首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nod factors are signaling molecules secreted by Rhizobium bacteria. These lipo-chitooligosaccharides (LCOs) are required for symbiosis with legumes and can elicit specific responses at subnanomolar concentrations on a compatible host. How plants perceive LCOs is unclear. In this study, using fluorescent Nod factor analogs, we investigated whether sulfated and nonsulfated Nod factors were bound and perceived differently by Medicago truncatula and Vicia sativa root hairs. The bioactivity of three novel sulfated fluorescent LCOs was tested in a root hair deformation assay on M. truncatula, showing bioactivity down to 0.1 to 1 nM. Fluorescence microscopy of plasmolyzed M. truncatula root hairs shows that sulfated fluorescent Nod factors accumulate in the cell wall of root hairs, whereas they are absent from the plasma membrane when applied at 10 nM. When the fluorescent Nod factor distribution in medium surrounding a root was studied, a sharp decrease in fluorescence close to the root hairs was observed, visualizing the remarkable capacity of root hairs to absorb Nod factors from the medium. Fluorescence correlation microscopy was used to study in detail the mobilities of sulfated and nonsulfated fluorescent Nod factors which are biologically active on M. truncatula and V. sativa, respectively. Remarkably, no difference between sulfated and nonsulfated Nod factors was observed: both hardly diffuse and strongly accumulate in root hair cell walls of both M. truncatula and V. sativa. The implications for the mode of Nod factor perception are discussed.  相似文献   

2.
Three novel nodulation (Nod) factors were synthesized from chitotetraose and three structurally different fluorescent BODIPY-tagged fatty acids. With fluorescence spectroscopic and microscopic techniques, the following aspects were studied: whether these amphiphilic molecules insert in membranes, whether they transfer between different membranes, and whether they are able to transfer from a membrane to a legume root hair. Fluorescence correlation spectroscopy showed that fluorescent Nod factors are present as monomers in PBS buffer at a concentration of 10 nM, but that when either Triton X-100 micelles or dioleoylphosphatidylcholine (DOPC) vesicles are present, the Nod factors are associated with these particles. With time-correlated single-photon counting fluorescence spectroscopy, it was shown that upon Nod factor insertion in the membrane, the rotation of the fluorescent acyl chain was markedly reduced. A fluorescence resonance energy transfer assay was used to study the transfer of Nod factors from one membrane to the other, or from vesicles to root hairs. Nod factors transfer rapidly between membranes or from vesicles to root hair cell walls. However, they do not flip-flop between membrane leaflets. The results provide novel insights for the mode of secretion and transfer of Nod factors during the early steps of the Rhizobium-legume interaction.  相似文献   

3.
4.
The incorporation of a fusion of green fluorescent protein and tubulin-alpha 6 from Arabidopsis thaliana in root hairs of Lotus japonicus has allowed us to visualize and quantify the dynamic parameters of the cortical microtubules in living root hairs. Analysis of individual microtubule turnover in real time showed that only plus polymer ends contributed to overall microtubule dynamicity, exhibiting dynamic instability as the main type of microtubule behavior in Lotus root hairs. Comparison of the four standard parameters of in vivo dynamic instability--the growth rate, the disassembly rate, and the frequency of transitions from disassembly to growth (rescue) and from growth to disassembly (catastrophe)--revealed that microtubules in young root hairs were more dynamic than those in mature root hairs. Either inoculation with Mesorhizobium loti or purified M. loti lipochitin oligosaccharide signal molecules (Nod factors) significantly affected the growth rate and transition frequencies in emerging and growing root hairs, making microtubules less dynamic at a specific window after symbiotic inoculation. This response of root hair cells to rhizobial Nod factors is discussed in terms of the possible biological significance of microtubule dynamics in the early signaling events leading to the establishment and progression of the globally important Rhizobium/legume symbiosis.  相似文献   

