首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dynamic regulation of T cell immunity by CD43   总被引:5,自引:0,他引:5  
During a viral response, Ag-specific effector T cells show dramatically increased binding by the mAb 1B11 and the lectin peanut agglutinin (PNA). We investigated the contribution of CD43 expression to 1B11 and PNA binding as well as its role in generation and maintenance of a CD8 T cell response. Analysis of CD43(-/-) mice revealed no increased 1B11 binding and reduced PNA binding on virus-specific CD8 T cells from -/- mice compared with +/+ mice. Furthermore, we examined the role of CD43 in the kinetics of an immune response. We show that CD43 expression modestly effects generation of a primary virus-specific CD8 T cell response in vivo but plays a more significant role in trafficking of CD8 T cells to tissues such as the brain. More interestingly, CD43 plays a role in the contraction of the immune response, with CD43(-/-) mice showing increased numbers of Ag-specific CD8 T cells following initial expansion. Following the peak of expansion, Ag-specific CD8 T cells from -/- mice show similar proliferation but demonstrate increased Bcl-2 levels and decreased apoptosis of Ag-specific effector CD8 T cells in vitro. Consistent with a delay in the down-modulation of the immune response, following chronic viral infection CD43(-/-) mice show increased morbidity. These data suggest a dynamic role of CD43 during an immune response: a positive regulatory role in costimulation and trafficking of T cells to the CNS and a negative regulatory role in the down-modulation of an immune response.  相似文献   

2.
Circulating CD8+ T cells with a CD45RA+CD27- phenotype resemble cytolytic effector cells because they express various cytolytic mediators and are able to execute cytotoxicity without prior stimulation in vitro. We here demonstrate that CD8+CD45RA+CD27- T cells can use both granule exocytosis and Fas/Fas ligand pathways to induce apoptosis in target cells. The availability of these cytolytic mechanisms in circulating T cells suggests that the activity of these cells must be carefully controlled to prevent unwanted tissue damage. For this reason, we analyzed the expression of surface receptors that either enhance or inhibit T cell function. Compared with memory-type cells, effector cells were found to express normal levels of CD3epsilon and TCRzeta and relatively high levels of CD8. CTLA-4 was absent from freshly isolated effector cells, whereas a limited number of unstimulated memory cells expressed this molecule. In line with recent findings on CD8+CD28- T cells, CD45RA+CD27- T cells were unique in the abundant expression of NK cell-inhibitory receptors, both of Ig superfamily and C-type lectin classes. Binding of NK cell-inhibitory receptors to classical and nonclassical MHC class I molecules may inhibit the activation of the cytolytic machinery induced by either Ag receptor-specific or nonspecific signals in CD8+CD45RA+CD27- T cells.  相似文献   

3.
Memory T cells display phenotypic heterogeneity. Surface antigens previously regarded as exclusive markers of naive T cells, such as L-selectin (CD62L), can also be detected on some memory T cells. Moreover, a fraction of CD45RO+ (positive for the short human isoform of CD45) memory T cells reverts to the CD45RA+ (positive for the long human isoform of CD45) phenotype. We analyzed patients with biopsy-proven localized Wegener's granulomatosis (WG) (n = 5), generalized WG (n = 16) and age- and sex-matched healthy controls (n = 13) to further characterize memory T cells in WG. The cell-surface expression of CD45RO, CD45RA, CD62L, CCR3, CCR5 and CXCR3 was determined on blood-derived T cells by four-color flow cytometric analysis. The fractions of CCR5+ and CCR3+ cells within the CD4+CD45RO+ and CD8+CD45RO+ memory T cell populations were significantly expanded in localized and generalized WG. The mean percentage of Th1-type CCR5 expression was higher in localized WG. Upregulated CCR5 and CCR3 expression could also be detected on a fraction of CD45RA+ T cells. CD62L expression was seen on approximately half of the memory T cell populations expressing chemokine receptors. This study demonstrates for the first time that expression of the inducible inflammatory chemokine receptors CCR5 and CCR3 on CD45RO+ memory T cells, as well as on CD45RA+ T cells ('revertants'), contributes to phenotypic heterogeneity in an autoimmune disease, namely WG. Upregulated CCR5 and CCR3 expression suggests that the cells belong to the effector memory T cell population. CCR5 and CCR3 expression on CD4+ and CD8+ memory T cells indicates a potential to respond to chemotactic gradients and might be important in T cell migration contributing to granuloma formation and vasculitis in WG.  相似文献   

