首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
G1/S control of anchorage-independent growth in the fibroblast cell cycle   总被引:18,自引:4,他引:14  
We have developed methodology to identify the block to anchorage-independent growth and position it within the fibroblast cell cycle. Results with NRK fibroblasts show that mitogen stimulation of the G0/G1 transition and G1-associated increases in cell size are minimally affected by loss of cell anchorage. In contrast, the induction of G1/S cell cycle genes and DNA synthesis is markedly inhibited when anchorage is blocked. Moreover, we demonstrate that the anchorage-dependent transition maps to late G1 and shortly before activation of the G1/S p34cdc2-like kinase. The G1/S block was also detectable in NIH-3T3 cells. Our results: (a) distinguish control of cell cycle progression by growth factors and anchorage; (b) indicate that anchorage mediates G1/S control in fibroblasts; and (c) identify a physiologic circumstance in which the phenotype of mammalian cell cycle arrest would closely resemble Saccharomyces cerevisiae START. The close correlation between anchorage independence in vitro and tumorigenicity in vivo emphasizes the key regulatory role for G1/S control in mammalian cells.  相似文献   

2.
Transforming growth factor-beta (TGF-beta) was originally identified, characterized, and named on the basis of its ability to induce anchorage-independent growth (phenotypic transformation). This effect has received little attention in recent years, probably because the induction of anchorage-independent growth by TGF-beta has been observed only in a few cell lines, of which NRK fibroblasts are among the best studied. We have previously reported that normal rat kidney cells have lost their normal adhesion requirement for expression of cyclin D1, and we now show that this loss is causal for the induction of anchorage-independent growth by TGF-beta. First, we show that TGF-beta fails to induce anchorage-independent growth in NIH-3T3 cells and human fibroblasts that have retained their adhesion requirement for expression of cyclin D1. Second, we show that TGF-beta complements rather than affects cyclin D-cdk4/6 kinase activity in NRK cells. Third, we show that forced expression of cyclin D1 in suspended 3T3 cells renders them susceptible to transformation by TGF-beta. These results may explain why the induction of anchorage-independent growth by TGF-beta is a rare event and yet also describe a molecular scenario in which the mesenchymal response to TGF-beta could indeed involve the acquisition of an anchorage-independent phenotype.  相似文献   

3.
We have previously shown that the expression of alpha(5)beta(1) integrin on the cell surface is dependent upon cell adhesion to the extracellular matrix, and we report here that transforming growth factor-beta (TGF-beta) overcomes this requirement in normal rat kidney (NRK) fibroblasts. Thus, suspended NRK cells treated with TGF-beta show levels of surface alpha(5)beta(1) integrin that are equivalent to those seen in adherent cells. Moreover, several experiments showed that this effect is necessary for the induction of anchorage-independent growth by TGF-beta. First, a kinetic analysis showed that surface expression of alpha(5)beta(1) integrin was restored in TGF-beta-treated NRK cells prior to the induction of anchorage-independent growth. Second, NRK cell mutants that have lost their TGF-beta requirement for surface expression of alpha(5)beta(1) integrin were anchorage-independent in the absence of TGF-beta. Third, an antisense oligonucleotide to the beta(1) integrin subunit or, fourth, stable expression of an alpha(5)-antisense cDNA blocked the ability of TGF-beta to stimulate anchorage-independent growth. Thus, TGF-beta overrides the adhesion requirement for surface expression of alpha(5)beta(1) integrin in NRK cells, and this effect is necessary for the induction of anchorage-independent growth.  相似文献   

