首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 532 毫秒
1.
We provide a catalog of 3D cryo soft X-ray tomography (cryo-SXT) images obtained from ~6 to 12μm thick mouse adenocarcinoma cells. Included are multiple representative images of nuclei, nucleoli, nuclear membrane, nuclear membrane channels, mitochondria, lysosomes, endoplasmic reticulum, filaments and plasma membrane, plus three structures not previously described by cryo-SXT, namely Golgi, microvilli and nuclear-membrane blebs. Sections from the 3D cryo-SXT tomograms for all the preceding structures closely resemble those seen by thin-section transmission electron microscopy (TEM). Some structures such as nuclear-membrane channels and nuclear-membrane blebs are more easily detected by cryo-SXT than TEM most likely due to their better contrast and cellular preservation in cryo-SXT combined with the ability to rapidly locate these structures within a full 3D image. We identify and discuss two current limitations in cryo-SXT: variability in image quality and difficulties in detecting weaker contrast structures such as chromatin and various nuclear bodies. Progress on these points is likely to come from the solution of several technical problems in image acquisition, plus the implementation of advanced cryo soft X-ray microscopy approaches such as phase contrast or optical sectioning.  相似文献   

2.
Imaging has long been one of the principal techniques used in biological and biomedical research. Indeed, the field of cell biology grew out of the first electron microscopy images of organelles in a cell. Since this landmark event, much work has been carried out to image and classify the organelles in eukaryotic cells using electron microscopy. Fluorescently labeled organelles can now be tracked in live cells, and recently, powerful light microscope techniques have pushed the limit of optical resolution to image single molecules. In this paper, we describe the use of soft X-ray tomography, a new tool for quantitative imaging of organelle structure and distribution in whole, fully hydrated eukaryotic Schizosaccharomyces pombe cells. In addition to imaging intact cells, soft X-ray tomography has the advantage of not requiring the use of any staining or fixation protocols—cells are simply transferred from their growth environment to a sample holder and immediately cryofixed. In this way the cells can be imaged in a near native state. Soft X-ray tomography is also capable of imaging relatively large numbers of cells in a short period of time, and is therefore a technique that has the potential to produce information on organelle morphology from statistically significant numbers of cells.  相似文献   

3.
Lens-based water-window X-ray microscopy allows two- and three-dimensional (2D and 3D) imaging of intact unstained cells in their near-native state with unprecedented contrast and resolution. Cryofixation is essential to avoid radiation damage to the sample. Present cryo X-ray microscopes rely on synchrotron radiation sources, thereby limiting the accessibility for a wider community of biologists. In the present paper we demonstrate water-window cryo X-ray microscopy with a laboratory-source-based arrangement. The microscope relies on a λ=2.48-nm liquid-jet high-brightness laser-plasma source, normal-incidence multilayer condenser optics, 30-nm zone-plate optics, and a cryo sample chamber. We demonstrate 2D imaging of test patterns, and intact unstained yeast, protozoan parasites and mammalian cells. Overview 3D information is obtained by stereo imaging while complete 3D microscopy is provided by full tomographic reconstruction. The laboratory microscope image quality approaches that of the synchrotron microscopes, but with longer exposure times. The experimental image quality is analyzed from a numerical wave-propagation model of the imaging system and a path to reach synchrotron-like exposure times in laboratory microscopy is outlined.  相似文献   

4.
Synchrotron X-ray fluorescence microscopy (SXRF) is a microanalytical technique for the quantitative mapping of elemental distributions. Among currently available imaging modalities, SXRF is the only technique that is compatible with fully hydrated biological samples such as whole cells or tissue sections, while simultaneously offering trace element sensitivity and submicron spatial resolution. Combined with the ability to provide information regarding the oxidation state and coordination environment of metal cations, SXRF is ideally suited to study the intracellular distribution and speciation of trace elements, toxic heavy metals and therapeutic or diagnostic metal complexes.  相似文献   

