首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
近些年的研究表明许多神经退行性疾病都与受袭组织和器官中的错误折叠蛋白积聚成淀粉样纤维有关.现结合作者在国内外对于该领域10余年的研究经历及研究成果,针对淀粉样蛋白沉积疾病在细胞内的形成机制、致病机制及调控机制进行阐述,展现了国际上过去几年中对蛋白质错误折叠和积聚的新认识.  相似文献   

2.
张鑫  程彪  黄昆 《生命科学》2010,(6):567-574
由蛋白错误折叠后聚集所产生的淀粉样蛋白沉积是导致老年痴呆症、疯牛病、2型糖尿病等多种疾病的重要因素。由胰岛淀粉样多肽(islet amyloid polypeptide,IAPP)所形成的淀粉样蛋白沉积,具有破坏胰岛β细胞膜结构、诱导β细胞凋亡和损伤β细胞功能的作用,被认为是2型糖尿病的重要致病原因之一。对IAPP的聚集性、聚集体的结构,以及其对β细胞的毒性作用研究,不但有助于明确2型糖尿病的发病机制,而且最新研究也表明抑制IAPP的聚集可有效减少β细胞的凋亡,提高胰岛移植的成功率。因此,IAPP已成为2型糖尿病治疗中一个具有良好前景的靶点。该文对IAPP研究的最新进展进行了简要介绍。  相似文献   

3.
莫永炎  姜勇  陈瑗 《生命的化学》2001,21(2):161-162
Alzheimer病 (AD)患者的神经病学特征是脑组织萎缩 ,出现大量的淀粉样斑块 (amyloidplaques ;亦称老年斑 ,senileplaques ,SP)和神经纤维缠结 (neu rofibritarytangles)沉积。AD病人痴呆的程度与淀粉样斑块的发展呈正相关。老年斑的主要成分是 β 淀粉样肽 ( β amyloidpeptide ,又称 β amyloidprotein ,Aβ) ,其分子量约为 4 .2kD ,由 39~ 4 3个氨基酸残基组成。Aβ来自一种跨膜糖蛋白———β 淀粉样质前体蛋白 (amyloid pr…  相似文献   

4.
2型糖尿病病变中由人类胰岛淀粉样多肽(hIAPP)形成的蛋白纤维沉淀被认为是引起β细胞凋亡的重要原因。目前,hIAPP诱导β细胞凋亡的确切机制尚未完全明了,很多研究显示hIAPP引起的β细胞膜破裂是hIAPP产生细胞毒性的主要原因。不仅hIAPP具有引起膜损伤,从而导致细胞淀粉样改变的细胞毒性机制,一些与错误折叠疾病(如阿尔兹海默病、帕金森综合征、朊病毒病等)相关的多肽和蛋白质也具有相同的细胞毒性机理。结合最新研究进展,讨论了hIAPP与膜的相互作用,阐述了hIAPP诱导β细胞凋亡的几种可能机制。  相似文献   

5.
阿尔茨海默病(Alzheimer’s disease,AD)是一种严重的神经退行性疾病,在全球范围内发病成上升趋势。淀粉样蛋白级联假说是AD发病机制的重要学说之一,同时也为AD的预防和治疗提供了研究方向。在该假说中,主要认为大脑内的淀粉样蛋白的错误折叠和聚集是导致AD的核心因素,相关的研究是AD研究领域的热点问题。本文将就Aβ的聚集-解聚机制等问题进行阐述,旨在对现有的研究状况和进展进行总结。  相似文献   

6.
淀粉样蛋白Aβ的插膜作用可以抑制其形成纤维   总被引:1,自引:0,他引:1  
作为老年性痴呆(AD)患者脑中淀粉样斑块的核心蛋白,β-淀粉样蛋白(Aβ)是从淀粉样前体蛋白(APP)水解而来。该蛋白是多种长度多肽的混合物,其中Aβ40和Aβ42是主要组分。分别研究了膜中胆固醇含量及溶液pH对Aβ40和Aβ42形成纤维的影响。电镜观察发现,含有胆固醇的脂质体几乎可以完全抑制Aβ40的纤维形成,而低pH只能部分地抑制Aβ42的纤维形成。单层膜的实验证明这两种因素都有利于Aβ40和Aβ42的插膜。构象研究表明插膜会诱导Aβ40和Aβ42的二级结构发生不同的变化。结果说明,Aβ40和Aβ42的插膜作用能够在一定程度上抑制蛋白形成纤维,但两者具有不同的抑制机制。  相似文献   

