首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary A factor that represses asexual embryogenesis has been observed in the Rutaceae, with particularly high concentrations in the naturally monoembryonic cultivars. This investigation was an initial step towards identifying the factor.Citrus reticulata Blanco Ponkan mandarin nucellus explants andDaucus carota L. ‘Queen Anne's Lace’ callus were employed to examine effects of known plant growth regulators and to determine possible identity of one or more of them with the repressive factor. The chalazal halves of ovules ofC. media L. ‘Citron of Commerce’ were used as control repressor source. Embryo initiation and growth of both test tissues were depressed markedly by 2,4-D, abscisic acid and ethephon. Slight inhibitions were obtained with IAA, kinetin and gibberellic acid. Recovery from the repressor did not occur readily inCitrus nucellus following recultures in citron-ovule-free medium; carrot callus resumed normal embryogenesis immediately upon transfer to suppressor-free medium. The repression by natural sources apparently involved the combined action of some or all natural hormones that are generically related to the above. This paper is part of B. Tisserat's Ph.D. dissertation in Botany at the University of California, Riverside. The research was supported in part by the Elvenia J. Slosson Fellowship in Ornamental Horticulture awarded to T. Murashige.  相似文献   

2.
3.
Somatic embryogenesis in carrot can be induced by the treatment of shoot apices with various kinds of stress chemicals. Using this system, we previously identified a phosphoprotein (ECPP-44) that appears to be involved in the induction of somatic embryogenesis. We have also isolated and characterized a cDNA encoding ECPP-44. In this study, to further characterize ECPP-44, we performed Western blot and immuno-precipitation analyses. Western blot analysis revealed that ECPP-44 was present in embryogenic cells, stress- and non-stress-treated tissues, and somatic embryos but was absent in non-embryogenic cells. Furthermore, ECPP-44 was found in some parts of the carrot plant, such as tap roots, leaves, and flowers (18–26 days after fertilization) but not in mature dry seeds. Interestingly, we could detect phosphorylated ECPP-44 in embryogenic cells and somatic embryos but not in non-embryogenic cells, tap roots, and non-stress-treated shoot apices by immunoprecipitation analysis, even though the protein existed. Our results suggest that ECPP-44 may perform some role in the induction or maintenance of embryogenic competence.  相似文献   

4.
Studies were performed to define tissue culture techniques and culture conditions for morphogenesis, callus culture and plantlet culture of sweet orange (Citrus sinensis (L.) Osb.), citron (C. medica L.) and lime (C. aurantifolia) (Christm. Swing). The optimal concentrations of NAA to induce root formation on stem segments were 10 mg l-1 for sweet orange and lime, and 3 mg l-1 for citron. The optimal BA concentration for shoot and bud proliferation was 3 mg l-1 for sweet orange and citron, and 1 mg l-1 for lime. Callus initiation was accomplished in a culture medium containing 10 mg l-1 NAA and 0.25 mg l-1 BA. Callus was maintained by periodical subculture into the same medium supplemented with 10% (v:v) organge juice. In vitro plantlets of the three species were obtained by rooting of shoots developed from bud cultures, and of citron and lime by development of shoots from root cultures. The plants were successfully established on soil.  相似文献   

5.
6.
Tissue culture in vitro was used to determine the effect of six major citrus virus and virus-like agents. Nodal stem segments from inoculated Pineapple sweet orange (Citrus sinensis (L.) Osb.), Mexican lime (C. aurantifolia (Christm.) Swing.) and Arizona Etrog citron 861-Sl (C. medica L.) were cultured in vitro to induce shoots. Some virus and virus-like agents had a marked effect on bud development and further recovery of plantlets. The number and size of the shoots that developed from each bud were affected as a result of infection. The effect depended on the specific virus, the isolate and the host-disease combination. The possible implications of these results are discussed.  相似文献   

7.
The addition of l-glutamine, -alanine or l-glutamic acid strongly stimulates somatic embryo formation in carrot, not only in the number of somatic embryos formed but also with respect to their development. The effects of the amino acids on somatic embryogenesis were stronger than that of ammonium ion. In particular, l-glutamine strongly stimulated the development of somatic embryos. To clarify the different effects of amino acids and ammonium ion, the activity of glutamine synthetase (GS; EC 6.3.1.2), a key enzyme involved in nitrogen assimilation, was measured. Its activity decreased during the later stages of embryo development.Abbreviations -Ala -alanine - Glu l-glutamic acid - Gln l-glutamine - 2,4-D 2, 4-dichlorophenoxyacetic acid - -GHA l-glutamic acid -monohydroxamate - GS glutamine synthetase - MS medium Murashige & Skoog (1962) medium - MS-NH4 medium MS medium without NH4NO3 - MS+NH4 medium MS-NH4 medium with 10 mM NH4Cl - MS+ala medium MS-NH4 medium with 10 mM -alanine - MS+GLU medium MS-NH4 medium with 10 mM l-glutamic acid - MS+GLN medium MS-NH4 medium with 10 mM l-glutamine - NIR nitrite reductase - NR nitrate reductase  相似文献   

