首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A major consequence of insulin binding its receptor on fat and muscle cells is translocation of the facilitative glucose transporter GLUT4 from an intracellular store to the cell surface where it serves to clear glucose from the bloodstream. Sorting of GLUT4 into its insulin‐sensitive store requires the GGA [Golgi‐localized, γ‐ear‐containing, ADP ribosylation factor (ARF)‐binding] adaptor proteins, but the signal on GLUT4 to direct this sorting step is unknown. Here, we have identified a role for ubiquitination of GLUT4 in this process. We demonstrate that GLUT4 is ubiquitinated in 3T3‐L1 adipocytes, and that a ubiquitin‐resistant version fails to translocate to the cell surface of these cells in response to insulin. Our data support a model in which ubiquitination acts as a signal for the trafficking of GLUT4 from the endosomal/trans‐Golgi network (TGN) system into its intracellular storage compartment, from where it is mobilized to the cell surface in response to insulin.  相似文献   

2.
We have recently reported that following initial biosynthesis, the GLUT4 protein exits the Golgi apparatus and directly enters the insulin-responsive compartment(s) without transiting the plasma membrane. To investigate the structural motifs involved in these initial sorting events, we have generated a variety of loss-of-function and gain-of-function GLUT4/GLUT1 chimera proteins. Substitution of the GLUT4 carboxyl-terminal domain with GLUT1 had no significant effect on the acquisition of insulin responsiveness. In contrast, substitution of either the GLUT4 amino-terminal domain or the large cytoplasmic loop between transmembrane domains 6 and 7 resulted in the rapid default of GLUT4 to the plasma membrane with blunted insulin response. Consistent with these findings, substitution of the amino-terminal, cytoplasmic loop, or carboxyl-terminal domains individually into GLUT1 backbone did not recapitulate normal GLUT4 trafficking. Similarly, dual substitutions of the GLUT1 amino and carboxyl termini with GLUT4 domains or the combination of the cytoplasmic loop plus the carboxyl terminus failed to display normal GLUT4 trafficking. However, the dual replacement of the amino terminus plus the cytoplasmic loop of GLUT4 in the GLUT1 backbone resulted in a complete restoration of normal GLUT4 trafficking. Alanine-scanning mutagenesis of the GLUT4 amino terminus demonstrated that Phe(5) and Ile(8) within the FQQI motif and, to a lesser extent, Asp(12)/Gly(13) were necessary for the appropriate initial trafficking following biosynthesis. In addition, amino acids 229-271 in the large intracellular loop between transmembrane domains 6 and 7 functionally cooperated with the amino-terminal domain. These data demonstrate that initial trafficking of GLUT4 from the Golgi to the insulin-responsive GLUT4 compartment requires the functional interaction of two distinct domains.  相似文献   

3.
Insulin regulates glucose transport in muscle and adipose tissue by triggering the translocation of a facilitative glucose transporter, GLUT4, from an intracellular compartment to the cell surface. It has previously been suggested that GLUT4 is segregated between endosomes, the trans-Golgi network (TGN), and a postendosomal storage compartment. The aim of the present study was to isolate the GLUT4 storage compartment in order to determine the relationship of this compartment to other organelles, its components, and its presence in different cell types. A crude intracellular membrane fraction was prepared from 3T3-L1 adipocytes and subjected to iodixanol equilibrium sedimentation analysis. Two distinct GLUT4-containing vesicle peaks were resolved by this procedure. The lighter of the two peaks (peak 2) was comprised of two overlapping peaks: peak 2b contained recycling endosomal markers such as the transferrin receptor (TfR), cellubrevin, and Rab4, and peak 2a was enriched in TGN markers (syntaxin 6, the cation-dependent mannose 6-phosphate receptor, sortilin, and sialyltransferase). Peak 1 contained a significant proportion of GLUT4 with a smaller but significant amount of cellubrevin and relatively little TfR. In agreement with these data, internalized transferrin (Tf) accumulated in peak 2 but not peak 1. There was a quantitatively greater loss of GLUT4 from peak 1 than from peak 2 in response to insulin stimulation. These data, combined with the observation that GLUT4 became more sensitive to ablation with Tf-horseradish peroxidase following insulin treatment, suggest that the vesicles enriched in peak 1 are highly insulin responsive. Iodixanol gradient analysis of membranes isolated from other cell types indicated that a substantial proportion of GLUT4 was targeted to peak 1 in skeletal muscle, whereas in CHO cells most of the GLUT4 was targeted to peak 2. These results indicate that in insulin-sensitive cells GLUT4 is targeted to a subpopulation of vesicles that appear, based on their protein composition, to be a derivative of the endosome. We suggest that the biogenesis of this compartment may mediate withdrawal of GLUT4 from the recycling system and provide the basis for the marked insulin responsiveness of GLUT4 that is unique to muscle and adipocytes.  相似文献   