4.
The expression of alpha 5 beta 1 integrin on the surface of fibroblasts requires adhesion to substratum. We have examined the basis for this adhesion-dependent surface expression by comparing the life cycle of integrins in parallel cultures of adherent and nonadherent cells. Results of biosynthetic labeling experiments in NRK fibroblasts showed that the synthesis and biosynthetic processing of the beta 1 integrin subunit proceed in the absence of cell attachment; however, when examining the behavior of preexisting cell surface integrins, we observed that the alpha beta 1 integrins are internalized and degraded when adhesion to substratum is blocked. A kinetic analysis of integrin internalization in cycloheximide-treated NRK cells showed that each of the fibroblast integrins we examined (in both the beta 1 and beta 3 families) are lost from the cell surface after detachment from substratum. Thus, the default integrin life cycle in fibroblasts involves continuous synthesis, processing, transport to the cell surface, and internalization/degradation. Interestingly, studies with NIH-3T3 cells expressing alpha 1 beta 1 integrin showed that the loss of cell-surface alpha 5 beta 1 integrin is blocked by adhesion of cells to dishes coated with type IV collagen (a ligand for alpha 1 beta 1 integrin) as well as fibronectin. Similarly, adhesion of these cells to dishes coated with type IV collagen stabilizes the surface expression of alpha 5 beta 1 as well as alpha 1 beta 1 integrin. We propose that the adhesion of fibroblasts to extracellular matrix protein alters the integrin life cycle and permits retention of these proteins at the cell surface where they can play important roles in transmitting adhesion-dependent signals.  相似文献   

5.
At least one member of the TGF-beta family, TGF-beta 1, has been previously shown to inhibit the anchorage-independent growth of some human breast cancer cell lines (Knabbe et al., 1987; Arteaga et al., 1988). Members of the TGF-beta family might, therefore, provide new strategies for breast cancer therapy. We have studied the inhibitory effects of TGF-beta 1 and TGF-beta 2 on the anchorage-independent growth of the oestrogen receptor-negative cell lines MDA-MB-231, SK-BR-3, Hs578T, MDA-MB-468, and MDA-MB-468-S4 (an MDA-MB-468 clone not growth inhibited by EGF) and the estrogen receptor-positive cell lines MCF7, ZR-75-1, T-47D. TGF-beta 1 and TGF-beta 2 caused a 75-90% growth inhibition of MDA-MB-231, SK-BR-3, Hs578T, and MDA-MB-468 cells and a 50% growth inhibition of ZR-75-1 and early passage (less than 100) MCF7 cells. T-47D cells responded to TGF-beta only in serum-free conditions in the presence of IGF-1 or EGF. The growth of MDA-MB-468-S4 cells and late passage (greater than 500) MCF7 cells was not inhibited by TGF-beta 1 or TGF-beta 2. TGF-beta-sensitive MCF7 and MDA-MB-231 cells did not respond to Muellerian inhibiting substance (MIS), a TGF-beta-related polypeptide. TGF-beta 1 or TGF-beta 2 were mutually competitive for receptor binding with a similar affinity (Kd 25-130 pM, 1,000-13,000 sites per cell). To determine the time course of the TGF-beta effect, an anchorage-dependent growth assay was carried out using MDA-MB-231 cells. Growth inhibition occurred at 6 days, and cell-cycle changes were seen 12 hr after the addition of TGF-beta. Cells accumulated in the G1 phase and were thus inhibited from entering the S-phase. These data indicate that TGF-beta is a potent growth inhibitor in most breast cancer cell lines and provide a basis for studying TGF-beta effects in vivo.  相似文献   

6.
7.
Inhibition of mitogenic activity of PDGF, EGF, and FGF by interferon-gamma   总被引:2,自引:0,他引:2  
Natural or recombinant human interferon-gamma abolishes the mitogenic activity of platelet-derived growth factor, epidermal growth factor, and fibroblast growth factor on GM2767 or FS-4 human fibroblasts. Similarly murine interferon-gamma abolishes the mitogenic activity of these growth factors on BALB/C-3T3 fibroblasts. Inhibition of DNA synthesis by interferon-gamma was accomplished by blocking the transition of G0/G1 to S phase of the cell cycle. Addition of interferon-gamma 15 h after the addition of growth factors (when the cells had already entered the S phase) had no effect on DNA synthesis.  相似文献   

