首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
EF-hand calcium-binding proteins   总被引:10,自引:0,他引:10  
The EF-hand motif is the most common calcium-binding motif found in proteins. Several high-resolution structures containing different metal ions bound to EF-hand sites have given new insight into the modulation of their binding affinities. Recently determined structures of members of several newly identified protein families that contain the EF-hand motif in some of their domains, as well as of their complexes with target molecules, are throwing light on the surprising variety of functions that can be served by this simple and ingenious structural motif.  相似文献   

2.
S100A16, a novel calcium-binding protein of the EF-hand superfamily   总被引:1,自引:0,他引:1  
S100A16 protein is a new and unique member of the EF-hand Ca(2+)-binding proteins. S100 proteins are cell- and tissue-specific and are involved in many intra- and extracellular processes through interacting with specific target proteins. In the central nervous system S100 proteins are implicated in cell proliferation, differentiation, migration, and apoptosis as well as in cognition. S100 proteins became of major interest because of their close association with brain pathologies, for example depression or Alzheimer's disease. Here we report for the first time the purification and biochemical characterization of human and mouse recombinant S100A16 proteins. Flow dialysis revealed that both homodimeric S100A16 proteins bind two Ca(2+) ions with the C-terminal EF-hand of each subunit, the human protein exhibiting a 2-fold higher affinity. Trp fluorescence variations indicate conformational changes in the orthologous proteins upon Ca(2+) binding, whereas formation of a hydrophobic patch, implicated in target protein recognition, only occurs in the human S100A16 protein. In situ hybridization analysis and immunohistochemistry revealed a widespread distribution in the mouse brain. Furthermore, S100A16 expression was found to be astrocyte-specific. Finally, we investigated S100A16 intracellular localization in human glioblastoma cells. The protein was found to accumulate within nucleoli and to translocate to the cytoplasm in response to Ca(2+) stimulation.  相似文献   

3.
The EF-hand protein with a helix-loop-helix Ca(2+) binding motif constitutes one of the largest protein families and is involved in numerous biological processes. To facilitate the understanding of the role of Ca(2+) in biological systems using genomic information, we report, herein, our improvement on the pattern search method for the identification of EF-hand and EF-like Ca(2+)-binding proteins. The canonical EF-hand patterns are modified to cater to different flanking structural elements. In addition, on the basis of the conserved sequence of both the N- and C-terminal EF-hands within S100 and S100-like proteins, a new signature profile has been established to allow for the identification of pseudo EF-hand and S100 proteins from genomic information. The new patterns have a positive predictive value of 99% and a sensitivity of 96% for pseudo EF-hands. Furthermore, using the developed patterns, we have identified zero pseudo EF-hand motif and 467 canonical EF-hand Ca(2+) binding motifs with diverse cellular functions in the bacteria genome. The prediction results imply that pseudo EF-hand motifs are phylogenetically younger than canonical EF-hand motifs. Our prediction of Ca(2+) binding motifs provides not only an insight into the role of Ca(2+) and Ca(2+)-binding proteins in bacterial systems, but also a way to explore and define the role of Ca(2+) in other biological systems (calciomics).  相似文献   

4.
5.
The calcium binding proteins of the EF-hand super-family are involved in the regulation of all aspects of cell function. These proteins exhibit a great diversity of composition, structure, Ca2+-binding and target interaction properties. Here, our current understanding of the Ca2+-binding mechanism is assessed. The structures of the EF-hand motifs containing 11-14 amino acid residues in the Ca2+-binding loop are analyzed within the framework of the recently proposed two-step Ca2+-binding mechanism. A hypothesis is put forward that in all EF-hand proteins the Ca2+-binding and the resultant conformational responses are governed by the central structure connecting the Ca2+-binding loops in the two-EF-hand domain. This structure, named EFbeta-scaffold, defines the position of the bound Ca2+, and coordinates the function of the N-terminal (variable and flexible) with the C-terminal (invariable and rigid) parts of the Ca2+-binding loop. It is proposed that the nature of the first ligand of the Ca2+-binding loop is an important determinant of the conformational change. Additional factors, including the interhelical contacts, the length, structure and flexibility of the linker connecting the EF-hand motifs, and the overall energy balance provide the fine-tuning of the Ca2+-induced conformational change in the EF-hand proteins.  相似文献   