5.
A novel bioactive fluorescent nodulation (Nod) factor, NodRlv-IV(BODIPY FL-C16), has been synthesized by attaching a BODIPY FL-C16 acyl chain to the primary amino group of chitotetraose deacetylated at the nonreducing terminus by recombinant NodB. The binding of the fluorescent Nod factor to root systems of Vicia sativa was investigated with fluorescence spectral imaging microscopy (FSPIM) and fluorescence ratio imaging microscopy (FRIM). Spatially resolved fluorescence spectra of living and labeled Vicia sativa root systems were measured by FSPIM. Strong autofluorescence, inherent to many plant systems when excited at 488 nm, was corrected for by utilizing the difference in fluorescence emission spectra of the autofluorescence and NodRlv-IV(BODIPY FL-C16). A methodology is presented to break down the in situ fluorescence emission spectra into spatially resolved autofluorescence and BODIPY FL fluorescence spectra. Furthermore, an FRIM method was developed for correcting autofluorescence in fluorescence micrographs for this system. After autofluorescence correction it was shown that NodRlv-IV(BODIPY FL-C16) was concentrated in the root hairs, but was also bound to other parts of the root surface.  相似文献   

6.
In many common legumes, when host-specific nodule bacteria meettheir legume root they attach to it and enter through root hairs.The bacteria can intrude these cells because they instigatein the hairs the formation of an inward growing tube, the infectionthread, which consists of wall material. Prior to infectionthread formation, the bacteria exploit the cell machinery forwall deposition by inducing the hairs to form a curl, in whichthe dividing bacteria become entrapped. In most species, Nodfactor alone (a lipochito-oligosaccharide excreted by bacteria)induces root hair deformation, though without curling, thusmost aspects of the initial effects of Nod factor can be elucidatedby studying root hair deformation. In this review we discussthe cellular events that host-specific Nod factors induce intheir host legume root hairs. The first event, detectable onlya few seconds after Nod factor application, is a Ca2+influxat the root hair tip, followed by a transient depolarizationof the plasma membrane potential, causing an increase in cytosolic[Ca2+] at the root hair tip. Also within minutes, Nod factorschange the cell organization by acting on the actin cytoskeleton,enhancing tip cell wall deposition so that root hairs becomelonger than normal for their species. Since the remodellingof the actin cytoskeleton precedes the second calcium event,Ca2+spiking, which is observed in the perinuclear area, we proposethat the initial cytoskeleton events taking place at the hairtip are related to Ca2+influx in the hair tip and that Ca2+spikingserves later events involving gene expression. Copyright 2001Annals of Botany Company Review, Nod factor, tip growth, root hair, Rhizobium, legume, cytoskeleton, calcium, symbiosis  相似文献   

7.
The response of the actin cytoskeleton to nodulation (Nod) factors secreted by Rhizobium etli has been studied in living root hairs of bean (Phaseolus vulgaris) that were microinjected with fluorescein isothiocyanate-phalloidin. In untreated control cells or cells treated with the inactive chitin oligomer, the actin cytoskeleton was organized into long bundles that were oriented parallel to the long axis of the root hair and extended into the apical zone. Upon exposure to R. etli Nod factors, the filamentous actin became fragmented, as indicated by the appearance of prominent masses of diffuse fluorescence in the apical region of the root hair. These changes in the actin cytoskeleton were rapid, observed as soon as 5 to 10 min after application of the Nod factors. It was interesting that the filamentous actin partially recovered in the continued presence of the Nod factor: by 1 h, long bundles had reformed. However, these cells still contained a significant amount of diffuse fluorescence in the apical zone and in the nuclear area, presumably indicating the presence of short actin filaments. These results indicate that Nod factors alter the organization of actin microfilaments in root hair cells, and this could be a prelude for the formation of infection threads.  相似文献   

8.
We used bright-field, time-lapse video, cross-polarized, phase-contrast, and fluorescence microscopies to examine the influence of isolated chitolipooligosaccharides (CLOSs) from wild-type Rhizobium leguminosarum bv. trifolii on development of white clover root hairs, and the role of these bioactive glycolipids in primary host infection. CLOS action caused a threefold increase in the differentiation of root epidermal cells into root hairs. At maturity, root hairs were significantly longer because of an extended period of active elongation without a change in the elongation rate itself. Time-series image analysis showed that the morphological basis of CLOS-induced root hair deformation is a redirection of tip growth displaced from the medial axis as previously predicted. Further studies showed several newly described infection-related root hair responses to CLOSs, including the localized disruption of the normal crystallinity in cell wall architecture and the induction of new infection sites. The application of CLOS also enabled a NodC- mutant of R. leguminosarum bv. trifolii to progress further in the infection process by inducing bright refractile spot modifications of the deformed root hair walls. However, CLOSs did not rescue the ability of the NodC- mutant to induce marked curlings or infection threads within root hairs. These results indicate that CLOS Nod factors elicit several host responses that modulate the growth dynamics and symbiont infectibility of white clover root hairs but that CLOSs alone are not sufficient to permit successful entry of the bacteria into root hairs during primary host infection in the Rhizobium-clover symbiosis.  相似文献   