5.
Progress in the analysis of membrane protein structure and function   总被引:8,自引:0,他引:8  
Structural information on membrane proteins is sparse, yet they represent an important class of proteins that is encoded by about 30% of all genes. Progress has primarily been achieved with bacterial proteins, but efforts to solve the structure of eukaryotic membrane proteins are also increasing. Most of the structures currently available have been obtained by exploiting the power of X-ray crystallography. Recent results, however, have demonstrated the accuracy of electron crystallography and the imaging power of the atomic force microscope. These instruments allow membrane proteins to be studied while embedded in the bi-layer, and thus in a functional state. The low signal-to-noise ratio of cryo-electron microscopy is overcome by crystallizing membrane proteins in a two-dimensional protein-lipid membrane, allowing its atomic structure to be determined. In contrast, the high signal-to-noise ratio of atomic force microscopy allows individual protein surfaces to be imaged at sub-nanometer resolution, and their conformational states to be sampled. This review summarizes the steps in membrane protein structure determination and illuminates recent progress.  相似文献   

6.
7.
8.
Fast- and slow-proliferating human adenocarcinoma colorectal cells, HT-29 and HCA-7, respectively, overloaded with transferrin (Tf), Fe(III) citrate, Fe(III) chloride and Fe(II) sulfate were studied by synchrotron radiation total-reflection X-ray spectrometry (TXRF), TXRF-X-ray absorption near edge structure (TXRF-XANES), and micro-X-ray fluorescence imaging to obtain information on the intracellular storage of overloaded iron (Fe). The determined TfR1 mRNA expression for the investigated cells correlated with their proliferation rate. In all cases, the Fe XANES of cells overloaded with inorganic Fe was found to be similar to that of deliquescent Fe(III) sulfate characterized by a distorted octahedral geometry. A fitting model using a linear combination of the XANES of Tf and deliquescent Fe(III) sulfate allowed to explain the near edge structure recorded for HT-29 cells indicating that cellular overload with inorganic Fe results in a non-ferritin-like fast Fe storage. Hierarchical cluster analysis of XANES spectra recorded for Fe overloaded HT-29 and HCA-7 cells was able to distinguish between Fe treatments performed with different Fe species with a 95 % hit rate, indicating clear differences in the Fe storage system. Micro-X-ray fluorescence imaging of Fe overloaded HT-29 cells revealed that Fe is primarily located in the cytosol of the cells. By characterizing the cellular Fe uptake, Fe/S content ratios were calculated based on the X-ray fluorescence signals of the analytes. These Fe/S ratios were dramatically lower for HCA-7 treated with organic Fe(III) treatments suggesting dissimilarities from the Tf-like Fe uptake.  相似文献   

9.
Membrane proteins represent an important class of proteins that are encoded by about 40% of all genes, but compared to soluble proteins structural information is sparse. Most of the atomic coordinates currently available are from bacterial membrane proteins and have been obtained by X-ray crystallography. Recent results demonstrate the imaging power of the atomic force microscope and the accuracy of electron crystallography. These methods allow membrane proteins to be studied while embedded in the bilayer, and thus in a functional state. The low signal-to-noise ratio of cryoelectron microscopy is overcome by crystallizing membrane proteins in a two-dimensional protein-lipid membrane, allowing its atomic structure to be determined. In contrast, the high signal-to-noise ratio of atomic force microscopy allows individual protein surfaces to be imaged at subnanometer resolution, and their conformational states to be sampled. This review discusses examples of microscopic membrane protein structure determination and illuminates recent progress.  相似文献   

10.
We examined the yeast, Saccharomyces cerevisiae, using X-ray tomography and demonstrate unique views of the internal structural organization of these cells at 60-nm resolution. Cryo X-ray tomography is a new imaging technique that generates three-dimensional (3-D) information of whole cells. In the energy range of X-rays used to examine cells, organic material absorbs approximately an order of magnitude more strongly than water. This produces a quantifiable natural contrast in fully hydrated cells and eliminates the need for chemical fixatives or contrast enhancement reagents to visualize cellular structures. Because proteins can be localized in the X-ray microscope using immunogold labeling protocols (Meyer-Ilse et al., 2001. J. Microsc. 201, 395-403), tomography enables 3-D molecular localization. The time required to collect the data for each cell shown here was <15 min and has recently been reduced to 3 min, making it possible to examine numerous yeast and to collect statistically significant high-resolution data. In this video essay, we show examples of 3-D tomographic reconstructions of whole yeast and demonstrate the power of this technology to obtain quantifiable information from whole, hydrated cells.  相似文献   