4.
The immunoregulatory functions of human T4 cell subpopulations defined by mAb to the CD45R molecule (2H4) were examined. Both CD45R- and CD45R+ T4 cells that had been treated with mitomycin C (CD45R- and CD45R+ T4-mito) provided help for the generation of Ig-secreting cells (ISC) in cultures stimulated by PWM or by immobilized mAb to CD3 (64.1). IL-2 enhanced the generation of ISC in PWM-stimulated cultures and in anti-CD3-stimulated cultures containing CD45R+ T4-mito. The generation of ISC was maximal in cultures containing anti-CD3-activated CD45R- T4-mito and was not increased by IL-2. By contrast, CD45R+ T4 cells that had not been treated with mitomycin C suppressed B cell responses in cultures stimulated with PWM or anti-CD3, whereas CD45R- T4 cells suppressed the generation of ISC only in cultures stimulated with anti-CD3. IL-2 enhanced suppression by anti-CD3, but not PWM, activated CD45R- T4 cells. Suppression by CD45R+ T4 cells was maximal and not increased by IL-2. CD45R+ T4-mito were more effective suppressor-inducers in PWM-stimulated cultures, promoting the differentiation of suppressor-effector cells from CD8+ T cells. However, both CD45R+ and CD45R- T4-mito exerted comparable suppressor-inducer function in anti-CD3-stimulated cultures. Moreover, in anti-CD3-stimulated cultures, T8 cells could function as both suppressor-effector cells and suppressor-inducer cells. One of the functions of suppressor-inducer cells in this system appeared to involve the production of IL-2. Thus, the addition of IL-2 facilitated the induction of suppressor-effector T8 cells by CD45R- T4-mito in PWM-stimulated cultures. Although IL-2 production by the T cell subsets varied widely depending on the nature of the stimulus, these differences could not entirely explain their capacity to function as helper cells, suppressor-effector cells or suppressor-inducer cells. These results indicate that both CD45R+ and CD45R- T4 cells can help or suppress B cell responses, as well as induce suppressor-effector T8 cells. Moreover, suppressor-inducer function of T cells is not limited to the T4 cell population, but rather can also be accomplished by T8 cells. The results indicate that both T4 cell subsets and T8 cells exert multiple regulatory effects on human B cell function, with the nature of the activating stimulus playing a major role in determining the functional capacity of various T cell subsets.  相似文献   

5.
Although a role for CD8+ T cells in the pathogenesis of rheumatoid arthritis (RA) has been suggested, the precise nature of their involvement is not fully understood. In the present study we examined the central and effector memory phenotypes of CD4+ and CD8+ T cells in the peripheral blood of patients with RA and systemic lupus erythematosus. Terminally differentiated effector memory CD45RA+CD62L-CD8+ T cells were significantly decreased in RA patients, whereas the central memory CD45RA-CD62L+ CD8+ T-cell population was increased as compared with levels in healthy control individuals. Na?ve and preterminally differentiated effector memory CD45RA-CD62L- CD8+ T cells did not differ between RA patients and control individuals. The CD45RA-CD62L+ central memory CD4+ T-cell subpopulation was increased in RA patients, whereas the na?ve and effector memory phenotype of CD4+ T cells did not differ between RA patients and control individuals. In patients with systemic lupus erythematosus the distribution of na?ve/memory CD4+ and CD8+ T cells did not differ from that in age- and sex-matched control individuals. These findings show that peripheral blood CD8+ T cells from RA patients exhibit a skewed maturation phenotype that suggests a perturbation in the homeostasis of these cells. The central memory CD45RA-CD62L+ CD4+ and CD8+ T-cell numbers were increased in RA, suggesting an accelerated maturation of na?ve T cells. The decreased numbers of terminally differentiated CD45RA+CD62L- effector memory CD8+ T cells in peripheral blood of RA patients may reflect increased apoptosis of these cells or enhanced migration of these cells to sites of inflammation, which may play a role in the pathogenesis of RA.  相似文献   