9.
Carden DE  Felle HH 《Planta》2003,216(6):993-1002
Medicago sativa L. (alfalfa) root hairs respond to Nod factors [NodRm-IV(C16:2,S)] in a host-specific manner with depolarization and rapid ion fluxes. Protoplasts prepared from these cells using the cell wall-digesting enzymes pectolyase and cellulase do not, or to a rather small extent, respond to Nod factors. In an effort to understand this activity loss we analyzed the mode of action of both enzymes with respect to their effects on the root hairs as well as their interference with the Nod factor response. (i) In the presence of the enzymes, Nod factor at saturating concentrations neither depolarized the plasma membrane of root hairs nor caused ion fluxes. Even after removal of the enzymes, Nod factor responses were strongly refractory. (ii) After a lag-phase of 12-18 s, pectolyase depolarized the plasma membrane, alkalized the external space, acidified the cytosol and increased the cytosolic Ca(2+) activity. (iii) Cellulase, without a lag-phase, depolarized the plasma membrane, acidified the cytosol, but only marginally increased the cytosolic Ca(2+) activity. Unlike pectolyase, the cellulase response was only weakly refractory to a second addition. (iv) Neither enzyme increased the membrane conductance, but pectolyase inhibited the H(+)-pump. (v) Pectolyase shows all the signs of an elicitor, while cellulase yields a mixed response. (vi) Denatured enzymes yielded strong effects similar to those of untreated enzymes. We conclude that the effects shown do not originate from enzymatic activity, but from interactions of the proteins with cell wall or plasma membrane constituents. It is further concluded that these enzymes (pectolyase more so than cellulase) trigger defense-related signal pathways, which makes protoplasts prepared with such enzymes unsuitable for studies of symbiotic or defense-related signalling.  相似文献   

10.
Bacterial Nod factors trigger a number of cellular responses in root hairs of compatible legume hosts, which include periodic, transient increases in cytosolic calcium levels, termed calcium spiking. We screened 13 pharmaceutical modulators of eukaryotic signal transduction for effects on Nod factor-induced calcium spiking. The purpose of this screening was 2-fold: to implicate enzymes required for Nod factor-induced calcium spiking in Medicago sp., and to identify inhibitors of calcium spiking suitable for correlating calcium spiking to other Nod factor responses to begin to understand the function of calcium spiking in Nod factor signal transduction. 2-Aminoethoxydiphenylborate, caffeine, cyclopiazonic acid (CPA), 2,5-di-(t-butyl)-1,4-hydroquinone, and U-73122 inhibit Nod factor-induced calcium spiking. CPA and U-73122 are inhibitors of plant type IIA calcium pumps and phospholipase C, respectively, and implicate the requirement for these enzymes in Nod factor-induced calcium spiking. CPA and U-73122 inhibit Nod factor-induced calcium spiking robustly at concentrations with no apparent toxicity to root hairs, making CPA and U-73122 suitable for testing whether calcium spiking is causal to subsequent Nod factor responses.  相似文献   

11.
Summary The cytoarchitecture and the pattern of cytoplasmic streaming change during the development of root hairs ofMedicago truncatula and after a challenge with nodulation (Nod) factors. We measured the speed and orientation of movement of 1–2 μm long organelles. The speed of organelle movement in cytoplasmic strands in the basal part of growing root hairs is 8–14 μm/s and is of the circulation type like in trichoblasts, bulges before tip-growth initiation, and full-grown hairs. In the subapical area of growing hairs, reverse-fountain streaming occurs discontinuously at a slower net speed. The reason for the slower speed is the fact that organelles often stop and jump. Reverse-fountain streaming is a pattern in which the main direction of organelle transport reverses 180 degrees before the cell tip is reached. Within minutes after their application to roots,Rhizobium leguminosarum-derived Nod factors, cause an increase and divergence in the subapical cytoplasmic strands. This phenomenon can best be observed in the growth-terminating hairs, since in hairs of this developmental stage, subapical cytoplasmic strands are transvacuolar. First, the tips of these hairs swell. The organelle movement in the swelling tip increases up to the level normal for circulation streaming, and the number of strands with moving organelles increases. When a new polar outgrowth emerges, reverse-fountain streaming is set up again, with all its characteristics like those seen in growing hairs. This outgrowth may obtain a new full root hair length, by which these hairs may become twice as long as nonchallenged hairs. Dedicated to Professor Walter Gustav Url on the occasion of his 70th birthday  相似文献   