11.
The X-ray crystal structure of the apo-form of the Fur protein from Rhizobium leguminosarum has been solved at 2.7 A resolution. Small-angle X-ray scattering was used to give information on the solution conformation of the protein. The Fur homodimer folds into two domains. The N-terminal domain is formed from the packing of two helix-turn-helix motifs while the C-terminal domain appears primarily to stabilize the dimeric state of the protein.  相似文献   

12.
Both functional and also more recently resting state magnetic resonance imaging have become established tools to investigate functional brain networks. Most studies use these tools to compare different populations without controlling for potential differences in underlying brain structure which might affect the functional measurements of interest. Here, we adapt a simulation approach combined with evaluation of real resting state magnetic resonance imaging data to investigate the potential impact of partial volume effects on established functional and resting state magnetic resonance imaging analyses. We demonstrate that differences in the underlying structure lead to a significant increase in detected functional differences in both types of analyses. Largest increases in functional differences are observed for highest signal-to-noise ratios and when signal with the lowest amount of partial volume effects is compared to any other partial volume effect constellation. In real data, structural information explains about 25% of within-subject variance observed in degree centrality – an established resting state connectivity measurement. Controlling this measurement for structural information can substantially alter correlational maps obtained in group analyses. Our results question current approaches of evaluating these measurements in diseased population with known structural changes without controlling for potential differences in these measurements.  相似文献   

13.
For complicated structural components characterized by wide X-ray attenuation ranges, the conventional computed tomography (CT) imaging using a single tube-voltage at each rotation angle cannot obtain all structural information. This limitation results in a shortage of CT information, because the effective thickness of the components along the direction of X-ray penetration exceeds the limitation of the dynamic range of the X-ray imaging system. To address this problem, high-dynamic-range CT (HDR-CT) reconstruction is proposed. For this new method, the tube’s voltage is adjusted several times to match the corresponding effective thickness about the local information from an object. Then, HDR fusion and HDR-CT are applied to obtain the full reconstruction information. An accompanying experiment demonstrates that this new technology can extend the dynamic range of X-ray imaging systems and provide the complete internal structures of complicated structural components.  相似文献   

14.
Human pluripotent stem cells (hPSCs) provide a good model system for studying human development and are expected as a source for both cell-based medical and pharmaceutical research application. However, stable maintenance of undifferentiated hPSCs is yet challenging, and thus routine characterization is required. Flow-cytometry is one of the popular quantitative characterization tools for hPSCs, but it has drawback of spatial information loss of the cells in the culture. Here, we have applied a two-dimensional imaging cytometry that examines undifferentiated state of hPSCs to analyze localization and morphological information of immunopositive cells in the culture. The whole images of cells in a culture vessel were acquired and analyzed by an image analyzer, IN Cell Analyzer 2000, and determined staining intensity of the cells with their positional information. We have compared the expression of five hPSC-markers in four hPSC lines using the two-dimensional imaging cytometry and flow cytometry. The results showed that immunopositive ratios analyzed by the imaging cytometry had good correlation with those by the flow cytometry. Furthermore, the imaging cytometry revealed spatially heterogenic expression of hPSC-markers in undifferentiated hPSCs. Imaging cytometry is capable of reflecting minute aberrance without losing spatial and morphological information of the cells. It would be a powerful, useful, and time-efficient tool for characterizing hPSC colonies.  相似文献   

15.
软X射线显微术是研究含水甚至活性生物样品的有力工具。相对于光学显微镜 ,它具有更高的成象分辨率 ;相对于电子显微镜 ,它的样品制备简单—无须对样品进行脱水、染色和超薄切片等。报道的是利用合肥同步辐射X射线源和接触显微成象技术 ,对自然状态下含水的完整XL1 blueMRF′细菌细胞进行显微成象研究。从获得的显微图象中可以看出一些新的现象。含有DNA、蛋白质的拟核以及中体对波长 2 .4nmX射线具有较弱的吸收能力 ;不少细菌细胞的两端对 2 .4nm波长的X射线的吸收也具有很大的差异。这些有趣现象产生的根本原因和生物学意义有待进一步研究。  相似文献   

16.
Oxidation state changes of metallic ions are involved in the generation and biological defense against reactive oxygen species. The relationship between allergy and oxidative damage by metallic elements was studied by X-ray fluorescence analysis using a mast cell line. The distribution of metallic elements is changed by the induction of reactive oxygen species. In mast cells, the degranulation leading to antigen or calcium ionophore stimulation is related to excessive accumulation of iron and to its chemical state. X-ray absorption near-edge structure spectroscopy showed that the oxidation state of iron in the cells shifted from Fe(II) to Fe(III) in degranulation. This finding might have implications for understanding the mechanisms involved in IgE-mediated cell responses as seen in allergic reaction.  相似文献   

