首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bacterial cellulose (BC) has received substantial interest owing to its unique structural features and impressive physico-mechanical properties. BC has a variety of applications in biomedical fields, including use as biomaterial for artificial skin, artificial blood vessels, vascular grafts, scaffolds for tissue engineering, and wound dressing. However, pristine BC lacks certain properties, which limits its applications in various fields; therefore, synthesis of BC composites has been conducted to address these limitations. A variety of BC composite synthetic strategies have been developed based on the nature and relevant applications of the combined materials. BC composites are primarily synthesized through in situ addition of reinforcement materials to BC synthetic media or the ex situ penetration of such materials into BC microfibrils. Polymer blending and solution mixing are less frequently used synthetic approaches. BC composites have been synthesized using numerous materials ranging from organic polymers to inorganic nanoparticles. In medical fields, these composites are used for tissue regeneration, healing of deep wounds, enzyme immobilization, and synthesis of medical devices that could replace cardiovascular and other connective tissues. Various electrical products, including biosensors, biocatalysts, E-papers, display devices, electrical instruments, and optoelectronic devices, are prepared from BC composites with conductive materials. In this review, we compiled various synthetic approaches for BC composite synthesis, classes of BC composites, and applications of BC composites. This study will increase interest in BC composites and the development of new ideas in this field.  相似文献   

2.
The replacement of damaged tissues and organs with tissue and organ transplants or bionic implants has serious drawbacks. There is now emerging a new approach to tissue and organ replacement, regenerative biology and medicine. Regenerative biology seeks to understand the cellular and molecular differences between regenerating and non-regenerating tissues. Regenerative medicine seeks to apply this understanding to restore tissue structure and function in damaged, non-regenerating tissues. Regeneration is accomplished by three mechanisms, each of which uses or produces a different kind of regeneration-competent cell. Compensatory hyperplasia is regeneration by the proliferation of cells which maintain all or most of their differentiated functions (e.g., liver). The urodele amphibians regenerate a variety of tissues by the dedifferentiation of mature cells to produce progenitor cells capable of division. Many tissues contain reserve stem or progenitor cells that are activated by injury to restore the tissue while simultaneously renewing themselves. All regeneration-competent cells have two features in common. First, they are not terminally differentiated and can re-enter the cell cycle in response to signals in the injury environment. Second, their activation is invariably accompanied by the dissolution of the extracellular matrix (ECM) surrounding the cells, suggesting that the ECM is an important regulator of their state of differentiation. Regenerative medicine uses three approaches. First is the transplantation of cells into the damaged area. Second is the construction of bioartificial tissues by seeding cells into a biodegradable scaffold where they produce a normal matrix. Third is the use of a biomaterial scaffold or drug delivery system to stimulate regeneration in vivo from regeneration-competent cells. There is substantial evidence that non-regenerating mammalian tissues harbor regeneration-competent cells that are forced into a pathway of scar tissue formation. Regeneration can be induced if the factors leading to scar formation are inhibited and the appropriate signaling environment is supplied. An overview of regenerative mechanisms, approaches of regenerative medicine, research directions, and research issues will be given.  相似文献   

3.
There is significant interest in the development of tissue-engineered skin analogues, which replace both the dermal and the epidermal layer, without the use of animal or human derived products such as collagen or de-epidermalised dermis. In this study, we proposed that alginate hydrogel could be used to encapsulate fibroblasts and that keratinocytes could be cultured on the surface to form a bilayered structure, which could be used to deliver the co-culture to a wound bed, initially providing wound closure and eventually expediting the healing process. Encapsulation of fibroblasts in 2 and 5% w/v alginate hydrogel effectively inhibited their proliferation, whilst maintaining cell viability allowing keratinocytes to grow uninhibited by fibroblast overgrowth to produce a stratified epidermal layer. It was shown that the alginate degradation process was not influenced by the presence of fibroblasts within the hydrogel and that lowering the alginate concentration from 5 to 2% w/v increased the rate of degradation. Fibroblasts released from the scaffold were able to secrete extracellular matrix (ECM) and thus should replace the degrading scaffold with normal ECM following application to the wound site. These findings demonstrate that alginate hydrogel may be an effective delivery vehicle and scaffold for the healing of full-thickness skin wounds.  相似文献   