6.
The mAb 1B11 has been characterized as recognizing the activation-associated glycoform of murine CD43, a heavily O-glycosylated protein implicated in leukocyte homing. When hemopoietic cells from CD43-/- mice were stained with 1B11, CD43-independent binding of 1B11 was observed on peripheral CD8 T cells and at low levels on thymocytes, while no binding was detected on CD4 T cells, B cells, or bone marrow cells. Levels of 1B11 staining were comparable in lymph node CD8+ T cells from both CD43-/- mice and CD43+/+ mice. We sought to identify the CD43-independent target of 1B11 expressed on CD8 T cells. Previous work had demonstrated that neuraminidase treatment of lymph node cells (LNC) enhanced 1B11 binding on CD43+/+ LNC; this enhancement was also observed in CD43-/- LNC. We show that neuraminidase-enhanced 1B11 binding in CD43-/- LNC and EL4 thymoma cells is CD43 independent and that 1B11 detects a novel target of apparent mass of approximately 200 kDa identified as a hyposialylated form of CD45RB preferentially expressed on peripheral CD8, but not CD4, T cells. Our data also show that the recognition of CD43 and CD45RB by 1B11 is differentially affected by O-linked glycosylation and sialic acid. Whereas 1B11 recognition of CD43 on activated T cells required both core 2 O-glycan branching and sialic acid, 1B11 recognition of CD45 only occurred in the absence of both core 2 glycosylation and sialic acid.  相似文献   

7.
Effect of fluvastatin on apoptosis in human CD4+ T cells   总被引:2,自引:0,他引:2  
Statins are lipid-lowering agents with pleiotropic effects. We investigated the apoptotic effects of fluvastatin on peripheral CD4+ T cells from healthy subjects. Fluvastatin induced apoptosis in resting CD4+ T cells but not in CD4+ T cells strongly activated with a high concentration of PMA plus ionomycin (PMA/I) analyzed with annexin V and propidium iodide staining. However, CD4+ T cells activated with a low concentration of PMA/I or with anti-CD3 antibodies were apoptotic after treatment with fluvastatin. Activities of caspases-8, -9, and -3 were increased in resting CD4+ T cells treated with fluvastatin (10 microM). In strongly activated CD4+ T cells, fluvastatin inhibited the activation of caspase-8 induced by PMA/I and increased caspase-9 activity. The caspase-3 activity did not differ between untreated and fluvastatin-treated strongly activated CD4+ T cells. Treatment with fluvastatin (10 microM) enhanced cytochrome c release and increased the Bax/Bcl-2 ratio in both resting and strongly activated CD4+ T cells. Although the in vitro concentration of fluvastatin used in this study is higher than in vivo, other factors may sensitize apoptotic cell death of CD4+ T cells in vivo. In conclusion, fluvastatin induces apoptosis in resting T cells but not in strongly activated T cells, a difference that might be due to the interaction between caspase-8 and caspase-9.  相似文献   

8.
Regulation of the immune response in man is largely dependent on interactions between cells of the cluster designation 4+ (CD4+) helper/inducer sublineage and the CD8+ suppressor/cytotoxic sublineage. When cultured with autologous antigen-primed CD4+ lymphocytes, CD8+ cells differentiate into suppressor T cells (Ts) that specifically inhibit the response of fresh autologous CD4+ cells to the priming antigen only. The current study was undertaken to analyze the roles in this suppressor circuit of subpopulations of the CD4+ sublineage distinguished from one another on the basis of their binding (or lack of binding) to monoclonal antibodies against molecules p80 (Leu8) and CD45R (p220/Leu18/2H4). When examined for the proliferative responses to alloantigenic stimuli, each of the four: CD4+p80+, CD4+p80-, CD4+CD45R+, and CD4+CD45R- populations proliferated vigorously, synthesized interleukin 2 (IL-2) and interferon and released soluble IL-2 receptors. However, the responses to soluble antigens such as Candida and diphtheria toxoid were exhibited by CD4+CD45R-, CD4+p80+, and CD4+p80- cells, but not by CD4+CD45R+ cells. When examined for their ability to induced CD8+ Ts in the Candida-driven suppressor-induction culture system, only CD4+p80+ and CD4+CD45R- cells induced strong suppression. Further, when CD4+CD45R- cells were separated into CD4+CD45R-p80+ and CD4+CD45R-p80- subpopulations, despite the ability of both subpopulations to respond to Candida, only CD4+CD45R-p80+ cells induced autologous CD8+ Ts. Activated CD8+ Ts suppressed not only proliferation but also the release of soluble IL-2 receptors by autologous antigen-activated CD4+ cells. Thus, the antigen-specific suppressor-inducer T cells appear to be derived from the CD4+CD45R-p80+ (Leu3+, Leu8+, 2H4-) subpopulation of the CD4+ sublineage.  相似文献   

