首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
3.
Recent findings in purified systems demonstrate the universality of DNA polymerase-primase complexes which may function in the priming and continuation of eucaryotic DNA replication. In this report we characterize an in vitro, nuclear matrix-associated, priming and continuation system that can utilize either endogenous matrix-bound DNA or exogenous single-stranded DNA as template. 30-40% of total nuclear DNA primase activity was recovered in association with the isolated nuclear matrix fraction from regenerating rat liver. Matrix-bound primase catalyzed the alpha-amanitin, actinomycin D-resistant synthesis of oligonucleotide chains of 8-50 nucleotides on the endogenous template. At least a portion of the RNA primers were continued by DNA polymerase alpha with deoxynucleoside triphosphate incorporation up to 300-600 nucleotides. Nearest neighbor analysis revealed ribodeoxynucleotide covalent linkages in these RNA-DNA chains. The matrix-bound primase preferred single-stranded fd DNA as exogenous template over synthetic homopolymers and was strictly dependent on the presence of ribonucleoside triphosphates. Appropriate subfractionation revealed that the matrix-bound primase activity is exclusively localized in the nuclear matrix interior. The ability of primase and DNA polymerase to synthesize covalently linked RNA-DNA products demonstrates the potentially useful role of the nuclear matrix in vitro system for elucidating the organizational and functional properties of the eucaryotic replication apparatus in the cell nucleus.  相似文献   

4.
Previously, we characterized the endonucleolytic activity of the nuclear matrix prepared from rat liver cryopreserved in liquid nitrogen. The enzymic activity was attributed to a 23 kDa, Mg(2+)-dependent and sequence non-specific endonuclease (p23) stably associated with the nuclear matrix. Here we show that p23 was absent from the nuclear matrix prepared from fresh liver. Instead, both ex vivo (cryopreservation), as well as in vivo-induced necrosis by repeated freezing/thawing of liver tissue in an anaesthetized rat, promoted the activation and translocation of p23 to the nuclear matrix. Considering that ex vivo and in vivo freezing/thawing of the liver were accompanied by morphological (nuclear compaction) and biochemical events (increased LDH activity, disorderly genomic DNA degradation, absence of lamin proteolysis, appearance of 62 and 50 kDa necrotic cleavage products of PARP-1) commonly observed during necrosis, and because the association of p23 with the nuclear matrix was saturable, reflecting the existence of a limited number of distinct high affinity sites on the nuclear matrix for p23, we concluded that the activation of the nuclear matrix-associated endonuclease p23 is a feature of liver cryonecrosis. Although cryonecrosis represents a typical example of acute cell damage, our results suggest that it is realized by ordered molecular events.  相似文献   

5.
As a step toward the molecular elucidation of the putative replicational apparatus associated with the nuclear matrix, we have investigated the possible matrix association of several replicational related enzymes. In addition to the previously identified DNA polymerase alpha, DNA primase, 3'-5' exonuclease, RNase H, and DNA methylase were all recovered at significant levels (20-30% of total nuclear activity) in nuclear matrix isolated from regenerating rat liver during maximal in vivo replication (22 h post-hepatectomy). In contrast, DNA ligase was not detected on the nuclear matrix even though significant activity was present in isolated nuclei. Examination of the replicative dependency of these enzyme activities following partial hepatectomy revealed pre-replicative elevations which were distinct for each matrix-bound enzyme. A second late-replicative peak in DNA methylase is consistent with a role of this matrix-bound enzyme in the maintenance of the inheritable methylation pattern. Mild sonication resulted in a significant release of all of these activities except RNase H. A major portion of the matrix-solubilized DNA polymerase alpha, DNA primase, 3'-5' exonuclease, and DNA methylase activities cosedimented on sucrose gradients between approximately 8-12 S. Our results are consistent with the organization of at least a portion of these replicative enzymes into nuclear matrix-bound replicational complexes. We also propose a novel pre-replicative assembly model of the matrix-bound replicational apparatus in which DNA primase plays an initial and critical role.  相似文献   

6.
7.
8.
Nuclear DNA is organized into chromatin loop domains. At the base of these loops, matrix-associated regions (MARs) of the DNA interact with nuclear matrix proteins. MARs act as structural boundaries within chromatin, and MAR binding proteins may recruit multiprotein complexes that remodel chromatin. The potential tumor suppressor protein CTCF binds to vertebrate insulators and is required for insulator activity. We demonstrate that CTCF is associated with the nuclear matrix and can be cross-linked to DNA by cisplatin, an agent that preferentially cross-links nuclear matrix proteins to DNA in situ. These results suggest that CTCF anchors chromatin to the nuclear matrix, suggesting that there is a functional connection between insulators and the nuclear matrix. We also show that the chromatin-modifying enzymes HDAC1 and HDAC2, which are intrinsic nuclear matrix components and thought to function as corepressors of CTCF, are incapable of associating with CTCF. Hence, the insulator activity of CTCF apparently involves an HDAC-independent association with the nuclear matrix. We propose that CTCF may demarcate nuclear matrix-dependent points of transition in chromatin, thereby forming topologically independent chromatin loops that may support gene silencing.  相似文献   