4.
Articular cartilage is a non innerved, nonvascularized and poorly cellularized connective tissue that is frequently damaged as a result of trauma or age-linked degenerative diseases. It hardly heals spontaneously and its alterations often lead to further extracellular matrix degradation and ultimately, to the loss of joint function. Past decades, many therapeutic approaches have been developed to improve the poor intrinsic self-repair properties of cartilage. Unfortunately, these techniques have not proved really satisfying. In this context, the regeneration of a functional cartilage through tissue engineering and regenerative medicine has recently been contemplated. In particular, the transplantation of autologous reparative cells using a synthetic biomaterial appears promising. We have thus developed and patented a biocompatible self-setting cellulose hydrogel that can be used as an injectable scaffold for cell-based regenerative medicine. Our studies associate this hydrogel with adult mesenchymal stem cells derived from adipose tissue, as a source of reparative cells for cartilage tissue engineering. In a first set of experiments, we have determined the optimal culture conditions required to induce the controlled chondrogenic commitment of stem cells (morphogens, hypoxia, three-dimensional environments…). The preclinical potential of hybrid constructs associating cells and hydrogel has then been assessed with success in animals (mouse, rabbit). Today, trauma and degenerative pathologies of joint tissues remain a major challenge for clinicians and cartilage engineers. Establishing the proof of concept of hydrogel-associated stem cells-based regenerative medicine could help us open new therapeutic windows in the treatment of joint disorders.  相似文献   

5.
A wide variety of biomaterials and bioactive molecules have been applied as scaffolds in neuronal tissue engineering. However, creating devices that enhance the regeneration of nervous system injuries is still a challenge, due the difficulty in providing an appropriate environment for cell growth and differentiation and active stimulation of nerve regeneration. In recent years, bacterial cellulose (BC) has emerged as a promising biomaterial for biomedical applications because of its properties such as high crystallinity, an ultrafine fiber network, high tensile strength, and biocompatibility. The small signaling peptides found in the proteins of extracellular matrix are described in the literature as promoters of adhesion and proliferation for several cell lineages on different surfaces. In this work, the peptide IKVAV was fused to a carbohydrate-binding module (CBM3) and used to modify BC surfaces, with the goal of promoting neuronal and mesenchymal stem cell (MSC) adhesion. The recombinant proteins IKVAV-CBM3 and (19)IKVAV-CBM3 were successfully expressed in E. coli, purified through affinity chromatography, and stably adsorbed to the BC membranes. The effect of these recombinant proteins, as well as RGD-CBM3, on cell adhesion was evaluated by MTS colorimetric assay. The results showed that the (19)IKVAV-CBM3 was able to significantly improve the adhesion of both neuronal and mesenchymal cells and had no effect on the other cell lineages tested. The MSC neurotrophin expression in cells grown on BC membranes modified with the recombinant proteins was also analyzed.  相似文献   

6.
The physical sciences have increasingly demonstrated a significant influence on the life sciences. Engineering in particular has shown its input through the development of novel medical devices and processes having significance to the biomedical field. This review introduces and discusses several fiber generation protocols, which have recently undergone development and exploration for directly handling living cells from which continuous cell-bearing or living threads to scaffolds and membranes have been fabricated. In doing so these protocols have not only demonstrated their versatility but also opened several unique possibilities for the use of these scaffolds in a plethora of biological and medical applications. In particular, these living fibrous structural units could be explored for regeneration purposes, e.g., from accelerated wound healing to combating a wide range of pathologies when coupled with gene therapy. Thus, "living entities" such as these scaffolds could be most useful in surgery/medicine, including its exploration with stem cells for the preparation of unspecialized living scaffolds and membranes.  相似文献   