7.
蛋白质构象病提示的疾病防治新思路   总被引:3,自引:0,他引:3  
蛋白质构象病是由于组织中特定的蛋白质承受了构象变化,进而聚集并产生沉积所引起的一种疾病。构象病概念的提出提示人们可以通过抑制或者逆转组织蛋白的变构来防治疾病,本文就蛋白质构象病的概念以及近年关注较多的β折叠形成阻断肽和分子伴侣两种防治思路予以综述。  相似文献   

8.
乙酰胆碱酯酶(AChE)与β淀粉样肽(Aβ)的相互关系   总被引:7,自引:0,他引:7  
老年性痴呆症(Alzheimer‘s Disease,AD)是一种慢性的、进行性的神经系统退行性疾病。主要特征为各方面智力的损伤,包括学习记忆、语言、读写、行为,以及对周围环境的识别,最终可导致死亡。它有三大病理特征:(1)主要由β淀粉样肽(β—amyloid peptide,Aβ)沉积而成的淀粉样斑;(2)由高度磷酸化的Tau蛋白组成的神经纤维缠结;(3)神经元及神经突触的丢失。在AD疾病的发病机制及治疗的对策中,AD和乙酰胆碱酯酶(acetylcholinesterase,AChE)都有重要的作用。近年来对Aβ和AChE在AD疾病发生发展过程中相互作用的研究有了越来越多的报道。在此,作者对Aβ和AChE的关系作一综述。  相似文献   

9.
β淀粉样蛋白(β-Amyloid,Aβ)是阿尔茨海默症(Alzheimer’s disease,AD)病人脑中老年斑(senile plagues,SP)的主要成分。β分泌酶(β-secretase)是水解淀粉样前体蛋白(amyloid protein precursor,APP)产生β淀粉样蛋白所必须的。多年来众多科学家一直在寻找β分泌酶。最后三个研究组通过不同的研究途径各自独立发现了具有β分泌酶活性的酶,该酶很可能就是寻觅已久的β分泌酶。β分泌酶的发现不仅为药物设计提供了依据,而且为β淀粉样蛋白的生物学研究提供了线索。  相似文献   

10.
淀粉样沉积症是致命性的疾病,可以是神经退行性的,也可以是系统性的.该疾病以错误折叠蛋白质的堆积、缠绕成纤维为特征,最终导致受累组织、器官的渐进性坏死.目前,没有有效的治疗手段可以阻止该类疾病的进程.错误折叠蛋白质的累积诱导内质网应激,被认为是退行性疾病的标志.血管生成素不仅可以调节细胞生长和增殖,也在应激条件下细胞存活中发挥作用.最近,发现血管生成素介导的应激反应可以减轻蛋白聚积造成的损伤,提示该蛋白可能在退行性疾病中具有新功能.本综述概述了血管生成素在淀粉样沉积症中的研究进展,特别是描述了血管生成素失调与该类疾病的起始和进展间的关系.我们认为,深入了解血管生成素失调的分子基础有助于发展与蛋白质错误折叠和聚积相关的退行性疾病的治疗方法.  相似文献   

11.
In vitro aggregation and fibrillization of synthetic amyloid beta-protein A 1–40 was assessed in the conditioned media from rhabdomyosarcoma (CRL 1598, HTB 82, HTB 153, CCL 136), adenocarcinoma (CCL 218), neuroblastoma (SY5Y), and COS cells cultured in the absence and presence of 10% heat-inactivated fetal bovine serum (FBS). The aggregation and formation of cross -pleated sheet structures in A was quantitated by Thioflavin T (ThT) fluorescence spectroscopy, while the morphology of A fibrils was examined in negative staining in the electronmicroscope (EM). In cultures supplemented with 10% FBS, the conditioned media from CRL 1598, HTB 82, CCL 218, and SY5Y cell cultures stimulated A aggregation in a time-dependent manner as compared to that of control (serum-containing medium that had not been exposed to cells). The order of stimulation was SY5Y > CRL 1598 HTB 82 > CCL 218, and the stimulation was higher in 2 week cultures than in 1 week cultures. Similar studies using media from HTB 153, CCL 136 and COS cell cultures showed no effect on A 1–40 aggregation. In serum-free cell cultures, only media from SY5Y and CRL 1598 could promote significant aggregation of A 1–40. Negative staining in EM revealed A fibril formation only with conditioned media from SY5Y and CRL 1598 cultured under serum free conditions; no A fibrils were noticed in media from cell cultures supplemented with 10% FBS. We propose that both the SY5Y neuroblastoma cell line and the CRL 1598 rhabdomyosarcoma cell line may serve as experimental models for in vitro studies of extracellular aggregation and fibrillization of A-protein in cell cultures, while rhabdomyosarcoma HTB 82 and adenocarcinoma CCL 218 may be models for study of A aggregation only.  相似文献   