9.
Regulatory T cells can suppress activated CD4+ and CD8+ T effector cells and may serve as an impediment to spontaneous or therapeutic type 1 antitumor immunity. In a previous study, we observed minimal therapeutic impact, but significantly enhanced T cell cross-priming and lesional infiltration of tumor-reactive CD8+ T cells into established CMS4 sarcomas after combined treatment of BALB/c mice with rFLt3 ligand (rFL) and recombinant GM-CSF (rGM-CSF). In this study, we show that this cytokine regimen also results in the profound enhancement of CD4+ tumor-infiltrating lymphocytes (TIL) expressing FoxP3, IL-10, and TGF-beta mRNA, with 50 or 90% of CD4+ TIL coexpressing the CD25 and glucocorticoid-induced TNFR family related molecules, respectively. Intracellular staining for Foxp3 protein revealed that combined treatment with rFL plus rGM-CSF results in a significant increase in CD4+Foxp3+ T cells in the spleen of both control and tumor-bearing mice, and that nearly half of CD4+ TIL expressed this marker. In addition, CD4+ TIL cells were of an activated/memory (ICOS(high)CD62L(low)CD45RB(low)) phenotype and were capable of suppressing allospecific T cell proliferation and IFN-gamma production from (in vivo cross-primed) anti-CMS4 CD8+ T cells in vitro, via a mechanism at least partially dependent on IL-10 and TGF-beta. Importantly, in vivo depletion of CD4+ T cells resulted in the ability of previously ineffective, rFL plus rGM-CSF therapy-induced CD8+ T cells to now mediate tumor regression.  相似文献   

10.
Both CD4+ and CD8+ T cells express either CD45RA or CD45R0 isoform of CD45R in an exclusive way. Recent reports have shown that CD45RA+ T cells lose CD45RA and gain CD45R0 upon activation. This switching has been suggested to be irreversible although more recently, examples of reversal of CD45R isotype switching in CD4+ T cells have been reported. We report here that freshly isolated unprimed CD8+ T cells, when activated with PHA, temporarily lose CD45RA but reexpress an intermediate level of CD45RA 2-3 weeks after activation with PHA. This reversal seems to take place much more slowly in unprimed CD4+ T cells: the majority of CD4+ T cells that had lost CD45RA and gained CD45R0 remained CD45RA-CD45R0+ in 3 weeks after the stimulation. Also, long-term CD8+ CD45RA+ T cell lines stimulated with PHA or OKT3 showed even more rapid recovery of CD45RA while PPD-specific CD4+ T cell clones retained the original CD45R0 phenotype 3 weeks after stimulation with PPD or PHA.  相似文献   

11.
The immunoregulatory functions of human T8 cell subpopulations defined by mAb to the CD45RA molecule (2H4) were examined. Both CD45RA+ and CD45RA- T8 cells that had been treated with mitomycin C provided help for the production of immunoglobulins by B cells in cultures stimulated with immobilized mAb to CD3 (64.1). In contrast, both CD45RA+ and CD45RA- T8 cells that had not been treated with mitomycin C suppressed B cell responses in anti-CD3-stimulated cultures, although CD45RA+ T8 cells were more effective in this regard. Interleukin 2 (IL2) enhanced suppression by anti-CD3-activated CD45RA- T8 cells, whereas suppression by CD45RA+ T8 cells was almost maximal and not as much increased by IL2. The differentiation into suppressor-effector cells in this system appeared to involve the production of IL2, but not the production of interferon (INF)-gamma. Thus, CD45RA+ T8 cells produced higher amounts of IL2 but lower amounts of IFN-gamma than CD45RA- T8 cells in anti-CD3-stimulated cultures. Moreover, addition of mAb to the p55 component of IL2 receptor (anti-Tac) inhibited the generation of suppressor activity from CD45RA+ and CD45RA- T8 cells. The pattern and magnitude of suppression of B cell responses by CD45RA+ and CD45RA- T4 cells were similar to that by CD45RA+ and CD45RA- T8 cells in this system. Finally, preactivated CD45RA+ T8 cells that had lost CD45RA expression suppressed the B cell responses as effectively as fresh CD45RA+ T8 cells. The results indicate that both CD45RA+ and CD45RA- T8 cells can help or suppress B cell responses. More importantly, the data suggest that the suppressor-effector function of human T cells may rather be related with the stages of the post-thymic differentiation as evidenced by the expression of the CD45RA molecule than represent the fully differentiated T cell subsets, such as T4 and T8 cells. In addition, the CD45RA molecule appeared not to be involved in the suppressor-effector function, but to determine the stage of post-thymic differentiation.  相似文献   