12.
Rhizobium nodulation (Nod) factors are specific lipochito-oligosaccharide signals essential for initiating in root hairs of the host legume developmental responses that are required for controlled entry of the microsymbiont. In this article, we focus on the Nod factor signal transduction pathway leading to specific and cell autonomous gene activation in Medicago truncatula cv Jemalong in a study making use of the Nod factor-inducible MtENOD11 gene. First, we show that pharmacological antagonists that interfere with intracellular ion channel and Ca2+ pump activities are efficient blockers of Nod factor-elicited pMtENOD11-beta-glucuronidase (GUS) expression in root hairs of transgenic M. truncatula. These results indicate that intracellular Ca2+ release and recycling activities, essential for Ca2+ spiking, are also required for specific gene activation. Second, pharmacological effectors that inhibit phospholipase D and phosphoinositide-dependent phospholipase C activities are also able to block pMtENOD11-GUS activation, thus underlining a central role for multiple phospholipid signaling pathways in Nod factor signal transduction. Finally, pMtENOD11-GUS was introduced into all three Nod-/Myc- dmi M. truncatula mutant backgrounds, and gene expression was evaluated in response to the mastoparan peptide agonist Mas7. We found that Mas7 elicits root hair MtENOD11 expression in dmi1 and dmi2 mutants, but not in the dmi3 mutant, suggesting that the agonist acts downstream of DMI1/DMI2 and upstream of DMI3. In light of these results and the recently discovered identities of the DMI gene products, we propose an integrated cellular model for Nod factor signaling in legume root hairs in which phospholipids play a key role in linking the Nod factor perception apparatus to downstream components such as Ca2+ spiking and ENOD gene expression.  相似文献   

13.
We used a semiquantitative root hair deformation assay for Vicia sativa (vetch) to study the activity of Rhizobium leguminosarum bv viciae nodulation (Nod) factors. Five to 10 min of Nod factor-root interaction appears to be sufficient to induce root hair deformation. The first deformation is visible within 1 h, and after 3 h about 80% of the root hairs in a small susceptible zone of the root are deformed. This zone encompasses root hairs that have almost reached their maximal size. The Nod factor accumulates preferentially to epidermal cells of the young part of the root, but is not restricted to the susceptible zone. In the interaction with roots, the glucosamine backbone of Nod factors is shortened, presumably by chitinases. NodRlv-IV(C18:4,Ac) is more stable than NodRlv-V(C18:4,Ac). No correlation was found between Nod factor degradation and susceptibility. Degradation occurs both in the susceptible zone and in the mature zone. Moreover, degradation is not affected by NH4NO3 and is similar in vetch and in the nonhost alfalfa (Medicago sativa).  相似文献   

14.
Endocytosis and vesicle trafficking during tip growth of root hairs   总被引:13,自引:0,他引:13  
Summary. The directional elongation of root hairs, “tip growth”, depends on the coordinated and highly regulated trafficking of vesicles which fill the tip cytoplasm and are active in secretion of cell wall material. So far, little is known about the dynamics of endocytosis in living root hairs. We analyzed the motile behaviour of vesicles in the apical region of living root hairs of Arabidopsis thaliana and of Triticum aestivum by live cell microscopy. For direct observation of endocytosis and of the fate of endocytic vesicles, we used the fluorescent endocytosis marker dyes FM 1-43 and FM 4-64. Rapid endocytosis was detected mainly in the tip, where it caused a bright fluorescence of the apical cytoplasm. The internalized membranes proceeded through highly dynamic putative early endosomes in the clear zone to larger endosomal compartments in the subapical region that are excluded from the clear zone. The internalized cargo ended up in the dynamic vacuole by fusion of large endosomal compartments with the tonoplast. Before export to these lytic compartments, putative early endosomes remained in the apical zone, where they most probably recycled to the plasma membrane and back into the cytoplasm for more than 30 min. Endoplasmic reticulum was not involved in trafficking pathways of endosomes. Actin cytoskeleton was needed for the endocytosis itself, as well as for further membrane trafficking. The actin-depolymerizing drug latrunculin B modified the dynamic properties of vesicles and endosomes; they became immobilized and aggregated in the tip. Treatment with brefeldin A inhibited membrane trafficking and caused the disappearance of FM-containing vesicles and putative early endosomes from the clear zone; labelled structures accumulated in motile brefeldin A-induced compartments. These large endocytic compartments redispersed upon removal of the drug. Our results hence prove that endocytosis occurs in growing root hairs. We show the localization of endocytosis in the tip and indicate specific endomembrane compartments and their recycling. Correspondence and reprints: Institute of Botany, Slovak Academy of Sciences, Dubravska cesta 14, 845 23 Bratislava, Slovak Republic.  相似文献   