12.
Many research efforts in the last years have been directed towards understanding the factors determining protein misfolding and amyloid formation. Protein stability and amino acid composition have been identified as the two major factors in vitro. The research of our group has been focused on understanding the relationship between amino acid sequence and amyloid formation. Our approach has been the design of simple model systems that reproduce the biophysical properties of natural amyloids. An amyloid sequence pattern was extracted that can be used to detect amyloidogenic hexapeptide stretches in proteins. We have added evidence supporting that these amyloidogenic stretches can trigger amyloid formation by nonamyloidogenic proteins. Some experimental results in other amyloid proteins will be analyzed under the conclusions obtained in these studies. Our conclusions together with evidences from other groups suggest that amyloid formation is the result of the interplay between a decrease of protein stability, and the presence of highly amyloidogenic regions in proteins. As many of these results have been obtained in vitro, the challenge for the next years will be to demonstrate their validity in in vivo systems.  相似文献   

13.
Abstract

An amyloid fibril isolation procedure is proposed which uses citrate as well as saline washes to dissociate the calcium dependent linkage of amyloid P-component (AP) from the amyloid fibril. In two amyloid rich tissues, the amount of AP was quantitated in each saline and citrate wash and totalled 13.8% and 20.8% of the amyloid fibrils isolated. The amount of AP removed from these and 22 additional amyloid rich tissues was greater than had previously been recognized.

AP protein was present in tissue only when amyloid fibrils were present. It could not be found in normal non-amyloidotic tissue, nor could it be found in tissue sediment after the fibrils were removed.  相似文献   

14.
Amyloid fibril concentrates have been fractionated and shown to have homogeneous fragments of the variable region of immunoglobulin proteins as their major protein constituent. Amyloid fibril protein purification was performed on ten amyloid preparations by sequential gel filtration on Sepharose 4 B and Sephadex G-100 columns equilibrated with 5 M guanidine-HCl in 1 N acetic acid.  相似文献   

15.
Neurodegenerative diseases are associated with misfolding and deposition of specific proteins, either intra or extracellularly in the nervous system. Advanced glycation end products (AGEs) originate from different molecular species that become glycated after exposure to sugars. Several proteins implicated in neurodegenerative diseases have been found to be glycated in vivo and the extent of glycation is related to the pathologies of the patients. Although it is now accepted that there is a direct correlation between AGEs formation and the development of neurodegenerative diseases, several questions still remain unanswered: whether glycation is the triggering event or just an additional factor acting on the aggregation pathway. To this concern, in the present study we have investigated the effect of glycation on the aggregation pathway of the amyloidogenic W7FW14F apomyoglobin. Although this protein has not been related to any amyloid disease, it represents a good model to resemble proteins that intrinsically evolve toward the formation of amyloid aggregates in physiological conditions. We show that D-ribose, but not D-glucose, rapidly induces the W7FW14F apomyoglobin to generate AGEs in a time-dependent manner and protein ribosylation is likely to involve lysine residues on the polypeptide chain. Ribosylation of the W7FW14F apomyoglobin strongly affects its aggregation kinetics producing amyloid fibrils within few days. Cytotoxicity of the glycated aggregates has also been tested using a cell viability assay. We propose that ribosylation in the W7FW14F apomyoglobin induces the formation of a cross-link that strongly reduces the flexibility of the H helix and/or induce a conformational change that favor fibril formation. These results open new perspectives for AGEs biological role as they can be considered not only a triggering factor in amyloidosis but also a player in later stages of the aggregation process.  相似文献   

16.

Background

Tau protein is implicated in the pathogenesis of neurodegenerative disorders such as tauopathies including Alzheimer disease, and Tau fibrillization is thought to be related to neuronal toxicity. Physiological inhibitors of Tau fibrillization hold promise for developing new strategies for treatment of Alzheimer disease. Because protein disulfide isomerase (PDI) is both an enzyme and a chaperone, and implicated in neuroprotection against Alzheimer disease, we want to know whether PDI can prevent Tau fibrillization. In this study, we have investigated the interaction between PDI and Tau protein and the effect of PDI on Tau fibrillization.