8.
Carrot somatic embryogenesis was serially observed using a cell cluster immobilizing system with Phytagel. Embryogenic cell clusters ranging in size from 32 to 63 μm were collected by filtration and used for somatic embryo induction. Of the 432 cell clusters, 253 grew, i.e., the size of these cell clusters increased, and 192 developed into globular embryos. Through serial observation, the number of somatic embryos produced from each cell cluster was identified. Cell clusters which developed into two or more embryos grew and developed slowly as compared with cell clusters which developed into single embryos. Serial observation also revealed that some cell clusters consisted of several parts, each of which independently grew as separate units. In cases where two growing parts fused into one embryo, morphological abnormalities such as curvature or lumps in their bodies were occasionally observed. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

9.
10.
Twenty five strains of marine cyanobacteria were screened for their ability to promote carrot somatic embryogenesis. Hot water extracts prepared from 21 of these strains promoted plantlet formation. Extracts from four strains increased plantlet numbers to an average of over 3.7-fold. Dialysates and nondialysates of each of these extracts also increased plantlet formation. For extracts from filamentous cyanobacteria, Nostoc sp. and Anabaena sp., dialysate was more effective (4.2-fold increase) than nondialysate (3.0-fold increase), whereas for unicellular strains Synechococcus sp. and Xenococcus sp., nondialysate was more effective (5.2-fold increase) than the dialysate (3.2-fold increase). These cyanobacterial extracts also promoted embryolike structure formation from two-year old carrot cell cultures which were unable to produce plantlets using the usual methods. Here, we demonstrate the existence in marine cyanobacterial extracts of low and high molecular weight factors which strongly promote somatic embryogenesis in carrot cell cultures.Abbreviations MS Murashige and Skoog medium - 2, 4-D 2, 4-dichlorophenoxyacetic acid - PCV packed cell volume  相似文献   

11.
Daucus carota cell differentiation was examined under different medium pH conditions in a controlled bioreactor. Somatic embryogenesis was affected by pH changes. Embryo production was greatest when the pH of the hormone-free medium was maintained at 4.3. However, the same level was not favourable to development since most embryos did not progress to the torpedo and plantlet stages. In contrast, although there was about a threefold decrease in embryo yield in cultures on the same free 2,4-dichlorophenoxyacetic acid medium maintained at pH 5.8, cells differentiated into fully developed plantlets. Changes in embryo development appeared to be associated with alterations in ammonium loss from the medium and sugar uptake.Abbreviation 2,4-D 2,4-dichlorophenoxyacetic acid  相似文献   

12.
Summary A highly selected population of cells (clumps from 63 to 125 μm in diameter), obtained by screening 14-day-old stock suspension cultures of wild carrot (Daucus carota L.), was used to initiate cultures in this study. Time-course changes in DNA, RNA and protein were followed when these cultures were grown in the presence or absence of 2.25 μM 2,4-dichlorophenoxyacetic acid (2,4-D). The data show that growth of these cultures, particularly in the early part of the growth curve, is different from that in most other studies reported on suspension cultures initiated without screening. The gross compositional analysis shows that this difference stems from the very high RNA:DNA and protein:DNA ratios of the cellular material used as the inoculum in this study. The presence of 2,4-D in the medium promoted total RNA and protein levels. Correlations were sought between the appearance of embryos in the absence of exogenous 2,4-D and gross compositional differences developing in cultures grown in the presence and absence of 2,4-D. The handling of cultures during inoculation appeared to have led to a substantial loss of DNA. This had, however, little effect on dry weight or protein content of the tissue. This research was supported by the W. Alton Jones Foundation.  相似文献   

13.
The occurrence of the polarized synthesis of DNA in embryogenic cell clusters of carrot on the third and fourth days after transfer to an embryogenesis-inducing medium was observed by labeling with [3H]thymidine and autoradiography. The cells that were actively synthesizing DNA were separated from cells that were not synthesizing DNA by maceration of cell clusters into individual protoplasts and centrifugation in a Percoll density gradient. [35S]Methionine-labeled proteins extracted from the two types of cell were analyzed by SDS-PAGE and fluorography. Three polypeptides (of 69, 98 and 108 kD, respectively) were found only in cells that were actively synthesizing DNA and could be candidates for markers of the polarity of DNA synthesis that is specific to embryogenesis.  相似文献   

14.
15.
An upward shift in the concentration of calcium present in the medium during somatic embryogenesis increased the number of embryos produced approximately two-fold. This was observed when embryogenic suspension cells grown in 2,4-D medium with the normal calcium concentration of 10–3 M were transferred to hormone-free medium containing 10–2 M calcium and when embryogenic suspension cells grown in 2,4-D medium containing 10–4 M calcium were transferred to hormone-free medium with 10–3 M calcium. At calcium concentrations between 6·10–3 and 10–2 M globular stage somatic embryos were found in cultures supplemented with 2·10–6 M of 2,4-D indicating that elevated calcium counteracts the inhibitory effect of 2,4-D on somatic embryogenesis. No qualitative changes were found in the pattern of extracellular polypeptides as a result of growth and embryogenesis in media with different calcium concentrations.  相似文献   