6.
Visinin-like protein-1 (VILIP-1), a myristoylated calcium sensor protein with three EF-hand motifs, modulates adenylyl cyclase activity. It translocates to membranes when a postulated "calcium-myristoyl switch" is triggered by calcium-binding to expose its sequestered myristoyl moiety. We investigated the contributions of the EF-hand motifs to the translocation of VILIP-1 to membranes and to the modulation of adenylyl cyclase activity. Mutation of residues crucial for binding calcium within each one of the EF-hand motifs indicated that they all contributed to binding calcium. Simultaneous mutations of all of the three EF-hand motifs completely abolished VILIP-1's ability to bind calcium, attenuated but did not eliminate its modulation of adenylyl cyclase activity, and abolished its calcium-dependence for association with cellular membranes. These results show that the calcium-binding EF-hand motifs of VILIP-1 do not have an essential role in modulating adenylyl cyclase activity but instead have a structural role in activating the "calcium-myristoyl switch" of VILIP-1.  相似文献   

7.
Europium(III) binding to 9-kDa calbindin from pig intestines was studied by direct excitation of the 7Fo----5Do transition of the ion and by near-ultraviolet circular dichroic spectroscopy. Europium(III) binding is clearly biphasic. As with other lanthanides the C-terminal metal-binding site (site II) is filled first. The europium ion in this site gives an excitation spectrum with a single peak at 579.1 nm (peak 2). The occupation of the N-terminal site (site I) by europium gives excitation spectra that are pH-dependent and show a peak at 579.4 nm (peak 1a) at pH 5 which shifts to 578.7 nm (peak 1b) over the pH range 5-7. At pH 8.07 the fluorescence from europium in site I largely disappears because of weak binding, whereas that from site II is quenched by about 75% in spite of full occupancy of the site as shown by circular dichroic titration. There is a strong interaction between the two sites in spite of the very different affinities. The fluorescence from site II increases stoichiometrically with the addition not only of the first equivalent of europium, but also concomitantly with the fluorescence from site I upon addition of the second equivalent. Furthermore, when Eu1-calbindin is titrated with calcium the fluorescence at 579.1 nm is quenched by about 30% during the addition of one equivalent of calcium which fills site I. Subsequent titration with large excesses of calcium displaces europium from site II. The affinity of site II for europium is about 100 times that of calcium under these conditions.  相似文献   

8.
Ndr is a nuclear serine/threonine protein kinase that belongs to a subfamily of kinases identified as being critical for the regulation of cell division and cell morphology. The regulatory mechanisms that control Ndr activity have not been characterized previously. In this paper, we present evidence that Ndr is regulated by EF-hand calcium-binding proteins of the S100 family, in response to changes in the intracellular calcium concentration. In vitro, S100B binds directly to and activates Ndr in a Ca2+-dependent manner. Moreover, Ndr is recovered from cell lysates in anti-S100B immunoprecipitates. The region of Ndr responsible for interaction with Ca2+/S100B is a basic/hydrophobic motif within the N-terminal regulatory domain of Ndr, and activation of Ndr by Ca2+/S100B is inhibited by a synthetic peptide derived from this region. In cultured cells, Ndr is rapidly activated following treatment with Ca2+ ionophore, and this activation is dependent upon the identified Ca2+/S100B-binding domain. Finally, Ndr activity is inhibited by W-7 in melanoma cells overexpressing S100B, but is unaffected by W-7 in melanoma cells that lack S100B. These results suggest that Ndr is regulated at least in part by changes in the intracellular calcium concentration, through binding of S100 proteins to its N-terminal regulatory domain.  相似文献   

9.
10.