15.
The stage of differentiation of epidermal cells and the development of root hairs was found to be important for the induction of depolarization in root hairs of Medicago sativa by Nod factor [NodRm-IV(S)] isolated from the bacterium Rhizobium meliloti. The electrical membrane response was concentration dependent, having its major effect (amplitude of the depolarization and number of root hairs that responded) at 10-8 and 10-7 M Nod factor. This response was correlated with a morphological effect of Nod factor in the root-hair-deformation bioassay at similar concentrations. The effect of Nod factor on depolarization and root-hair deformation showed specificity with respect to the structure, since unsulfated Nod molecules were inactive, as was the synthetic N,N',N",N"'- tetraacetylchitotetraose. The Nod factor that is O-acetylated at the nonreducing sugar was as efficient in root-hair deformation and membrane depolarization as the sulfated Nod factor.  相似文献   

16.
Nod factors are lipo-chito-oligosaccharides secreted by Rhizobium to initiate deformation of root hairs and other changes in host plants. Since Nod factor-induced changes in intracellular calcium occur in responsive root hairs, we tested if phospholipase C (PLC) activity is stimulated by Nod factors. Plasma membranes were isolated from the nodulation-competent zone of roots of Vigna unguiculata to assay PLC activity in vitro. Nod factors isolated from Rhizobium sp. NGR234, NodNGR[S] and NodNGR[Ac] significantly increased PLC activity and this increase in activity was inhibited in the presence of the PLC inhibitors, neomycin and U-73122. The response appears specific as PLC activity was not significantly induced neither by the 4-sugar, N,N',N',N' -tetracetylchitotetraose (TACT), or the five-sugar, penta- N -acetylchitopentaose (PACT), backbone of Nod factors. The G-protein activators, GTP γ S and the aluminium fluoride complex, had no effect on PLC activity in the presence or absence of NodNGR[S], suggesting that Nod factors act independently of G-proteins in vitro. However, the combination of oleic acid and TACT mimicked the effect of Nod factors on PLC activity indicating that the presence of the lipid tail may be critical. Also this combination of compounds acted synergistically together to evoke root hair deformation in vivo. Our results indicate that Nod factors can modulate membrane delimited PLC activity and indicate that PLC is likely to be a component of the Nod factor-signalling pathway.  相似文献   

17.
Rhizobium nodulation (Nod) factors are lipo-chitooligosaccharides that act as symbiotic signals, eliciting a number of key developmental responses in the roots of legume hosts. One of the earliest responses of root hairs to Nod factors is the induction of sharp oscillations of cytoplasmic calcium ion concentration ("calcium spiking"). This response was first characterised in Medicago sativa and Nod factors were found to be unable to induce calcium spiking in a nodulation-defective mutant of M. sativa. The fact that this mutant lacked any morphological response to Nod factors raised the question of whether calcium spiking could be part of a Nod factor-induced signal transduction pathway leading to nodulation. More recently, calcium spiking has been described in a model legume, Medicago truncatula, and in pea. When nodulation-defective mutants were tested for the induction of calcium spiking in response to Nod factors, three loci of pea and two of M. truncatula were found to be necessary for Nod factor-induced calcium spiking. These loci are also known to be necessary for Nod factor-induction of symbiotic responses such as root hair deformation, nodulin gene expression and cortical cell division. These results therefore constitute strong genetic evidence for the role of calcium spiking in Nod factor transduction. This system provides an opportunity to use genetics to study ligand-stimulated calcium spiking as a signal transduction event.  相似文献   