12.
In vivo UV exposure of human epidermis abrogates the function of CD1+DR+ Langerhans cells and induces the appearance of CD1-DR+ Ag-presenting macrophages. Epidermal cells from UV-exposed skin, in contrast to epidermal cells from normal skin, potently activate autologous CD4+ T cells, and, in particular, the CD45RA+ (2H4+) (suppressor-inducer) subset. We therefore determined whether UV-exposure in humans leads to a T cell response in which suppression dominates. Autologous blood T cells were incubated with epidermal cell suspensions from in vivo UV-irradiated skin. After activation, repurified T cells were transferred in graded numbers to autologous mononuclear cells (MNC) stimulated with PWM and the resultant IgG production analyzed by ELISA. Relative to T cells activated by unirradiated control epidermal cells, T cells activated by UV-exposed epidermal cells demonstrated enhanced capacity to suppress IgG production (n = 6; p less than or equal to 0.03). Within the T cell population, CD8+ cells stimulated by UV-exposed epidermal cells could be directly activated to suppress PWM-stimulated MNC Ig production if IL-2 was provided in the reaction mixture. The suppressive activity was also transferable with purified CD4+ T cells stimulated by UV-exposed epidermal cells (n = 10; p less than or equal to 0.01), and was radiosensitive. Suppression was decreased when PWM-stimulated MNC were depleted of CD8+ T cells before mixing with CD4+ T cells activated by UV-exposed epidermal cells, suggesting indirect induction of CD8+ Ts cells contained within the responding MNC populations. Indeed, physical depletion of CD45RA+ cells resulted in total abrogation of the suppressor function contained in the CD4+ T cells. Activation of suppressor function was critically dependent on DR+ APC contained in UV-exposed epidermis. The data suggest that UV-exposure modulates cutaneous APC activity in humans, as in mice, such that the dominant immune response is tilted toward suppression. These mechanisms in normal individuals may function to dampen responses to UV-induced endogenous Ag that are pathogenic in autoimmune disorders. However, these mechanisms might also facilitate the growth of UV-induced skin cancers.  相似文献   

13.
Although both IL-2 and IL-4 can promote the growth of activated T cells, IL-4 appears to selectively promote the growth of those helper/inducer and cytolytic T cells which have been activated via their CD3/TCR complex. The present study examines the participation of CD28 and certain other T cell-surface molecules in inducing T cell responsiveness to IL-4. Purified small high density T cells were cultured in the absence of accessory cells with various soluble anti-human T cell mAb with or without soluble anti-CD3 mAb and their responsiveness to IL-4 was studied. None of the soluble anti-T cell mAb alone was able to induce T cell proliferation in response to IL-4. A combination of soluble anti-CD3 with anti-CD28 mAb but not with mAb directed at the CD2, CD5, CD7, CD11a/CD18, or class I MHC molecules induced T cell proliferation in response to IL-4. Anti-CD2 and anti-CD5 mAb enhanced and anti-CD18 mAb inhibited this anti-CD3 + anti-CD28 mAb-induced T cell response to IL-4. In addition, anti-CD2 in combination with anti-CD3 and anti-CD28 mAb induced modest levels of T cell proliferation even in the absence of exogenous cytokines. IL-1, IL-6, and TNF were each unable to replace either anti-CD3 or anti-CD28 mAb in the induction of T cell responsiveness to IL-4, but both IL-1 and TNF enhanced this response. The anti-CD3 + anti-CD28 mAb-induced response to IL-4 was exhibited only by cells within the CD4+CD29+CD45R- memory T subpopulation, and not by CD8+ or CD4+CD45R+ naive T cells. When individually cross-linked with goat anti-mouse IgG antibody immobilized on plastic surface, only anti-CD3 and anti-CD28 mAb were able to induce T cell proliferation. These results indicate that the CD3 and CD28 molecules play a crucial role in inducing T cell responsiveness to IL-4 and that the CD2, CD5, and CD11a/CD18 molecules influence this process.  相似文献   