Background  

Among the EF-Hand calcium-binding proteins the subgroup of S100 proteins constitute a large family with numerous and diverse functions in calcium-mediated signaling. The evolutionary origin of this family is still uncertain and most studies have examined mammalian family members.  相似文献   

11.
We have isolated from a human prostate cDNA library a cDNA encoding a novel member of the S100 family of EF-hand proteins. The encoded 99-amino acid protein, designated S100Z, is capable of interacting with another member of the family, S100P. S100Z cDNA was cloned into a bacterial expression system, and the S100Z protein was purified to homogeneity from bacterial lysates by a combination of hydrophobic column and gel-filtration chromatography. Direct amino acid sequencing of the 20 N-terminal amino acids confirmed that the sequence of the recombinant protein is identical to the sequence deduced from the cDNA. Low-resolution structural data have been obtained using circular dichroism and fluorescence spectroscopies, and equilibrium analytical centrifugation. These results show that S100Z is a dimeric, predominantly alpha-helical protein. Addition of calcium to a solution of S100Z changes the fluorescence intensity of the protein, indicating that S100Z is capable of binding calcium ions. Analysis of the calcium-binding isotherm indicates the existence of two calcium-binding sites with apparent affinities on the order of 5 x 10(6) and 10(2) M(-1). Binding of calcium results in conformational changes and exposure of hydrophobic surfaces on the protein. Using a PCR-based assay, we have detected differences in the expression level of S100Z mRNA in various tissues. The highest levels were found in spleen and leukocytes. S100Z gene expression appears to be deregulated in some tumor tissues, compared to expression in their normal counterparts.  相似文献   

12.
Calretinin (CR) is a neuronal EF-hand protein previously characterized as a calcium (micromolar affinity) binding protein. CR-containing neurons are spared in some neurodegenerative diseases, although it is as yet unconfirmed how CR plays an active role in this protection. Higher levels of some metal cations (e.g. copper and zinc) are associated with these diseases. At the same time, metals such as terbium (NMR and fluorescence) cadmium (NMR) and manganese (EPR) serve as useful calcium analogues in the study of EF-hand proteins. We survey the binding of the above-mentioned metal cations that might affect the structure and function of CR. Competitive 45Ca2+-overlay, competitive terbium fluorescence and intrinsic tryptophan fluorescence are used to detect the binding of metal cations to CR. Terbium and copper (half-maximal effect of 15 microM) bind to CR. Terbium has a similar or greater affinity for the calcium-binding sites of CR than calcium. Copper quenches the fluorescence of terbium-bound CR, and CR tryptophan residues and competes weakly for 45Ca2+-binding sites. Cadmium, magnesium, manganese and zinc bind less strongly (half-maximal effects above 0.1 mM). Therefore, only terbium appears to be a suitable analytical calcium analogue in further studies of CR. The principal conclusion of this work is that copper, in addition to calcium, might be a factor in the function of CR and a link between CR and neurodegenerative diseases.  相似文献   

13.
Recently, we identified the two myeloid related protein-8 (MRP8) (S100A8) and MRP14 (S100A9) as fatty acid-binding proteins (Klempt, M., Melkonyan, H., Nacken, W., Wiesmann, D., Holtkemper, U., and Sorg, C. (1997) FEBS Lett. 408, 81-84). Here we present data that the S100A8/A9 protein complex represents the exclusive arachidonic acid-binding proteins in human neutrophils. Binding and competition studies revealed evidence that (i) fatty acid binding was dependent on the calcium concentration; (ii) fatty acid binding was specific for the protein complex formed by S100A8 and S100A9, whereas the individual components were unable to bind fatty acids; (iii) exclusively polyunsaturated fatty acids were bound by S100A8/A9, whereas saturated (palmitic acid, stearic acid) and monounsaturated fatty acids (oleic acid) as well as arachidonic acid-derived eicosanoids (15-hydroxyeicosatetraenoic acid, prostaglandin E(2), thromboxane B(2), leukotriene B(4)) were poor competitors. Stimulation of neutrophil-like HL-60 cells with phorbol 12-myristate 13-acetate led to the secretion of S100A8/A9 protein complex, which carried the released arachidonic acid. When elevation of intracellular calcium level was induced by A23187, release of arachidonic acid occurred without secretion of S100A8/A9. In view of the unusual abundance in neutrophilic cytosol (approximately 40% of cytosolic protein) our findings assign an important role for S100A8/A9 as mediator between calcium signaling and arachidonic acid effects. Further investigations have to explore the exact function of the S100A8/A9-arachidonic acid complex both inside and outside of neutrophils.  相似文献   