9.
A DNA-binding activity specific to the major mouse satellite (satMa) has been detected in a nuclear matrix protein extract by electrophoretic mobility shift assays (EMSA) after fractionation by ion exchange chromatography. An antibody raised against the satMa-protein complexes recovered from preparative EMSA recognizes on Western blots one major polypeptide with an apparent molecular mass of 120 kDa. The protein also has a similar affinity for a matrix-associated region (MAR) fragment. We demonstrate that the protein is a murine homologue of SAF-A which has been shown to bind selectively to MARs and is responsible for the satMa-binding activity in the chromatographic fractions. SatMa has significant homology to the mouse minor satellite fragments, but its binding of SAF-A shows much less affinity. No protected regions of significant length were found by footprinting, but multiple T residues scattered within the satMa sequence are protected, indicating that the whole fragment is involved in the binding to SAF-A. Combined immunofluorescence (SAF-A) and FISH (satMa) with in situ nuclear matrix procedures reveal that SAF-A and satMa colocalize. SAF-A appears as bright dots in interphase nuclei, presumably associated with MARs, predominantly surrounding and covering heterochromatic areas. A scheme based on morphological observations and biochemical data of SAF-A double satMa/MAR specificity is discussed.  相似文献   

10.
Heterochromatin consists mainly of satellite DNAs (stDNA), the most rapidly evolving type of DNA sequences of the eucaryotic genome. On the other hand, stDNA is involved in the formation of the functionally conserved centromere structure. Centromeres and pericentromeric stDNA, are known to be in association with nuclear matrix or chromosome scaffold at all stages of the cell cycle. Several lines of evidence show that attachment of stDNA to the nuclear matrix is specific. The first defined parts of the genes found in association with nuclear matrix/scaffold, MAR/SAR, possess some common features with the stDNA. A number of different mechanisms have previously been implicated in heterochromatin formation and centromere conservation. The role of nuclear matrix proteins, which are able to recognize common structural features of MAR/SAR and stDNA, in constitutive heterochromatin organization is discussed in the current review.  相似文献   

11.
12.
A new look at the nuclear matrix   总被引:9,自引:0,他引:9  
Hancock R 《Chromosoma》2000,109(4):219-225
  相似文献   

13.
Nuclear matrix association regions of rat alpha 2-macroglobulin gene   总被引:1,自引:0,他引:1  
We have identified DNA fragments which bind specifically to the nuclear matrix in vitro, termed matrix association regions (MARs), in the first and fourth introns of rat alpha 2-macroglobulin gene. The MAR in the first intron is enriched with sequences closely related to the cleavage consensus of topoisomerase II, and contains the binding site of nuclear factor-alpha, a sequence-specific DNA binding protein reported previously.  相似文献   

14.
15.
Receptor binding in the rat liver nuclear matrix   总被引:1,自引:0,他引:1  
3H-Dexamethasone (Dex)-receptor complexes prepared from the rat liver cytosol efficiently bound to the nuclear matrix from the same tissue. The binding was increased with the concentration of the 3H-Dex-receptor complex added and reached a maximum plateau. However, when the partially purified 3H-Dex-receptor complex was used, saturation of the binding sites in the nuclear matrix was not observed in the range of concentration of 3H-Dex-receptor complex used. Therefore, it was considered that the apparent saturability observed in the binding of the unpurified receptor complexes is caused by the translocation inhibitor(s) in the cytosol. When the binding capacity was expressed on the basis of unit weight of DNA, the nuclear matrix exhibited 20 times more of that of the unfractionated nuclei. However, no line of evidence of enrichment of the binding sites in the DNA isolated from the nuclear matrix was observed. These observations show that the role of the nuclear matrix in the action of glucocorticoid is quite uncertain.  相似文献   

16.
We find that nuclear protein extracts from mammalian cells contain an activity that allows DNA ends to associate with circular pUC18 plasmid DNA. This activity requires the catalytic subunit of DNA-PK (DNA-PKcs) and Ku since it was not observed in mutants lacking Ku or DNA-PKcs but was observed when purified Ku/DNA-PKcs was added to these mutant extracts. Purified Ku/DNA-PKcs alone did not produce association of DNA ends with plasmid DNA suggesting that additional factors in the nuclear extract are necessary for this activity. Competition experiments between pUC18 and pUC18 plasmids containing various nuclear matrix attachment region (MAR) sequences suggest that DNA ends preferentially associate with plasmids containing MAR DNA sequences. At a 1:5 mass ratio of MAR to pUC18, approximately equal amounts of DNA end binding to the two plasmids were observed, while at a 1:1 ratio no pUC18 end binding was observed. Calculation of relative binding activities indicates that DNA end-binding activities to MAR sequences was 7–21-fold higher than pUC18. Western analysis of proteins bound to pUC18 and MAR plasmids indicates that XRCC4, DNA ligase IV and scaffold attachment factor A preferentially associate with the MAR plasmid in the absence or presence of DNA ends. In contrast, Ku and DNA-PKcs were found on the MAR plasmid only in the presence of DNA ends suggesting that binding of these proteins to DNA ends is necessary for their association with MAR DNA. The ability of DNA-PKcs/Ku to direct DNA ends to MAR and pUC18 plasmid DNA is a new activity for DNA-PK and may be important for its function in double-strand break repair. A model for DNA repair based on these observations is presented.  相似文献   