8.
Anchorage-independent growth is a hallmark of transformed cells, but little is known of the molecular mechanisms that underlie this phenomenon. We describe here studies of cell cycle control of anchorage-independent growth induced by the ras oncogene, with the use of a somatic cell mutant fibroblast line (ER-1-2) that is specifically defective in oncogene-mediated, anchorage-independent growth. Control, nontransformed PKC3-F4 cells and ER-1-2 cells cannot proliferate in semisolid medium. Three important cell cycle events are dependent on adhesion of these cells to a substratum: phosphorylation of the retinoblastoma protein, pRB; cyclin E-dependent kinase activity; and cyclin A expression. PKC3-F4 cells that express ras (PKC3-F4/ras cells) proliferate in nonadherent cultures, and each of these three events occurs in the absence of adhesion in PKC3-F4/ras cells. Thus, ras can override the adhesion requirement of cellular functions that are necessary for cell cycle progression. ER-1-2 cells that express ras (ER-1-2/ras cells) possess hyperphosphorylated forms of pRB and cyclin E-dependent kinase activity in the absence of adhesion but remain adhesion dependent for expression of cyclin A. The adhesion dependence of pRB phosphorylation and cyclin E-dependent kinase activity is therefore dissociable from the adhesion dependence of cyclin A expression. Furthermore, ectopic expression of cyclin A is sufficient to rescue anchorage-independent growth of ER-1-2/ras cells but does not induce anchorage-independent growth of PKC3-F4 or ER-1-2 cells. However, like pRB phosphorylation and cyclin E-dependent kinase activity, the kinase activity associated with ectopically expressed cyclin A is dependent on cell adhesion, and this dependence is overcome by ras. Thus, the induction of anchorage-independent growth by ras may involve multiple signals that lead to both expression of cyclin A and activation of G1 cyclin-dependent kinase activities in the absence of cell adhesion.  相似文献   

9.
The 1246-3A cell line is an insulin-independent variant derived from the adipogenic cell line 1246. Data presented in this paper indicate that the 1246-3A cell line releases in its culture medium two types of transforming growth factors, TGF-alpha- and TGF-beta-like polypeptides, and a growth inhibitor. TGF-alpha like polypeptide eluted from Biogel P60 column into two fractions with an apparent molecular weight of 50 kDa and 13 kDa. These high-molecular-weight TGF-alpha-like factors competed with 125I-EGF for binding to epidermal growth factor (EGF) receptors and were specifically immunoprecipitated by incubation with antirat TGF-alpha antibody, not by incubation with anti-EGF antibody. Both fractions promoted anchorage-independent growth of normal rat kidney NRK cells in the absence of EGF and stimulated DNA synthesis in quiescent Balb/c-3T3 cells in a fashion similar to EGF and synthetic TGF-alpha. In addition to secreting TGF-alpha-like polypeptides, 1246-3A cells produce TGF-beta. This polypeptide, eluted from Biogel P60 chromatography with an apparent molecular weight of 25 kDa, promoted anchorage-independent growth of NRK cells in the presence of EGF and was growth inhibitory for Chinese hamster lung fibroblasts CCL 39 cells. Interestingly, another growth inhibitory activity was detected in Biogel P60 fractions and eluted with an apparent molecular weight of between 9.5-11 kDa. This fraction was different from TGF-beta and TGF-alpha as determined by specific radioreceptor competition assays. TGF-alpha and TGF-beta-like polypeptides could represent autocrine growth stimulators for the insulin-independent 1246-3A cells and act in synergy with insulin-related factor (IRF) for an optimal stimulation of 1246-3A cell proliferation in serum-free medium.  相似文献   

10.
11.
We have recently identified a novel candidate oncogene, MCT-1, in the HUT 78 T-cell line. When overexpressed in NIH3T3 fibroblasts, the MCT-1 gene shortens the G1 phase of the cell cycle and promotes anchorage-independent growth. Progression of cells through a late G1 phase restriction point is regulated by G1 cyclins whose phosphorylation of the retinoblastoma gene product facilitates entry into S phase. Deregulated expression of G1 cyclins and their cognate cdk partners is often found in human tumor cells. In order to address the potential relationship of MCT-1 to cell cycle regulatory molecules, we analyzed the ability of MCT-1 overexpression to modulate cdk4 and cdk6 kinase activity in NIH3T3 fibroblasts constitutively overexpressing MCT-1. We observed an increase in the kinase activity of both cdk4 and cdk6 in asynchronously growing transformed cells compared with the parent cells. This increased kinase activity was accompanied by an elevated level of cyclin D1 protein and increased G1 cyclin/cdk complex formation. We also observed a correlation between increased protein levels of MCT-1 with cyclin D1 expression in a panel of lymphoid cell lines derived from T-cell malignancies. These results demonstrate that constitutive expression of MCT-1 is associated with deregulation of protein kinase-mediated G1 phase checkpoints.  相似文献   