14.
Recently, a human ortholog of mouse calcyclin (S100A6)-binding protein (CacyBP) called SIP (Siah-1-interacting protein) was shown to be a component of a novel ubiquitinylation pathway regulating beta-catenin degradation (Matsuzawa, S., and Reed, J. C. (2001) Mol. Cell 7, 915-926). In murine brain, CacyBP/SIP is expressed at a high level, but S100A6 is expressed at a very low level. Consequently we carried out experiments to determine if CacyBP/SIP binds to other S100 proteins in this tissue. Using CacyBP/SIP affinity chromatography, we found that S100B from the brain extract binds to CacyBP/SIP in a Ca2+-dependent manner. Using a nitrocellulose overlay assay with 125I-CacyBP/SIP and CacyBP/SIP affinity chromatography, we found that this protein binds purified S100A1, S100A6, S100A12, S100B, and S100P but not S100A4, calbindin D(9k), parvalbumin, and calmodulin. The interaction of S100 proteins with CacyBP/SIP occurs via its C-terminal fragment (residues 155-229). Co-immunoprecipitation of CacyBP/SIP with S100B from brain and with S100A6 from Ehrlich ascites tumor cells suggests that these interactions are physiologically relevant and that the ubiquitinylation complex involving CacyBP/SIP might be regulated by S100 proteins.  相似文献   

15.
Intracellular neuronal calcium sensors (NCS) constitute a rapidly growing family of calcium-binding proteins which belong to the superfamily of EF-hand proteins. The NCS family includes as subgroups the recoverins and GCAPs (guanylyl cyclase-activating proteins), which are primarily expressed in retinal photoreceptor cells, and the frequenins and VILIPs (visinin-like proteins), which are widely but differentially expressed in the nervous system. In this review the recent developments in elucidating the functional activities of NCS proteins on signal transduction pathways in neurons are surveyed and discussed. We will focus our attention on calcium-dependent membrane association by the so-called calcium-myristoyl switch as a possible mechanism of signal transduction and on the roles of NCS proteins in intraneuronal signaling cascades, which are best studied in the visual and olfactory systems.  相似文献   

16.
Elevated levels of intracellular calcium are a major cause of myocardial dysfunction. To find possible mediators of the deregulated calcium we searched for EF-hand calcium-binding proteins of the S100 family. By PCR technology we identified three members of the S100 protein family (S100 alpha, CACY, and CAPL) in the human heart. We cloned the corresponding cDNAs and examined their expression levels in various human tissues by Northern blot analysis. All three proteins are expressed at high levels in the human heart. Whereas CACY and CAPL mRNAs are expressed ubiquitously, S100 alpha mRNA is restricted to heart, skeletal muscle, and brain. Interestingly, the expression pattern of S100 alpha, CACY, and CAPL in human tissues differs significantly from that in rodent tissues.  相似文献   

17.
The structure of calerythrin, a prokaryotic 20 kDa calcium-binding protein has been determined by solution NMR spectroscopy. Distance, dihedral angle, J coupling, secondary chemical shift, residual dipolar coupling and radius of gyration restraints reveal four EF-hand motifs arranged in a compact globular structure. A tight turn in the middle of the amino acid sequence brings the two halves, each comprising a pair of EF-hands, close together. The structural similarity between calerythrin and the eukaryotic sarcoplasmic calcium-binding proteins is notable.  相似文献   

18.
Ribosomal proteins previously inactivated by treatment with fluorescein isothiocyanate have been incorporated into 50-S ribosomal subunits during reconstitution from particles disassembled by 2 M LiCl in the presence of an excess of the modified proteins. The reconstituted particles show alterations in some functional activities resulting from the incorporation of the inactive ribosomal proteins added exogenously. Of the fluorescein-isothiocyanate-treated proteins incorporated, L24 and L25 drastically affect all the activities tested and these proteins possibly play a fundamental role in determining the overall structure of the particle. Proteins L16 and L10 are apparently involved both in the GTP hydrolysis dependent on elongation factor G and in peptidyl transferase activity but the modified protein L11 only affects GTPase activity indirectly and interferes with the ribosome assembly process involving proteins L7 and L12. Protein L1 may be involved with peptidyl transferase activity while proteins L7 and L12, in agreement with many reports in the literature, affect the factor-dependent hydrolysis of GTP.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号