4.
Glucose transporter 8 (GLUT8) contains a cytoplasmic N-terminal dileucine motif and localizes to a thus far unidentified intracellular compartment. Translocation of GLUT8 to the plasma membrane (PM) was found in insulin-treated mouse blastocysts. Using overexpression of GLUT8 in adipocytes and neuronal cells however, insulin treatment or depolarization of the cells did not lead to GLUT8 PM translocation in other studies. In addition, other experiments showing dynamin-dependent endocytosis of GLUT8 suggested that GLUT8 recycles between an endosomal compartment and the PM. To reveal the functional/physiological role of GLUT8, we studied its subcellular localization in 3T3L1, HEK293 and CHO cells. We show that GLUT8 does not co-localize with GLUT4 and does not redistribute to the PM after treatment with insulin, ionophores or okadaic acid in these cell lines. Once endocytosed, GLUT8 does not recycle to the PM. GLUT8 localizes to late endosomes and lysosomes. An interspecies GLUT8 - sequence alignment revealed the presence of a highly conserved late endosomal/lysosomal-targeting motif ([DE]XXXL[LI]). Changing the glutamate to arginine as found in GLUT4 (RRXXXLL) alters GLUT8 endocytosis and retains the transporter at the PM. Furthermore, sorting GLUT8 to late endosomes/lysosomes does not require prior presence of GLUT8 at the PM followed by its endocytosis. In summary, GLUT8 does not reside in a recycling vesicle pool and is distinct from GLUT4. From our data, we postulate a role for GLUT8 in transport of hexoses across intracellular membranes, for example in specific compartments of GLUT8 expression such as the acrosome of mature spermatozoa or secretory granules in neurons. Furthermore, a role for GLUT8 in hexose transport across the lysosomal membrane, a transport mechanism that has long been suggested but unexplained, is discussed.  相似文献   

5.
Lee W  Ryu J  Spangler RA  Jung CY 《Biochemistry》2000,39(31):9358-9366
The trafficking kinetics of GLUT4 and GLUT1 in rat epididymal adipocytes were analyzed by a four-compartment model based upon steady-state pool sizes of three intracellular fractions and one plasma membrane fraction separated and assessed under both basal and insulin-stimulated states. The steady-state compartment sizes provided relative values of the kinetic coefficients characterizing the rate of each process in the loop. Absolute values of these coefficients were obtained by matching the simulated half-times to those observed experimentally and reported in the literature for both basal and insulin-stimulated states. Our analysis revealed that insulin modulates the GLUT4 trafficking at multiple steps in the rat adipocyte, not only reducing the endocytotic rate constant 3-4-fold and increasing the exocytotic rate 8-24-fold but also increasing the two rate coefficients coupling the three intracellular compartments 2-6-fold each. Furthermore, GLUT1 was completely segregated from GLUT4 in two of the three intracellular compartments, and its steady-state distribution is consistent with a four-compartment model of GLUT1 recycling involving an insulin sensitive endocytosis step in common with the GLUT4 system, but with all other processes being insensitive to insulin.  相似文献   

6.
The insulin-responsive glucose transporter GLUT4 plays an essential role in glucose homeostasis. A novel assay was used to study GLUT4 trafficking in 3T3-L1 fibroblasts/preadipocytes and adipocytes. Whereas insulin stimulated GLUT4 translocation to the plasma membrane in both cell types, in nonstimulated fibroblasts GLUT4 readily cycled between endosomes and the plasma membrane, while this was not the case in adipocytes. This efficient retention in basal adipocytes was mediated in part by a C-terminal targeting motif in GLUT4. Insulin caused a sevenfold increase in the amount of GLUT4 molecules present in a trafficking cycle that included the plasma membrane. Strikingly, the magnitude of this increase correlated with the insulin dose, indicating that the insulin-induced appearance of GLUT4 at the plasma membrane cannot be explained solely by a kinetic change in the recycling of a fixed intracellular GLUT4 pool. These data are consistent with a model in which GLUT4 is present in a storage compartment, from where it is released in a graded or quantal manner upon insulin stimulation and in which released GLUT4 continuously cycles between intracellular compartments and the cell surface independently of the nonreleased pool.  相似文献   