Methodology/Principal Findings

As evidenced by co-immunoprecipitation and confocal laser scanning microscopy, human PDI interacts and co-locates with some endogenous human Tau on the endoplasmic reticulum of undifferentiated SH-SY5Y neuroblastoma cells. The results from isothermal titration calorimetry show that one full-length human PDI binds to one full-length human Tau (or human Tau fragment Tau244–372) monomer with moderate, micromolar affinity at physiological pH and near physiological ionic strength. As revealed by thioflavin T binding assays, Sarkosyl-insoluble SDS-PAGE, and transmission electron microscopy, full-length human PDI remarkably inhibits both steps of nucleation and elongation of Tau244–372 fibrillization in a concentration-dependent manner. Furthermore, we find that two molecules of the a-domain of human PDI interact with one Tau244–372 molecule with sub-micromolar affinity, and inhibit both steps of nucleation and elongation of Tau244–372 fibrillization more strongly than full-length human PDI.

Conclusions/Significance

We demonstrate for the first time that human PDI binds to Tau protein mainly through its thioredoxin-like catalytic domain a, forming a 1∶1 complex and preventing Tau misfolding. Our findings suggest that PDI could act as a physiological inhibitor of Tau fibrillization, and have applications for developing novel strategies for treatment and early diagnosis of Alzheimer disease.  相似文献   

17.
Assembly of normally soluble proteins into ordered aggregates, known as amyloid fibrils, is a cause or associated symptom of numerous human disorders, including Alzheimer's and the prion diseases. Here, we test the ability of discontinuous molecular dynamics (DMD) simulations based on PRIME20, a new intermediate-resolution protein force field, to predict which designed hexapeptide sequences will form fibrils, which will not, and how this depends on temperature and concentration. Simulations were performed on 48-peptide systems containing STVIIE, STVIFE, STVIVE, STAIIE, STVIAE, STVIGE, and STVIEE starting from random-coil configurations. By the end of the simulations, STVIIE and STVIFE (which form fibrils in vitro) form fibrils over a range of temperatures, STVIEE (which does not form fibrils in vitro) does not form fibrils, and STVIVE, STAIIE, STVIAE, and STVIGE (which do not form fibrils in vitro) form fibrils at lower temperatures but stop forming fibrils at higher temperatures. At the highest temperatures simulated, the results on the fibrillization propensity of the seven short de novo designed peptides all agree with the experiments of López de la Paz and Serrano. Our results suggest that the fibrillization temperature (temperature above which fibrils cease to form) is a measure of fibril stability and that by rank ordering the fibrillization temperatures of various sequences, PRIME20/DMD simulations could be used to ascertain their relative fibrillization propensities. A phase diagram showing regions in the temperature-concentration plane where fibrils are formed in our simulations is presented.  相似文献   

18.
19.
While the Amyloid Precursor Protein (APP) plays a central role in Alzheimer’s disease, its cellular function still remains largely unclear. It was our goal to establish APP function which will provide insights into APP''s implication in Alzheimer''s disease. Using our recently developed proteo-liposome assay we established the interactome of APP''s intracellular domain (known as AICD), thereby identifying novel APP interactors that provide mechanistic insights into APP function. By combining biochemical, cell biological and genetic approaches we validated the functional significance of one of these novel interactors. Here we show that APP binds the PIKfyve complex, an essential kinase for the synthesis of the endosomal phosphoinositide phosphatidylinositol-3,5-bisphosphate. This signalling lipid plays a crucial role in endosomal homeostasis and receptor sorting. Loss of PIKfyve function by mutation causes profound neurodegeneration in mammals. Using C. elegans genetics we demonstrate that APP functionally cooperates with PIKfyve in vivo. This regulation is required for maintaining endosomal and neuronal function. Our findings establish an unexpected role for APP in the regulation of endosomal phosphoinositide metabolism with dramatic consequences for endosomal biology and important implications for our understanding of Alzheimer''s disease.  相似文献   

20.
Amyloid fibrils     
《朊病毒》2013,7(3):112-117
Amyloid refers to the abnormal fibrous, extracellular, proteinaceous deposits found in organs and tissues. Amyloid is insoluble and is structurally dominated by β?sheet structure. Unlike other fibrous proteins it does not commonly have a structural, supportive or motility role but is associated with the pathology seen in a range of diseases known as the amyloidoses. These diseases include Alzheimer’s, the spongiform encephalopathies and type II diabetes, all of which are progressive disorders with associated high morbidity and mortality. Not surprisingly, research into the physicochemical properties of amyloid and its formation is currently intensely pursued. In this work we will highlight the key scientific findings and discuss how the stability of amyloid fibrils impacts on bionanotechnology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号