17.
The structure of the visual pigment rhodopsin in the dark state was first investigated by electron microscopy (EM). More recently, rhodopsin has been crystallised in two different space groups--a tetragonal P4(1) crystal form and a trigonal P3(1) packing arrangement. The structures of the pigment, determined by X-ray crystallography from these two crystal forms, show many similarities, but also significant differences. These differences are most extensive in the G-protein-binding region of the cytoplasmic surface, where the location of the loop between helices 5 and 6 is highly variable. A combination of EM and spin labelling suggests that this loop adopts the native conformation in the P3(1) crystal form. The X-ray structures also show the location of structural water molecules that are important for colour tuning, stabilisation of the ground state and receptor activation, and act as a template for modelling other G-protein-coupled receptors. A major current focus of structural work on rhodopsin is investigation of the activated state of the receptor. After careful spectroscopic characterisation of light activation in two-dimensional crystals, a map of the metarhodopsin I intermediate was obtained by EM from two-dimensional crystals. In addition, NMR studies are providing information about the structure of activated states of rhodopsin. In the future, structural information will show how rhodopsin becomes activated and how it couples to downstream signalling pathways.  相似文献   

18.
Hybrid or multimodality imaging is often applied in order to take advantage of the unique and complementary strengths of individual imaging modalities. This hybrid noninvasive imaging approach can provide critical information about anatomical structure in combination with physiological function or targeted molecular signals. While recent advances in software image fusion techniques and hybrid imaging systems have enabled efficient multimodal imaging, accessing the full potential of this technique requires development of a new toolbox of multimodal contrast agents that enhance the imaging process. Toward that goal, we report the development of a hybrid probe for both single photon emission computed tomography (SPECT) and X-ray computed tomography (CT) imaging that facilitates high-sensitivity SPECT and high spatial resolution CT imaging. In this work, we report the synthesis and evaluation of a novel intravascular, multimodal dendrimer-based contrast agent for use in preclinical SPECT/CT hybrid imaging systems. This multimodal agent offers a long intravascular residence time (t(1/2) = 43 min) and sufficient contrast-to-noise for effective serial intravascular and blood pool imaging with both SPECT and CT. The colocalization of the dendritic nuclear and X-ray contrasts offers the potential to facilitate image analysis and quantification by enabling correction for SPECT attenuation and partial volume errors at specified times with the higher resolution anatomic information provided by the circulating CT contrast. This may allow absolute quantification of intramyocardial blood volume and blood flow and may enable the ability to visualize active molecular targeting following clearance from the blood.  相似文献   

19.
The use of standard 2D NMR experiments in combination with 1D NOE experiments allowed the assignment of 51 of the 58 spin systems of oxidised [3Fe-4S] ferredoxin isolated from Desulfovibrio gigas. The NMR solution structure was determined using data from 1D NOE and 2D NOESY spectra, as distance constraints, and information from the X-ray structure for the spin systems not detected by NMR in torsion angle dynamics calculations to produce a family of 15 low target function structures. The quality of the NMR family, as judged by the backbone r.m.s.d. values, was good (0.80?Å), with the majority of φ/ψ angles falling within the allowed region of the Ramachandran plot. A comparison with the X-ray structure indicated that the overall global fold is very similar in solution and in the solid state. The determination of the solution structure of ferredoxin II (FdII) in the oxidised state (FdIIox) opens the way for the determination of the solution structure of the redox intermediate state of FdII (FdIIint), for which no X-ray structure is available.  相似文献   

20.
Advances in the adaptation of optical spectroscopy to monitor photo-induced or enzyme-catalyzed reactions in the crystalline state have enabled X-ray crystal structures to be accurately linked with spectroscopically defined intermediates. This, in turn, has led to a deeper understanding of the role protein structural changes play in function. The integration of optical spectroscopy with X-ray crystallography is growing and now extends beyond linking crystal structure to reaction intermediate. Recent examples of this synergy include applications in protein crystallization, X-ray data acquisition, radiation damage, and acquisition of phase information important for structure determination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号