7.
Insulin stimulates glucose transport in fat and muscle cells by regulating delivery of the facilitative glucose transporter, glucose transporter isoform 4 (GLUT4), to the plasma membrane. In the absence of insulin, GLUT4 is sequestered away from the general recycling endosomal pathway into specialized vesicles, referred to as GLUT4-storage vesicles. Understanding the sorting of GLUT4 into this store is a major challenge. Here we examine the role of the Sec1/Munc18 protein mVps45 in GLUT4 trafficking. We show that mVps45 is up-regulated upon differentiation of 3T3-L1 fibroblasts into adipocytes and is expressed at stoichiometric levels with its cognate target–soluble N-ethylmaleimide–sensitive factor attachment protein receptor, syntaxin 16. Depletion of mVps45 in 3T3-L1 adipocytes results in decreased GLUT4 levels and impaired insulin-stimulated glucose transport. Using sub­cellular fractionation and an in vitro assay for GLUT4-storage vesicle formation, we show that mVps45 is required to correctly traffic GLUT4 into this compartment. Collectively our data reveal a crucial role for mVps45 in the delivery of GLUT4 into its specialized, insulin-regulated compartment.  相似文献   

8.
The insulin-sensitive glucose transporter GLUT4 mediates the uptake of glucose into adipocytes and muscle cells. In this study we have used a novel 96-well plate fluorescence assay to study the kinetics of GLUT4 trafficking in 3T3-L1 adipocytes. We have found evidence for a graded release mechanism whereby GLUT4 is released into the plasma membrane recycling system in a nonkinetic manner as follows: the kinetics of appearance of GLUT4 at the plasma membrane is independent of the insulin concentration; a large proportion of GLUT4 molecules do not participate in plasma membrane recycling in the absence of insulin; and with increasing insulin there is an incremental increase in the total number of GLUT4 molecules participating in the recycling pathway rather than simply an increased rate of recycling. We propose a model whereby GLUT4 is stored in a compartment that is disengaged from the plasma membrane recycling system in the basal state. In response to insulin, GLUT4 is quantally released from this compartment in a pulsatile manner, leaving some sequestered from the recycling pathway even in conditions of excess insulin. Once disengaged from this location we suggest that in the continuous presence of insulin this quanta of GLUT4 continuously recycles to the plasma membrane, possibly via non-endosomal carriers that are formed at the perinuclear region.  相似文献   

9.
Hah JS  Ryu JW  Lee W  Kim BS  Lachaal M  Spangler RA  Jung CY 《Biochemistry》2002,41(48):14364-14371
In rat adipocytes, insulin-induced GLUT4 recruitment to the plasma membrane (PM) is associated with characteristic changes in the GLUT4 contents of three distinct endosomal fractions, T, H, and L. The organelle-specific marker distribution pattern suggests that these endosomal GLUT4 compartments are sorting endosomes (SR), GLUT4-storage endosomes (ST), and GLUT4 exocytotic vesicules (EV), respectively, prompting us to analyze GLUT4 recycling based upon a four-compartment kinetic model. Our analysis revealed that insulin modulates GLUT4 trafficking at multiple steps, including not only the endocytotic and exocytotic rates, but also the two rate coefficients coupling the three intracellular compartments. This analysis assumes that GLUT4 cycles through PM T, H,L, and back to PM, in that order, with transitions characterized by four first-order coefficients. Values assigned to these coefficients are based upon the four steady-state GLUT4 pool sizes assessed under both basal and insulin stimulated states and the transition time courses observed in the plasma membrane GLUT4 pool. Here we present the first reported experimental measurements of transient changes in each of the four GLUT4 compartments during the insulin-stimulated to basal transition in rat adipocytes and compare these experimental results with the corresponding model simulations. The close correlation of these results offers clear support for the general validity of the assumed model structure and the assignment of the T compartment to the sorting endosome GLUT4 pool. Variations in the recycling pathway from that of an unbranched cyclic topography are also considered in the light of these experimental observations. The possibility that H is a coupled GLUT4 storage compartment lying outside the direct cyclic pathway is contraindicated by the data. Okadaic acid-induced GLUT4 recruitment is accompanied by modulation of the rate coefficients linking individual endosomal GLUT4 compartments, further demonstrating a significant role of the endosomal pathways in GLUT4 exocytosis.  相似文献   