17.
Calmodulin increases about three-fold in rat liver nuclei after partial hepatectomy. The increase is maximal after 24 hours, when DNA synthesis is also maximal. During the same time re-distribution of calmodulin within the nuclear structure takes place, leading to its association with the nuclear matrix. Incubation of normal rat liver nuclei with Ca2+ induces association of calmodulin with the matrix, indicating that the re-distribution of calmodulin during the replicative period is related to the increase in nuclear Ca2+. The nuclear matrix contains several calmodulin binding proteins of which one, having Mr of 130 kDa, has been identified as myosin light chain kinase (MLCK). Three acceptor proteins, having Mr of 120, 65, and 60 kDa decrease 24 hours after partial hepatectomy, MLCK and a protein of Mr 150 kDa instead increase.  相似文献   

18.
1. The existence of both cAMP-responsive element binding factor and a nuclear factor 1-like (NF-1-like) protein in nuclear extracts from liver of cAMP-treated rat has been revealed. 2. Binding of these proteins to a DNA fragment containing both elements was cooperative, and 50% binding was achieved with considerably less protein than with a fragment bearing either element alone. 3. Cleavage of the fragment between the two elements abolished the apparent cooperative interaction. 4. Southwestern blot analysis showed that the NF-1-like protein has a molecular weight in the 28-30-kDa range. 5. The NF-1-like binding activity was very stable.  相似文献   

19.
Three different mammalian origins of DNA replication, 343, S3, and X24, have been cloned into a 15.8 kb circular yeast vector pYACneo. Subsequent transfection into HeLa cells resulted in the isolation of several stably maintained clones. Two cell lines, C343e2 and CS3e1, were found to have sequences maintained as episomes in long-term culture with a stability per generation of approximately 80%. Both episomes also contain matrix attachment region (MAR) sequences which mediate the binding of DNA to the nuclear skeleton and are thought to play a role in DNA replication. Using high salt extraction of the nucleus and fluorescent in situ hybridization, we were able to demonstrate an association of the 343 episome with the nuclear matrix, most probably through functional MAR sequences that allow an association with the nuclear matrix and associated regions containing essential replication proteins. The presence of functional MARs in small episomal sequences may facilitate the replication and maintenance of transfected DNA as an episome and improve their utility as small episomal constructs, potential microchromosomes. J. Cell. Biochem. 67:439–450, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

20.
The DNA binding characteristics of the rat nuclear matrix were investigated. A saturable and temperature-dependent, salt-resistant DNA binding to the nuclear matrix was discovered, with 70-80% of total bound DNA resistant to extraction with high concentrations of salt at 37 degrees C, compared to less than 5% at 0 degrees C. The initial binding of DNA to nuclear matrix is sensitive to salt concentration, indicating a transition to a salt-resistant binding state. The nuclear matrix shows a preference for single-stranded DNA, both in saturation and competition assays, with little binding of RNA or double-stranded DNA. Further competition studies show a preference for matrix-attached DNA probably involving predominantly AT-rich sequences, while a specific sequence defined previously as a matrix-attached region (MAR; Cockerill, P. N., and Garrard, W. T. (1986) Cell 46, 273-282) only showed preference for a limited number of the total matrix binding sites. These results and estimates from saturation data of approximately 150,000 single-stranded DNA binding sites per matrix lead us to propose that the nuclear matrix contains different classes of DNA binding sites, each with a separate sequence specificity. Binding of DNA to individual matrix polypeptides separated on sodium dodecyl sulfate-polyacrylamide gels and transferred to nitrocellulose blots was also temperature-dependent, salt-resistant, and showed a preference for binding DNA over RNA and nuclear matrix DNA over total genomic DNA. Subnuclear fractionation experiments further demonstrated that the nuclear matrix is enriched in the subset of higher molecular weight (greater than 50,000) DNA binding proteins of isolated nuclei and correspondingly depleted of the lower molecular weight ones. Of the approximately 12 major proteins separated on nonequilibrium two-dimensional gels, 7 were identified as specific DNA binding proteins including lamins A and C (but not B), and the internal nuclear matrix proteins, matrins D, E, F, G, and 4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号