7.
Damage to and degeneration of articular cartilage is a major health issue in industrialized nations. Articular cartilage has a particularly limited capacity for auto regeneration. At present, there is no established therapy for a sufficiently reliable and durable replacement of damaged articular cartilage. In this, as well as in other areas of regenerative medicine, tissue engineering methods are considered to be a promising therapeutic component. Nevertheless, there remain obstacles to the establishment of tissue-engineered cartilage as a part of the routine therapy for cartilage defects. One necessary aspect of potential tissue engineering-based therapies for cartilage damage that requires both elucidation and progress toward practical solutions is the reliable, cost effective cultivation of suitable tissue. Bioreactors and associated methods and equipment are the tools with which it is hoped that such a supply of tissue-engineered cartilage can be provided. The fact that in vivo adaptive physical stimulation influences chondrocyte function by affecting mechanotransduction leads to the development of specifically designed bioreactor devices that transmit forces like shear, hydrostatic pressure, compression, and combinations thereof to articular and artificial cartilage in vitro. This review summarizes the basic knowledge of chondrocyte biology and cartilage dynamics together with the exploration of the various biophysical principles of cause and effect that have been integrated into bioreactor systems for the cultivation and stimulation of chondrocytes. Dedicated to Prof. K. Arnold on the occasion of his 65th birthday.  相似文献   

8.
Neural tissue repair and regeneration strategies have received a great deal of attention because it directly affects the quality of the patient's life. There are many scientific challenges to regenerate nerve while using conventional autologous nerve grafts and from the newly developed therapeutic strategies for the reconstruction of damaged nerves. Recent advancements in nerve regeneration have involved the application of tissue engineering principles and this has evolved a new perspective to neural therapy. The success of neural tissue engineering is mainly based on the regulation of cell behavior and tissue progression through the development of a synthetic scaffold that is analogous to the natural extracellular matrix and can support three-dimensional cell cultures. As the natural extracellular matrix provides an ideal environment for topographical, electrical and chemical cues to the adhesion and proliferation of neural cells, there exists a need to develop a synthetic scaffold that would be biocompatible, immunologically inert, conducting, biodegradable, and infection-resistant biomaterial to support neurite outgrowth. This review outlines the rationale for effective neural tissue engineering through the use of suitable biomaterials and scaffolding techniques for fabrication of a construct that would allow the neurons to adhere, proliferate and eventually form nerves.  相似文献   

9.

Background  

Barrier materials as cellulose membranes are used for guided tissue repair. However, it is essential that the surrounding tissues accept the device. The present study histologically evaluated tissue reaction to a microbial cellulose membrane after subcutaneous implantation in mice. Furthermore, the interaction between mesenchymal stem cells and the biomaterial was studied in vitro to evaluate its ability to act as cellular scaffold for tissue engineering.  相似文献   

10.
细菌纤维素在医学方面的应用   总被引:1,自引:0,他引:1  
细菌纤维素是由木葡糖酸醋杆菌等细菌合成的纤维素,在化学组成、分子结构上与植物纤维素相近,但具有传统的纤维素所无法比拟的优势,如高亲水性、持水性、生物适应性、可调控性以及高纯度、高透明度等,因而在医学上显示出了巨大的应用潜力。细菌纤维素可用作人造皮肤、外科敷料、人造血管、软骨组织、震动膜、缓释载体等,是最有前途的生物聚合材料之一。  相似文献   

11.
As a promising alternative to autologous nerve grafts, tissue-engineered nerve grafts have been extensively studied as a way to bridge peripheral nerve defects and guide nerve regeneration. The main difference between autogenous nerve grafts and tissue-engineered nerve grafts is the regenerative microenvironment formed by the grafts. If an appropriate regenerative microenvironment is provided, the repair of a peripheral nerve is feasible. In this study, to mimic the body’s natural regenerative microenvironment closely, we co-cultured Schwann cells (SCs) and adipose-derived stem cells (ADSCs) as seed cells and introduced them into a silk fibroin (SF)/collagen scaffold to construct a tissue-engineered nerve conduit (TENC). Twelve weeks after the three different grafts (plain SF/collagen scaffold, TENC, and autograft) were transplanted to bridge 1-cm long sciatic nerve defects in rats, a series of electrophysiological examinations and morphological analyses were performed to evaluate the effect of the tissue-engineered nerve grafts on peripheral nerve regeneration. The regenerative outcomes showed that the effect of treatment with TENCs was similar to that with autologous nerve grafts but superior to that with plain SF/collagen scaffolds. Meanwhile, no experimental animals had inflammation around the grafts. Based on this evidence, our findings suggest that the TENC we developed could improve the regenerative microenvironment and accelerate nerve regeneration compared to plain SF/collagen and may serve as a promising strategy for peripheral nerve repair.  相似文献   