10.
GLUT4 (glucose transporter 4) is responsible for the insulin-induced uptake of glucose by muscle and fat cells. In non-stimulated (basal) cells, GLUT4 is retained intracellularly, whereas insulin stimulation leads to its translocation from storage compartments towards the cell surface. How GLUT4 is retained intracellularly is largely unknown. Previously, aberrant GLUT4 N-glycosylation has been linked to increased basal cell-surface levels, while N-glycosylation-deficient GLUT4 was found to be quickly degraded. As recycling and degradation of GLUT4 are positively correlated, we hypothesized that incorrect N-glycosylation of GLUT4 might reduce its intracellular retention, resulting in an increased cell-surface recycling, in increased basal cell-surface levels, and in enhanced GLUT4 degradation. In the present study, we have investigated N-glycosylation-deficient GLUT4?in detail in 3T3-L1 preadipocytes, 3T3-L1 adipocytes and L6 myoblasts. We have found no alterations in retention, insulin response, internalization or glucose transport activity. Degradation of the mutant molecule was increased, although once present at the cell surface, its degradation was identical with that of wild-type GLUT4. Our findings indicate that N-glycosylation is important for efficient trafficking of GLUT4 to its proper compartments, but once the transporter has arrived there, N-glycosylation plays no further major role in its intracellular trafficking, nor in its functional activity.  相似文献   

11.
Insulin enhances plasmalemmal-directed traffic of glucose transporter-4 (GLUT4), but it is unknown whether insulin regulates GLUT4 traffic through endosomal compartments. In L6 myoblasts expressing Myc-tagged GLUT4, insulin markedly stimulated the rate of GLUT4myc recycling. In myoblasts stimulated with insulin to maximize surface GLUT4myc levels, we followed the rates of surface-labeled GLUT4myc endocytosis and chased its intracellular distribution in space and time using confocal immunofluorescence microscopy. Surface-labeled GLUT4myc internalized rapidly (t(12) 3 min), reaching the early endosome by 2 min and the transferrin receptor-rich, perinuclear recycling endosome by 20 min. Upon re-addition of insulin, the t(12) of GLUT4 disappearance from the plasma membrane was unchanged (3 min), but strikingly, GLUT4myc reached the recycling endosome by 10 and left by 20 min. This effect of insulin was blocked by the phosphatidylinositol 3-kinase inhibitor LY294002 or by transiently transfected dominant-negative phosphatidylinositol 3-kinase and protein kinase B mutants. In contrast, insulin did not alter the rate of arrival of rhodamine-labeled transferrin at the recycling endosome. These results reveal a heretofore unknown effect of insulin to accelerate inter-endosomal travel rates of GLUT4 and identify the recycling endosome as an obligatory stage in insulin-dependent GLUT4 recycling.  相似文献   

12.
Insulin regulates glucose uptake into fat and muscle by modulating the distribution of the GLUT4 glucose transporter between the surface and interior of cells. The GLUT4 trafficking pathway overlaps with the general endocytic recycling pathway, but the degree and functional significance of the overlap are not known. In this study of intact adipocytes, we demonstrate, by using a compartment-specific fluorescence-quenching assay, that GLUT4 is equally distributed between two intracellular pools: the transferrin receptor-containing endosomes and a specialized compartment that excludes the transferrin receptor. These pools of GLUT4 are in dynamic communication with one another and with the cell surface. Insulin-induced redistribution of GLUT4 to the surface requires mobilization of both pools. These data establish a role for the general endosomal system in the specialized, insulin-regulated trafficking of GLUT4. Trafficking through the general endosomal system is regulated by rab11. Herein, we show that rab11 is required for the transport of GLUT4 from endosomes to the specialized compartment and for the insulin-induced translocation to the cell surface, emphasizing the importance of the general endosomal pathway in the specialized trafficking of GLUT4. Based on these findings we propose a two-step model for GLUT4 trafficking in which the general endosomal recycling compartment plays a specialized role in the insulin-regulated traffic of GLUT4. This compartment-based model provides the framework for understanding insulin-regulated trafficking at a molecular level.  相似文献   