12.
Anchorage-independent growth in soft agar of normal rat kidney (NRK) fibroblasts depends on both transforming growth factor-beta (TGF-beta) and epidermal growth factor (EGF) (or TGF-alpha). We have isolated two EGF-nonresponsive cell lines, N-3 and N-9, from chemically mutagenized NRK cells, after selection of mitogen-specific nonproliferative variants in the presence of EGF and colchicine. Saturation binding kinetics with 125I-EGF showed one-half or fewer EGF receptors in N-3 and N-9 than in their parental NRK. Cellular uptake of 2-deoxy-D-glucose was enhanced in all NRK, N-3, and N-9 cell lines by TGF-beta treatment, whereas treatment with EGF significantly enhanced the cellular uptake of the glucose analog in NRK cells, but not in N-3 and N-9 cells. DNA synthesis of NRK during the quiescent state, but not that of N-3 and N-9, was stimulated by EGF. Anchorage-independent growth of N-9 could not be observed even in the presence of both EGF and TGF-beta, whereas that of N-3 was significantly enhanced by TGF-beta alone. EGF stimulated phosphorylation of a membrane protein with molecular size 170 kDa of NRK, but not of N-3, when immunoprecipitates reacting with anti-phosphotyrosine antibody were analyzed. Exposure of NRK cells to EGF increased cellular levels of TGF-beta mRNA, but there appeared little expression of TGF-beta mRNA in N-3 and N-9 cells. Exposure of N-3 cells to EGF or TGF-beta enhanced the secretion of EGF into culture medium, but exposure of NRK or N-9 cells did not. Altered response to EGF of N-3 or N-9 might be related to their aberrant growth behaviors.  相似文献   

13.
Cultured fibroblasts form focal contacts (FCs) associated with actin microfilament bundles (MFBs) during attachment and spreading on serum- or fibronectin (FN)-coated substrates. To determine if the minimum cellular adhesion receptor recognition signal Arg-Gly-Asp-Ser (RGDS) is sufficient to promote FC and MFB formation, rat (NRK), hamster (Nil 8), and mouse (Balb/c 3T3) fibroblasts in serum-free media were plated on substrates derivatized with small synthetic peptides containing RGDS. These cultures were studied with interference reflection microscopy to detect FCs, Normarski optics to identify MFBs, and immunofluorescence microscopy to observe endogenous FN fiber formation. By 1 h, 72-78% of the NRK and Nil 8 cells plated on RGDS-containing peptide had focal contacts without accompanying FN fibers, while these fibroblasts lacked FCs on control peptide. This early FC formation was followed by the appearance of coincident MFBs and colinear FN fibers forming fibronexuses at 4 h. NRK and Nil 8 cultures on substrates coated with native FN or 75,000-D FN-cell binding fragment showed similar kinetics of FC and MFB formation. In contrast, the Balb/c 3T3 mouse fibroblasts plated on Gly-Arg-Gly-Asp-Ser peptide-derivatized substrates, or on coverslips coated with 75,000-D FN cell-binding fragment, were defective in FC formation. These results demonstrate that the apparent binding of substrate-linked RGDS sequences to cell surface adhesion receptors is sufficient to promote early focal contact formation followed by the appearance of fibronexuses in some, but not all, fibroblast lines.  相似文献   

14.
Transforming growth factor activity of bovine brain-derived growth factor   总被引:1,自引:0,他引:1  
Bovine brain-derived growth factor (BDGF), whose biochemical properties resemble those of endothelial cell growth factor (ECGF) and brain-derived acidic fibroblast growth factor (acidic FGF), is able to promote colony formation of normal rat kidney fibroblasts (NRK cells) in soft agar. As in the case of transforming growth factor beta (TGF beta), EGF potentiates the anchorage-independent growth promoting activity of BDGF. In the presence of EGF (5 ng/ml), the optimal concentration of BDGF for stimulation of anchorage-independent of NRK cells is approximately 0.5 ng/ml. At higher concentrations, BDGF becomes inhibitory. The anchorage-independent cell growth promoting activity of BDGF differs from that of TGF beta in acid and reducing agent stability.  相似文献   