12.
Polymer-based scaffolds are used extensively in the field of regenerative medicine. These biomaterials may induce therapeutic responses through modulating a wound microenvironment with or without the addition of cells. It has long been known that oxygen is a crucial component of the microenvironment that influences cellular and physiological processes such as metabolism, proliferation, differentiation, matrix deposition, phagocytic killing, and wound healing. Consequently, several studies have investigated the potential for using oxygen-eluting biomaterials to regulate the oxygen tension within a wound microenvironment and to tune the regenerative response. We recently demonstrated that hyperbarically loaded polymers could be used as oxygen delivery devices for biomedical uses. To further develop this strategy, it is important to quantitatively characterize the spatiotemporal oxygen diffusion profile from scaffolds. Here, we use analytical and numerical solutions to describe the profiles of oxygen diffusion from hyperbarically loaded polymers as a function of different scaffold geometries, material compositions, and ambient temperatures. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 2018 © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 35: e2751, 2019.  相似文献   

13.
Dextran is a versatile biomacromolecule for preparing electrospun nanofibrous membranes by blending with either water-soluble bioactive agents or hydrophobic biodegradable polymers for biomedical applications. In this study, an antibacterial electrospun scaffold was prepared by electrospinning of a solution composed of dextran, polyurethane (PU) and ciprofloxacin HCl (CipHCl) drug. The obtained nanofiber mats have good morphology. The mats were characterized by various analytical techniques. The interaction parameters between fibroblasts and the PU-dextran and PU-dextran-drug scaffolds such as viability, proliferation, and attachment were investigated. The results indicated that the cells interacted favorably with the scaffolds especially the drug-containing one. Moreover, the composite mat showed good bactericidal activity against both of Gram-positive and Gram-negative bacteria. Overall, our results conclude that the introduced scaffold might be an ideal biomaterial for wound dressing applications.  相似文献   

14.
Collagen glycosaminoglycan (CG) scaffolds have been clinically approved as an application for skin regeneration. The goal of this study has been to examine whether a CG scaffold is a suitable biomaterial for generating human bone tissue. Specifically, we have asked the following questions: (1) can the scaffold support human osteoblast growth and differentiation and (2) how might recombinant human transforming growth factor-beta (TGF-β1) enhance long-term in vitro bone formation? We show human osteoblast attachment, infiltration and uniform distribution throughout the construct, reaching the centre within 14 days of seeding. We have identified the fully differentiated osteoblast phenotype categorised by the temporal expression of alkaline phosphatase, collagen type 1, osteonectin, bone sialo protein, biglycan and osteocalcin. Mineralised bone formation has been identified at 35 days post-seeding by using von Kossa and Alizarin S Red staining. Both gene expression and mineral staining suggest the benefit of introducing an initial high treatment of TGF-β1 (10 ng/ml) followed by a low continuous treatment (0.2 ng/ml) to enhance human osteogenesis on the scaffold. Osteogenesis coincides with a reduction in scaffold size and shape (up to 70% that of original). A notable finding is core degradation at the centre of the tissue-engineered construct after 49 days of culture. This is not observed at earlier time points. Therefore, a maximum of 35 days in culture is appropriate for in vitro studies of these scaffolds. We conclude that the CG scaffold shows excellent potential as a biomaterial for human bone tissue engineering.  相似文献   

15.
细菌纤维素在生物医学材料中应用的研究进展   总被引:5,自引:0,他引:5  
细菌纤维素是一种天然的生物高聚物,具有生物活性、生物可降解性、生物适应性,具有独特的物理、化学和机械性能,例如高的结晶度、高的持水性、超细纳米纤维网络、高抗张强度和弹性模量等,因而成为近来国际上新型生物医学材料的研究热点。本文概括了细菌纤维素的性质、研究历史以及在生物医学材料上的应用,重点阐述了细菌纤维素在组织工程支架、人工血管、人工皮肤和治疗皮肤损伤方面的应用以及当前研究现状。  相似文献   