14.
Memory CD8+ T cells can be divided into two subsets, central memory (T(CM)) and effector memory (T(EM)) CD8+ T cells. We found that CD30, a member of the TNFR-associated factor (TRAF)-linked TNFR superfamily, signaling is involved in differentiation of long-lived CD8+ T(CM) cells following Listeria monocytogenes infection. Although CD8+ T(EM) cells transiently accumulated in the nonlymphoid tissues of CD30 ligand (CD153-/-) mice after infection, long-lived memory CD8+ T(CM) cells were poorly generated in these mice. CCR7 mRNA expression was down-regulated in CD8+ T cells of the spleen of CD153-/- mice in vivo and the expression was up-regulated in CD8+ T(EM) cells by anti-CD30 mAb cross-linking in vitro. These results suggest that CD30/CD30 ligand signaling plays an important role in the generation of long-lived memory CD8+ T cells at least partly by triggering homing receptors for T(CM) cells.  相似文献   

15.
The origin of the increased numbers of CD8+ atypical lymphocytes, expressing activated markers such as HLA-DR or CD45RO, in the peripheral blood of patients with infectious mononucleosis (IM) has been debated. Using a recently developed assay to detect intracellular accumulation of IFN-gamma in EBV-reactive T cells by FACS, we have demonstrated that 34-54% of HLA-DR+/CD8+ and 34-60% of CD45RO+/CD8+ T cells in the PBMCs of febrile patients suffering from IM are EBV-specific. The EBV-specific CD8+ T cell counts in the PBMCs of four febrile patients suffering from IM ranged between 2,260 and 8,200/microl, decreasing to 5.1% and 7.9% of the counts in the first samples over 10 days in two donors. The decline of CD8+ T cell subpopulations, namely HLA-DR+, CD45RO+, and EBV-specific T cells, was in parallel with the drop in the EBV genome load. These data indicate that the Ag-driven expansion of CD8+ T cells and subsequent contraction with the Ag decline in vivo in humans is effective for clearing virus-infected cells with minimal disturbance of the homeostasis of the immune system.  相似文献   

16.
CD8(+) T cells depend on the alphabeta TCR for Ag recognition and function. However, Ag-activated CD8(+) T cells can also express receptors of the innate immune system. In this study, we examined the expression of NK receptors on a population of CD8(+) T cells expressing high levels of CD44 (CD8(+)CD44(high) cells) from normal mice. These cells are distinct from conventional memory CD8(+) T cells and they proliferate and become activated in response to IL 2 via a CD48/CD2-dependent mechanism. Before activation, they express low or undetectable levels of NK receptors but upon activation with IL-2 they expressed significant levels of activating NK receptors including 2B4 and NKG2D. Interestingly, the IL-2-activated cells demonstrate a preference in the killing of syngeneic tumor cells. This killing of syngeneic tumor cells was greatly enhanced by the expression of the NKG2D ligand Rae-1 on the target cell. In contrast to conventional CD8(+) T cells, IL-2-activated CD8(+)CD44(high) cells express DAP12, an adaptor molecule that is normally expressed in activated NK cells. These observations indicate that activated CD8(+)CD44(high) cells express receptors of both the adaptive and innate immune system and may play a unique role in the surveillance of host cells that have been altered by infection or transformation.  相似文献   

17.
Activation of human PBL T cells with solid phase anti-CD3 mAb or during the course of an MLR response gives rise to the association of CD4 or CD8 molecules with the protein tyrosine phosphatase, CD45, on the cell surface. This paired association of cell-surface molecules occurs late in the activation cycle and appears to be dependent upon Ti-CD3-mediated signaling because mitogen-driven activation does not induce formation of the complex. Maximal association occurred 72 to 96 h after exposure to anti-CD3 mAb on both CD4+ and CD8+ T cells. In contrast, association between CD8 and CD45 during an MLR response did not occur until day 6 of a MLR whereas CD4-CD45 association was detected by 72 h of culture. The kinetics of association between CD4 or CD8 and CD45 was measured by fluorescence resonance energy transfer and confirmed by immunoprecipitation of dithiobis succinimidylpropionate or disuccinimidyl suberate cross-linked 125I-labeled resting or activated T cells. The molecules that co-precipitated with either CD4 or CD8 and had an apparent kDa of 180 to 205 could be immunodepleted with anti-CD45 mAb. Furthermore, CD4 or CD8 immunoprecipitates from 96-h activated T cells contained significant levels of protein tyrosine phosphatase activity whereas corresponding immunoprecipitates from resting or recently activated T cells showed little protein tyrosine phosphatase activity. This association may allow CD45 to engage and dephosphorylate lck or another CD4- or CD8-associated substrate in order to reset the receptor complex to receive a new set of stimuli. Our observations suggest that synergistic signaling provided as a consequence of CD4 or CD8 association with the TCR after antigenic stimulation may develop on a different temporal scale than that observed after soluble anti-CD4+ anti-CD3 heteroconjugate antibody cross-linking.  相似文献   