15.
S100A6 (calcyclin) is a calcium binding protein with two EF‐hand structures expressed mostly in fibroblasts and epithelial cells. We have established a NIH 3T3 fibroblast cell line stably transfected with siRNA against S100A6 to examine the effect of S100A6 deficiency on non‐transformed cell physiology. We found that NIH 3T3 fibroblasts with decreased level of S100A6 manifested altered cell morphology and proliferated at a much slower pace than the control cells. Cell cycle analysis showed that a large population of these cells lost the ability to respond to serum and persisted in the G0/G1 phase. Furthermore, fibroblasts with diminished S100A6 level exhibited morphological changes and biochemical features of cellular senescence as revealed by β‐galactosidase and gelatinase assays. Also, S100A6 deficiency induced changes in the actin cytoskeleton and had a profound impact on cell adhesion and migration. Thus, we have shown that the S100A6 protein is involved in multiple aspects of fibroblast physiology and that its presence ensures normal fibroblast proliferation and function. J. Cell. Biochem. 109: 576–584, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

16.
Several specific cell cycle activities are dependent on cell-substratum adhesion in nontransformed cells, and the ability of the Ras oncoprotein to induce anchorage-independent growth is linked to its ability to abrogate this adhesion requirement. Ras signals via multiple downstream effector proteins, a synergistic combination of which may be required for the highly altered phenotype of fully transformed cells. We describe here studies on cell cycle regulation of anchorage-independent growth that utilize Ras effector loop mutants in NIH 3T3 and Rat 6 cells. Stable expression of activated H-Ras (12V) induced soft agar colony formation by both cell types, but each of three effector loop mutants (12V,35S, 12V,37G, and 12V,40C) was defective in producing this response. Expression of all three possible pairwise combinations of these mutants synergized to induce anchorage-independent growth of NIH 3T3 cells, but only the 12V,35S-12V,37G and 12V,37G-12V,40C combinations were complementary in Rat 6 cells. Each individual effector loop mutant partially relieved adhesion dependence of pRB phosphorylation, cyclin E-dependent kinase activity, and expression of cyclin A in NIH 3T3, but not Rat 6, cells. The pairwise combinations of effector loop mutants that were synergistic in producing anchorage-independent growth in Rat 6 cells also led to synergistic abrogation of the adhesion requirement for these cell cycle activities. The relationship between complementation in producing anchorage-independent growth and enhancement of cell cycle activities was not as clear in NIH 3T3 cells that expressed pairs of mutants, implying the existence of either thresholds for these activities or additional requirements in the induction of anchorage-independent growth. Ectopic expression of cyclin D1, E, or A synergized with individual effector loop mutants to induce soft agar colony formation in NIH 3T3 cells, cyclin A being particularly effective. Taken together, these data indicate that Ras utilizes multiple pathways to signal to the cell cycle machinery and that these pathways synergize to supplant the adhesion requirements of specific cell cycle events, leading to anchorage-independent growth.  相似文献   

17.
Schlafen-1 causes a cell cycle arrest by inhibiting induction of cyclin D1   总被引:7,自引:0,他引:7  
Schlafen-1 (Slfn-1), the prototypic member of the Schlafen family of proteins, was described as an inducer of growth arrest in T-lymphocytes and causes a cell cycle arrest in NIH3T3 fibroblasts prior to the G1/S transition. How Slfn-1 exerts its effects on the cell cycle is not currently known. We report that synchronized murine fibroblasts expressing Slfn-1 do not exit G1 when stimulated with fetal calf serum, platelet-derived growth factor BB (PDGF-BB) or epidermal growth factor (EGF). The induction of cyclin D1 by these stimuli was blocked in the presence of Slfn-1 as were all downstream cell cycle processes. Overexpression of cyclin D1 in growth-arrested, Slfn-1-expressing cells induced an increase in cell growth consistent with this protein being the biological target of Slfn-1. Activation of the mitogen-activated protein kinase pathway by EGF or phorbol 12-myristate 13-acetate was unaffected by Slfn-1 expression. PDGF signaling was, however, almost completely blocked. This was due to a lack of PDGF receptor expression in Slfn-1-expressing cells consistent with Slfn-1 blocking the cell cycle in G1 where PDGF receptor expression is normally down-regulated. Finally, overexpression of Slfn-1 inhibited the activation of the cyclin D1 promoter. Slfn-1 therefore causes a cell cycle arrest during G1 by inhibiting induction of cyclin D1 by mitogens.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号