13.
14.
Ins (endocytosis) and outs (exocytosis) of GLUT4 trafficking   总被引:3,自引:0,他引:3  
Glucose transporter 4 (GLUT4) is the major insulin-regulated glucose transporter expressed mainly in muscle and adipose tissue. GLUT4 is stored in a poorly characterized intracellular vesicular compartment and translocates to the cell surface in response to insulin stimulation resulting in an increased glucose uptake. This process is essential for the maintenance of normal glucose homeostasis and involves a complex interplay of trafficking events and intracellular signaling cascades. Recent studies have identified sortilin as an essential element for the formation of GLUT4 storage vesicles during adipogenesis and Golgi-localized gamma-ear-containing Arf-binding protein (GGA) as a key coat adaptor for the entry of newly synthesized GLUT4 into the specialized compartment. Insulin-stimulated GLUT4 translocation from this compartment to the plasma membrane appears to require the Akt/protein kinase B substrate termed AS160 (Akt substrate of 160kDa). In addition, the VPS9 domain-containing protein Gapex-5 in complex with CIP4 appears to function as a Rab31 guanylnucleotide exchange factor that is necessary for insulin-stimulated GLUT4 translocation. Here, we attempt to summarize recent advances in GLUT4 vesicle biogenesis, intracellular trafficking and membrane fusion.  相似文献   

15.
Immunocytochemical and biochemical studies of GLUT4 in rat skeletal muscle.   总被引:17,自引:0,他引:17  
In muscle and adipocytes, glucose transport is regulated by the translocation of insulin regulatable glucose transporters (GLUT4) between an intracellular compartment and the cell surface. In these studies we have characterized the cellular compartments containing GLUT4 in rat skeletal muscle. Immunocytochemical studies showed that in unstimulated muscle, GLUT4 was not present in surface membranes. Tubulo-vesicular structures clustered in the trans Golgi reticulum were enriched in GLUT4. GLUT4 underwent translocation to the sarcolemma in response to combined stimulation with insulin and exercise. Using immunoisolation, the intracellular GLUT4 vesicles (IRGTV) were purified 300-fold over the cell homogenate. IRGTV from unstimulated muscle were not enriched in markers specific for the sarcolemma, transverse tubules, sarcoplasmic reticulum or mitochondria; this was confirmed using gel filtration chromatography. Insulin resulted in a 40% decrease in GLUT4 levels in IRGTV confirming that this represents the intracellular compartment of GLUT4. GLUT4 is a major component of the IRGTV, constituting at least 5% of total vesicle protein. A subset of polypeptides are also markedly enriched in the muscle IRGTV. In conclusion, these data suggest that translocation of GLUT4 from intracellular tubulo-vesicular structures is the major mechanism by which insulin and exercise regulate muscle glucose transport.  相似文献   

16.

Background  

Insulin stimulates glucose uptake by adipocytes through increasing translocation of the glucose transporter GLUT4 from an intracellular compartment to the plasma membrane. Fusion of GLUT4-containing vesicles at the cell surface is thought to involve phospholipase D activity, generating the signalling lipid phosphatidic acid, although the mechanism of action is not yet clear.  相似文献   

17.
Insulin controls glucose uptake into muscle and fat cells by inducing a net redistribution of glucose transporter 4 (GLUT4) from intracellular storage to the plasma membrane (PM). The TBC1D4-RAB10 signaling module is required for insulin-stimulated GLUT4 translocation to the PM, although where it intersects GLUT4 traffic was unknown. Here we demonstrate that TBC1D4-RAB10 functions to control GLUT4 mobilization from a trans-Golgi network (TGN) storage compartment, establishing that insulin, in addition to regulating the PM proximal effects of GLUT4-containing vesicles docking to and fusion with the PM, also directly regulates the behavior of GLUT4 deeper within the cell. We also show that GLUT4 is retained in an element/domain of the TGN from which newly synthesized lysosomal proteins are targeted to the late endosomes and the ATP7A copper transporter is translocated to the PM by elevated copper. Insulin does not mobilize ATP7A nor does copper mobilize GLUT4, and RAB10 is not required for copper-elicited ATP7A mobilization. Consequently, GLUT4 intracellular sequestration and mobilization by insulin is achieved, in part, through utilizing a region of the TGN devoted to specialized cargo transport in general rather than being specific for GLUT4. Our results define the GLUT4-containing region of the TGN as a sorting and storage site from which different cargo are mobilized by distinct signals through unique molecular machinery.  相似文献   