18.
We studied the induction, severity and rate of progression of inflammatory bowel disease (IBD) induced in SCID mice by the adoptive transfer of low numbers of the following purified BALB/c CD4+ T cell subsets: 1) unfractionated, peripheral, small (resting), or large (activated) CD4+ T cells; 2) fractionated, peripheral, small, or large, CD45RBhigh or CD45RBlow CD4+ T cells; and 3) peripheral IL-12-unresponsive CD4+ T cells from STAT-4-deficient mice. The adoptive transfer into SCID host of comparable numbers of CD4+ T cells was used to assess the colitis-inducing potency of these subsets. Small CD45RBhigh CD4+ T lymphocytes and activated CD4+ T blasts induced early (6-12 wk posttransfer) and severe disease, while small resting and unfractionated CD4+ T cells or CD45RBlow T lymphocytes induced a late-onset disease 12-16 wk posttransfer. SCID mice transplanted with STAT-4-/- CD4+ T cells showed a late-onset IBD manifest > 20 wk posttransfer. In SCID mice with IBD transplanted with IL-12-responsive CD4+ T cells, the colonic lamina propria CD4+ T cells showed a mucosa-seeking memory/effector CD45RBlow Th1 phenotype abundantly producing IFN-gamma and TNF-alpha. In SCID mice transplanted with IL-12-unresponsive STAT-4-/- CD4+ T cells, the colonic lamina propria, mesenteric lymph node, and splenic CD4+ T cells produced very little IFN-gamma but abundant levels of TNF-alpha. The histopathologic appearance of colitis in all transplanted SCID mice was similar. These data indicate that CD45RBhigh and CD45RBlow, IL-12-responsive and IL-12-unresponsive CD4+ T lymphocytes and lymphoblasts have IBD-inducing potential though of varying potency.  相似文献   

19.
T lymphocyte survival, proliferation, and death in the periphery are dependent on several cytokines. Many of these cytokines induce the expression of suppressor of cytokine signaling-1 (SOCS1), a feedback inhibitor of JAK kinases. However, it is unclear whether the cytokines that regulate T lymphocyte homeostasis are critically regulated by SOCS1 in vivo. Using SOCS1(-/-)IFN-gamma(-/-) mice we show that SOCS1 deficiency causes a lymphoproliferative disorder characterized by decreased CD4/CD8 ratio due to chronic accumulation of CD8+CD44(high) memory phenotype T cells. SOCS1-deficient CD8+ T cells express elevated levels of IL-2Rbeta, show increased proliferative response to IL-15 and IL-2 in vitro, and undergo increased bystander proliferation and vigorous homeostatic expansion in vivo. Sorted CD8+CD44(high) T cells from SOCS1(-/-)IFN-gamma(-/-) mice respond 5 times more strongly than control cells, indicating that SOCS1 is a critical regulator of IL-15R signaling. Consistent with this idea, IL-15 stimulates sustained STAT5 phosphorylation in SOCS1-deficient CD8+ T cells. IL-15 strongly induces TNF-alpha production in SOCS1-deficient CD8+ T cells, indicating that SOCS1 is also a critical regulator of CD8+ T cell activation by IL-15. However, IL-15 and IL-2 induce comparable levels of Bcl-2 and Bcl-x(L) in SOCS1-deficient and SOCS1-sufficient CD8+ T cells, suggesting that cytokine receptor signals required for inducing proliferation and cell survival signals are not identical. These results show that SOCS1 differentially regulates common gamma-chain cytokine signaling in CD8+ T cells and suggest that CD8+ T cell homeostasis is maintained by distinct mechanisms that control cytokine-mediated survival and proliferation signals.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号