16.
Over the last decades, tissue engineering has demonstrated an unquestionable potential to regenerate damaged tissues and organs. Some tissue-engineered solutions recently entered the clinics (eg, artificial bladder, corneal epithelium, engineered skin), but most of the pathologies of interest are still far from being solved. The advent of stem cells opened the door to large-scale production of “raw living matter” for cell replacement and boosted the overall sector in the last decade. Still reliable synthetic scaffolds fairly resembling the nanostructure of extracellular matrices, showing mechanical properties comparable to those of the tissues to be regenerated and capable of being modularly functionalized with biological active motifs, became feasible only in the last years thanks to newly introduced nanotechnology techniques of material design, synthesis, and characterization. Nanostructured synthetic matrices look to be the next generation scaffolds, opening new powerful pathways for tissue regeneration and introducing new challenges at the same time. We here present a detailed overview of the advantages, applications, and limitations of nanostructured matrices with a focus on both electrospun and self-assembling scaffolds.  相似文献   

17.
干细胞联合生物支架材料体外构建功能性组织与器官,成为当前组织再生研究的重要策略,而探求具有良好生物相容性的支架材料是其关键.本研究采用扫描电镜、噻唑蓝(MTT)法、荧光显微染色等方法检测小鼠诱导多能干细胞(murine induced pluripotent stem cells, miPSCs)在聚己内酯(poly ε-caprolactone, PCL)静电纺丝纳米纤维支架上的粘附、增殖等生物学特性,探究聚己内酯纳米纤维支架与miPSCs的生物相容性. 结果显示,miPSC在PCL纳米纤维支架上具有良好粘附性并呈集落样生长,其增殖能力及干性标记物(Oct4-GFP+)的表达均不亚于标准对照组;扫描电镜显示,miPSC在PCL纳米纤维支架材料上呈现出绒毛状突起的表面结构.上述结果表明,PCL纳米纤维支架可促进miPSCs的粘附、自我增殖以及干性维持,两者具有良好的生物相容性,为下一步联合生物支架材料与干细胞构建功能性组织奠定了基础.  相似文献   

18.
The skin provides a dynamic barrier separating and protecting human body from the exterior world, and then immediate repair and rebuilding of the epidermal barrier is crucial after wound and injury. Wound healing without scars and complete regeneration of skin tissue still remain as a clinical challenge. The demand to engineer scaffolds that actively promote regeneration of damaged areas of the skin has been increased. In this study, menstrual blood-derived stem cells (MenSCs) have been induced to differentiate into keratinocytes-like cells in the presence of human foreskin-derived keratinocytes on a bilayer scaffold based on amniotic membrane and silk fibroin. Based on the findings, newly differentiated keratinocytes from MenSCs successfully expressed the keratinocytes specific markers at both mRNA and protein levels judged by real-time PCR and immunostaining techniques, respectively. We could show that the differentiated cells over bilayer composite scaffolds express the keratinocytes specific markers at higher levels when compared with those cultured in conventional 2D culture system. Based on these findings, bilayer amniotic membrane/nano-fibrous fibroin scaffold represents an efficient natural construct with broad applicability to generate keratinocytes from MenSCs for stem cell-based skin wounds healing and regeneration.  相似文献   

19.
Surgical treatment of vascular disease has become common, creating the need for a readily available, small-diameter vascular graft. However, the use of synthetic materials is limited to grafts larger than 5-6 mm because of the frequency of occlusion observed with smaller-diameter prosthetics. An alternative to synthetic materials would be a biomaterial that could be used in the design of a tissue-engineered graft. We demonstrate that a small-diameter (4 mm) graft constructed from a collagen biomaterial derived from the submucosa of the small intestine and type I bovine collagen has the potential to integrate into the host tissue and provide a scaffold for remodeling into a functional blood vessel. The results obtained using a rabbit arterial bypass model have shown excellent hemostasis and patency. Furthermore, within three months after implantation, the collagen grafts were remodeled into cellularized vessels that exhibited physiological activity in response to vasoactive agents.  相似文献   

20.
Through enzymatic modification, we are now able to manipulate the composition and sequential nanostructures of alginate, one of the most versatile gelling polymers found in nature. Here we report the application of a set of processive polymer-modifying epimerases for the preparation of novel alginates with highly improved functional properties essential for numerous applications as gel matrices. Gels of enzymatically engineered alginate were found to be more elastic and compact, less permeable, and extremely stable under physiological conditions, offering significant advantages over native alginates. As a result, this study shows that, by controlling alginate nanostructure, its macroscopic properties can be highly controlled. The ability to tailor alginate has a great impact on the wide use of this biomaterial in industry and medicine. More importantly, this adds more knowledge to the link between polymer nanostructure and macroscopic properties and may serve as a model system for other polymer-based materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号