18.
Insulin stimulation of glucose uptake is achieved by redistribution of insulin-responsive glucose transporters, GLUT4, from intracellular storage compartment(s) to the plasma membrane in adipocytes and muscle cells. Although GLUT4 translocation has been investigated using various approaches, GLUT4 trafficking properties within the cell are largely unknown. Our novel method allows direct analysis of intracellular GLUT4 dynamics at the single molecule level by using Quantum dot technology, quantitatively establishing the behavioral nature of GLUT4. Our data demonstrate the predominant mechanism for intracellular GLUT4 sequestration in the basal state to be “static retention” in fully differentiated 3T3L1 adipocytes. We also directly defined three distinct insulin-stimulated GLUT4 trafficking processes: 1) release from the putative GLUT4 anchoring system in storage compartment(s), 2) the speed at which transport GLUT4-containing vesicles move, and 3) the tethering/docking steps at the plasma membrane. Intriguingly, insulin-induced GLUT4 liberation from its static state appeared to be abolished by either pretreatment with an inhibitor of phosphatidylinositol 3-kinase or overexpression of a dominant-interfering AS160 mutant (AS160/T642A). In addition, our novel approach revealed the possibility that, in certain insulin-resistant states, derangements in GLUT4 behavior can impair insulin-responsive GLUT4 translocation.  相似文献   

19.
Newly synthesized glucose transporter 4 (GLUT4) enters into the insulin-responsive storage compartment in a process that is Golgi-localized gamma-ear-containing Arf-binding protein (GGA) dependent, whereas insulin-stimulated translocation is regulated by Akt substrate of 160 kDa (AS160). In the present study, using a variety of GLUT4/GLUT1 chimeras, we have analyzed the specific motifs of GLUT4 that are important for GGA and AS160 regulation of GLUT4 trafficking. Substitution of the amino terminus and the large intracellular loop of GLUT4 into GLUT1 (chimera 1-441) fully recapitulated the basal state retention, insulin-stimulated translocation, and GGA and AS160 sensitivity of wild-type GLUT4 (GLUT4-WT). GLUT4 point mutation (GLUT4-F5A) resulted in loss of GLUT4 intracellular retention in the basal state when coexpressed with both wild-type GGA and AS160. Nevertheless, similar to GLUT4-WT, the insulin-stimulated plasma membrane localization of GLUT4-F5A was significantly inhibited by coexpression of dominant-interfering GGA. In addition, coexpression with a dominant-interfering AS160 (AS160-4P) abolished insulin-stimulated GLUT4-WT but not GLUT4-F5A translocation. GLUT4 endocytosis and intracellular sequestration also required both the amino terminus and large cytoplasmic loop of GLUT4. Furthermore, both the FQQI and the SLL motifs participate in the initial endocytosis from the plasma membrane; however, once internalized, unlike the FQQI motif, the SLL motif is not responsible for intracellular recycling of GLUT4 back to the specialized compartment. Together, we have demonstrated that the FQQI motif within the amino terminus of GLUT4 is essential for GLUT4 endocytosis and AS160-dependent intracellular retention but not for the GGA-dependent sorting of GLUT4 into the insulin-responsive storage compartment.  相似文献   

20.
In this study, we investigated the relative participation of N-ethylmaleimide-sensitive factor (NSF) in vivo in a complex multistep vesicle trafficking system, the translocation response of GLUT4 to insulin in rat adipose cells. Transfections of rat adipose cells demonstrate that over-expression of wild-type NSF has no effect on total, or basal and insulin-stimulated cell-surface expression of HA-tagged GLUT4. In contrast, a dominant-negative NSF (NSF-D1EQ) can be expressed at a low enough level that it has little effect on total HA-GLUT4, but does reduce both basal and insulin-stimulated cell-surface HA-GLUT4 by approximately 50% without affecting the GLUT4 fold-translocation response to insulin. However, high expression levels of NSF-D1EQ decrease total HA-GLUT4. The inhibitory effect of NSF-D1EQ on cell-surface HA-GLUT4 is reversed when endocytosis is inhibited by co-expression of a dominant-negative dynamin (dynamin-K44A). Moreover, NSF-D1EQ does not affect cell-surface levels of constitutively recycling GLUT1 and TfR, suggesting a predominant effect of low-level NSF-D1EQ on the trafficking of GLUT4 from the endocytic recycling compared to the intracellular GLUT4-specific compartment. Thus, our data demonstrate that the multiple fusion steps in GLUT4 trafficking have differential quantitative requirements for NSF activity. This indicates that the rates of plasma and intracellular membrane fusion reactions vary, leading to differential needs for the turnover of the SNARE proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号