18.
The normal tip-growing pattern exhibited by root hairs of legumes is disrupted when the hair is exposed to Nod factors generated by compatible bacteria capable of inducing nodule formation. Since microtubules (MTs) play an important role in regulating directionality and stability of apical growth in root hairs [T.N. Bibikova et al. (1999) Plant J 17:657–665], we examined the possibility that Nod factors might affect the MT distribution patterns in root hairs of Medicago sativa L. We observed that Nod factor application caused rapid changes in the pattern of MTs starting as early as 3 min after perfusion. Within 3 to 10 min after Nod factor application, first endoplasmic and then cortical MTs depolymerised, initially at the proximal ends of cells. Twenty minutes after exposure to Nod factors, a transverse band of microtubules was seen behind the tip, while almost all other MTs had depolymerised. By 30 min, very few MTs remained in the root hair and yet by 1 h the MT cytoskeleton re-formed. When Nod factors were applied in the presence of 10 M oryzalin or 5 M taxol, the MTs appeared disintegrated while the morphological effects, such as bulging and branching, became enhanced. Compared to the treatments with oryzalin or taxol alone, the combinatory treatments exhibited higher growth rates. Since microtubule reorganization is one of the earliest measurable events following Nod factor application we conclude that microtubules have an important role in the early phases of the signalling cascade. Microtubule involvement could be direct or a consequence of Nod factor-induced changes in ion levels.Electronic Supplementary Material Supplementary material is available in the online version of this article at http://dx.doi.org/10.1007/s00425-003-1097-1Abbreviations BNM buffered nodulation medium - CLSM confocal laser scanning microscopy - MT microtubule  相似文献   

19.
Kelly MN  Irving HR 《Planta》2003,216(4):674-685
Nod factors are lipo-chito-oligosaccharides secreted by rhizobia that initiate many responses in the root hairs of the legume hosts, culminating in deformed hairs. The heterotrimeric G-protein agonists mastoparan, Mas7, melittin, compound 48/80 and cholera toxin provoke root hair deformation, whereas the heterotrimeric G-protein antagonist pertussis toxin inhibits mastoparan and Nod factor NodNGR[S]- (from Rhizobiumsp. NGR234) induced root hair deformation. Another heterotrimeric G-protein antagonist, isotetrandrine, only inhibited root hair deformation provoked by mastoparan and melittin. These results support the notion that G-proteins are implicated in Nod factor signalling. To study the role of G-proteins at a biochemical level, we examined the GTP-binding profiles of root microsomal membrane fractions isolated from the nodulation competent zone of Vigna unguiculata(L.) Walp. GTP competitively bound to the microsomal membrane fractions labelled with [(35)S]GTPgammaS, yielding a two-site displacement curve with displacement constants ( K(i)) of 0.58 micro M and 0.16 mM. Competition with either ATP or GDP revealed a one-site displacement curve with K(i) of 4.4 and 29 micro M, respectively, whereas ADP and UTP were ineffective competitors. The GTP-binding profiles of microsomal membrane fractions isolated from roots pretreated with either NodNGR[S] or the four-sugar, N- N'- N"- N'"-tetracetylchitotetraose (TACT) backbone of Nod factors were significantly altered compared with control microsomal fractions. To identify candidate proteins, membrane proteins were separated by SDS-PAGE and electrotransferred to nitrocellulose. GTP overlay experiments revealed that membrane fractions isolated from roots pretreated with NodNGR[S] or TACT contained two proteins (28 kDa and 25 kDa) with a higher affinity for GTPgammaS than control membrane fractions. Western analysis demonstrated that membranes from the pretreated roots contained more of another protein (~55 kDa) recognised by Galpha(common) antisera. These results provide pharmacological and biochemical evidence supporting the contention that G-proteins are involved in Nod factor signalling and, importantly, implicate monomeric G-proteins in this process.  相似文献   

20.
In plants, short chitin oligosaccharides and chitosan fragments (collectively referred to as chitooligosaccharides) are well-known elicitors that trigger defense gene expression, synthesis of antimicrobial compounds, and cell wall strengthening. Recent findings have shed new light on chitin-sensing mechanisms and downstream activation of intracellular signaling networks that mediate plant defense responses. Interestingly, chitin receptors possess several lysin motif domains that are also found in several legume Nod factor receptors. Nod factors are chitin-related molecules produced by nitrogen-fixing rhizobia to induce root nodulation. The fact that chitin and Nod factor receptors share structural similarity suggests an evolutionary conserved relationship between mechanisms enabling recognition of both deleterious and beneficial microorganisms. Here, we will present an update on molecular events involved in chitooligosaccharide sensing and downstream signaling pathways in plants and will discuss how structurally related signals may lead to such contrasted outcomes during plant–microbe interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号