16.
Synchronization of somatic embryogenesis at high frequency is a useful system for the mass production of embryos. Many attempts have been carried out, however, it was difficult to obtain the system in which most of the initial embryogenic cells or cell clusters synchronously differentiate to embryos. In carrot suspension cultures, high frequency, synchronous embryogenesis systems (following three systems) have been established.(1) Small spherical single cells from suspension cultures obtained by sieving and density gradient centrifugation in Percoll solutions differentiated to embryogenic cell clusters at high frequency when they were cultured in a medium containing 2,4-dichlorophenoxyacetic acid (0.05 micromolar), zeatin (1 micromolar) and mannitol (0.2 molar). (2) Embryogenic cell clusters from suspension cultures obtained by sieving, density gradient centrifugation in Ficoll solutions, and subsequent centrifugation at a low speed for a short time synchronously differentiated to embryos, especially globular embryos at high frequency, when they were cultured in a medium containing zeatin (0.1 micromolar) but no auxin. (3) Embryogenic cell clusters obtained by above method are cultured at cell densities of 2×103 cell clusters ml-1. Globular embryos which were sieved from embryos induced synchronously differentiated to torpedo-shaped embryos at high frequency when they were cultured at densities below 150 globular embryos ml-1.Using these systems, the whole process of embryogenesis from single cells to whole plants could be synchronously induced at high frequency.Abbreviations ABA abscissic acid - 2,4-d 2,4-dichlorophenoxyacetic acid - GA3 gibberellin A3 - IAA indoleacetic acid - NAA naphthylacetic acid  相似文献   

17.
Summary The distribution of free cytosolic Ca2+ was studied during somatic embryogenesis of carrot using confocal scanning laser microscopy with fluo-3 as a fluorescent Ca2+ indicator. Chlorotetracycline fluorescence, antimonate precipitation and proton induced X-ray emission analysis were used as additional methods to confirm the results obtained with fluo-3. The process of embryogenesis was found to coincide with a rise in the level of free cytosolic Ca2+. The level of Ca2+ was low in proembryogenic masses and relatively high in later stages of embryogenesis. The highest signal was found in the protoderm of embryos from the late globular to the torpedo-shaped stage. A gradient in fluorescence intensity was often observed along the longitudinal axis of the embryos. The most conspicuous intracellular signal was found in the nucleus. Other organelles did not take up the dye and were always without fluorescence. The changes in [Ca2+]c are discussed in relation to physiological processes which are known to be important during somatic embryogenesis.This article is dedicated to the memory of the late Dr. Hans-Dieter Reiss.  相似文献   

18.
Summary Somatic embryogenesis was induced in callus cultures derived from nucellar tissue of cashewnut (Anacardium occidentale L.). Callus was obtained from nucellar tissue after 3 wk of culture on semisolid Murashige and Skoog (MS) basal medium supplemented with 2,4-dichlorophenoxyacetic acid (2,4-D, 5 μM)+gibberellic acid (GA3, 15 μM)+N6-benzyladenine (BA, 5 μM). This callus gave rise to an embryogenic mass after 9 wk on maintenance medium containing 2,4-D (10 μM)+GA3 (15 μM)+4% sucrose +0.5% activated charcoal +10% coconut water (CW) +0.05% casein hydrolysate (CH). The embryogenic mass, after transfer to medium supplemented with 2,4-D (5 μM)+GA3 (30 μM)+4% sucrose +0.5% activated charcoal +10% CW +0.05% CH, gave rise to somatic embryos. The developmental stages of somatic embryos were observed using light and stereo microscopes. Histological study of somatic embryo development was also carried out. The present study would be useful for clonal propagation, and variety improvement in cashewnut, which is essential due to its increasing demand and export potential.  相似文献   

19.
Freshly isolated explants of the secondary phloem of carrot roots were exposed to 14C-leucine for various periods from t0—to 18 h and the 14C labelling of protein was studied by 2-dimensional PAGE followed by fluorograph. The labelling pattern of proteins indicated a sequential activation of synthesis of about 130 proteins during the 18 h experimental period prior to the onset of cell division activity.Abbreviations IAA indole acetic acid - 2iP 2-isopentenyladenine - PVP polyvinylpyrrolidone - CBB Coomassie brilliant blue - RuBPCase ribulosebisphosphate carboxylase - LSC liquid scintillation counter - spec.act. specific radioactivity - u.l. uniformly labelled  相似文献   

20.
Carrot cell lines W1 and W2 express permanently in culture a meiotic-like phenotpe, with apparent pairing and chiasmata formation comparable to meiosis during carrot microsporogenesis. The variant lines also show several variants of division in relation to the presence or absence of cytokinesis, nuclear fusion or spindle disturbance.The meiotic-like divisions can also be found in the abnormal structures, which are regenerated from these spontaneous variant lines. A possible role of the chromosome reducing mechanisms on carrot embryogenesis capacity and somaclonal variability is postulated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号