 9 : 1 ratio was as a result of greater fluxes of (13)C through both pathways together with a relatively higher contribution from the C1-THF synthase/SHMT route than in shoots. We also examined the synthesis of Ser in a GDC-deficient mutant of Arabidopsis (glyD) where the GDC/SHMT pathway was impaired. Compared with WT, glyD plants accumulated 5-fold more Gly than WT after supplying [alpha-(13)C]Gly for 24 h; the accumulation of Ser from [alpha-(13)C]Gly was reduced by 25% in the same time period. On the other hand, the accumulation of Ser through the C1-THF synthase/SHMT pathway in glyD plants was 2.5-fold greater than that in WT plants. Our experiments confirmed that the GDC/SHMT and C1-THF synthase/SHMT pathways normally operate independently in Arabidopsis plants but that when the primary GDC/SHMT pathway is impaired the alternative C1-THF synthase/SHMT pathway can partially compensate for deficiencies in the synthesis of Ser.  相似文献   

12.
13.
Transcriptional regulation of secondary growth in Arabidopsis thaliana   总被引:6,自引:0,他引:6  
  相似文献   

14.
Rat Nap57 and its yeast homologue Cbf5p are pseudouridine synthases involved in rRNA biogenesis, localized in the nucleolus. These proteins, together with H/ACA class of snoRNAs compose snoRNP particles, in which snoRNA guides the synthase to direct site-specific pseudouridylation of rRNA. In this paper we present an Arabidopsis thaliana protein that is highly homologous to Cbf5p (72% identity and 85% homology) and NAP57 (67% identity and 81% homology). Moreover, the plant protein has conserved structural motifs that are characteristic features of pseudouridine synthases of the TruB class. We have named the cloned and characterized protein AtNAP57 (Arabidopsis thaliana homologue of NAP57). AtNAP57 is a 565 amino-acid protein and its calculated molecular mass is 63 kDa. The protein is encoded by a single copy gene located on chromosome 3 of the A. thaliana genome. Interestingly, the AtNAP57 gene does not contain any introns. Mutations in the human DKC1 gene encoding dyskerin (human homologue of yeast Cbf5p and rat NAP57) cause dyskeratosis congenita a rare inherited bone marrow failure syndrome characterized by abnormal skin pigmentation, nail dystrophy and mucosal leukoplakia.  相似文献   

15.
Plant class‐II glutaredoxins (GRXs) are oxidoreductases carrying a CGFS active site signature and are able to bind iron–sulfur clusters in vitro. In order to explore the physiological functions of the 2 plastidial class‐II isoforms, GRXS14 and GRXS16, we generated knockdown and overexpression Arabidopsis thaliana lines and characterized their phenotypes using physiological and biochemical approaches. Plants deficient in one GRX did not display any growth defect, whereas the growth of plants lacking both was slowed. Plants overexpressing GRXS14 exhibited reduced chlorophyll content in control, high‐light, and high‐salt conditions. However, when exposed to prolonged darkness, plants lacking GRXS14 showed accelerated chlorophyll loss compared to wild‐type and overexpression lines. We observed that the GRXS14 abundance and the proportion of reduced form were modified in wild type upon darkness and high salt. The dark treatment also resulted in decreased abundance of proteins involved in the maturation of iron–sulfur proteins. We propose that the phenotype of GRXS14‐modified lines results from its participation in the control of chlorophyll content in relation with light and osmotic conditions, possibly through a dual action in regulating the redox status of biosynthetic enzymes and contributing to the biogenesis of iron–sulfur clusters, which are essential cofactors in chlorophyll metabolism.  相似文献   

16.
茉莉酸对拟南芥花粉育性的调控   总被引:1,自引:3,他引:1  
概述了茉莉酸在调控拟南芥雄性器官正常发育过程中的作用.茉莉酸合成型突变体和不敏感型突变体coil均表现为雄性不育.文章对其机制进行了讨论.  相似文献   

17.
The effect of ethylene on chlorophyll degradation in the peel of Robinson tangerine (X Citrus reticulata Blanco) and calamondin (X Citrofortunellamitis [Blanco] Ingram and Moore) fruits was studied. The chlorophyll degrading system in the peel of these two citrus species was not self-sustaining but required ethylene to function. Chlorophyll degradation ceased immediately when fruit were removed from ethylene and held in ethylene-free air at 0.2 atmospheric pressure. However, at atmospheric pressure, chlorophyll degradation continued for 24 hours in the absence of exogenous ethylene. Although chlorophyllase levels were negatively correlated with chlorophyll content in the peel (r = −0.981; P < 0.01), the level of chlorophyllase activity did not change when fruit were removed from ethylene, even though chlorophyll degradation had stopped. From these observations, it was concluded that ethylene is necessary for chlorophyll degradation in the two species of citrus studied, but its primary role is not solely for the induction of chlorophyllase activity.  相似文献   

18.
19.
Adenosine 5'-phosphosulphate reductase (APR) is considered to be a key enzyme of sulphate assimilation in higher plants. We analysed the diurnal fluctuations of total APR activity and protein accumulation together with the mRNA levels of three APR isoforms of Arabidopsis thaliana. The APR activity reached maximum values 4 h after light onset in both shoots and roots; the minimum activity was detected at the beginning of the night. During prolonged light, the activity remained stable and low in shoots, but followed the normal rhythm in roots. On the other hand, the activity decreased rapidly to undetectable levels within 24 h of prolonged darkness both in shoots and roots. Subsequent re-illumination restored the activity to 50% in shoots and to 20% in roots within 8 h. The mRNA levels of all three APR isoforms showed a diurnal rhythm, with a maximum at 2 h after light onset. The variation of APR2 mRNA was more prominent compared to APR1 and APR3. 35SO42- feeding experiments showed that the incorporation of 35S into reduced sulphur compounds in vivo was significantly higher in light than in the dark. A strong increase of mRNA and protein accumulation as well as enzyme activity during the last 4 h of the dark period was observed, implying that light was not the only factor involved in APR regulation. Indeed, addition of 0.5% sucrose to the nutrient solution after 38 h of darkness led to a sevenfold increase of root APR activity over 6 h. We therefore conclude that changes in sugar concentrations are also involved in APR regulation.  相似文献   

20.
The RD20 gene encodes a member of the caleosin family, which is primarily known to function in the mobilization of seed storage lipids during germination. In contrast to other caleosins, RD20 expression is early-induced by water deficit conditions and we recently provided genetic evidence for its positive role in drought tolerance in Arabidopsis. RD20 is also responsive to pathogen infection and is constitutively expressed in diverse tissues and organs during development suggesting additional roles for this caleosin. This addendum describes further exploration of phenotypic alterations in T-DNA insertional rd20 mutant and knock-out complemented transgenic plants in the context of early development and susceptibility to a phytopathogenic bacteria. We show that the RD20 gene is involved in ABA-mediated inhibition of germination and does not play a significant role in plant defense against Pseudomonas syringae.Key words: ABA, Arabidopsis thaliana, biotic stress, caleosin, germination, RD20  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号