首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chu XP  Li P  Xu NS 《生理学报》1998,50(5):483-489
在73张脑片上观察了γ-氨基丁酸(GABA)对106个延髓头端腹外侧区(RVLM)神经元单位放电的影响。外源性的GABA(0.1 ̄3.0mmol/L)抑制了106神经元中的84个神经元的电活动,这些抑制效应呈剂量-反应关系。GABA的抑制效应大部分可被GABAA受体选择性拮抗剂荷苞牡丹碱甲基碘化物(BMI)和Cl^-通道阻断剂印防己毒素(PTX)所阻断,而单独灌流BMI和PTX对RVLM神经元主要  相似文献   

2.
The present study describes the effects of gamma-aminobutyric acid (GABA) and its antagonists, bicuculline and 2-hydroxysaclofen, on visual responses of neurons in the pigeon nucleus lentiformis mesencephali (nLM). The results indicate that GABA significantly reduces both spontaneous activity and visual responsiveness, and GABAA antagonist bicuculline but not GABAB antagonist 2-hydroxysaclofen enhances visual responses of nLM cells examined. Furthermore, inhibition produced by motion in the null-direction of pretectal neurons is diminished by bicuculline but not by 2-hydroxysaclofen. It is therefore concluded that the null-direction inhibition of directional cells in the pigeon nLM is predominantly mediated by GABA and GABAA receptors. This inhibition may at least in part underlie directional asymmetry of optokinetic responses.  相似文献   

3.
The pharmacology of a gamma-aminobutyric acid (GABA) receptor on the cell body of an identified motor neuron of the cockroach (Periplaneta americana) was investigated by current-clamp and voltage-clamp methods. Iontophoretic application of GABA increased membrane conductance to chloride ions, and prolonged application resulted in desensitization. Hill coefficients, determined from dose-response data, indicated that binding of at least two GABA molecules was required to activate the chloride channel. Differences between vertebrate GABAA receptors and insect neuronal GABA receptors were detected. For the GABA receptor of motor neuron Df, the following rank order of potency was observed: isoguvacine greater than muscimol greater than or equal to GABA greater than 3-aminopropanesulphonic acid. The GABAB receptor agonist baclofen was inactive. Of the potent vertebrate GABA receptor antagonists (bicuculline, pitrazepin, RU5135 and picrotoxin), only picrotoxin (10(-7) M) produced a potent, reversible block of the response to GABA of motor neuron Df. Both picrotoxinin and picrotin also blocked GABA-induced currents. Bicuculline hydrochloride (10(-4) M) and bicuculline methiodide (10(-4) M) were both ineffective when applied at resting membrane potential (-65 mV), although at hyperpolarized levels partial block of GABA-induced current was sometimes observed. Pitrazepin (10(-4) M) caused a partial, voltage-independent block of GABA-induced current. The steroid derivative RU5135 was inactive at 10(-5) M. In contrast to the potent competitive blockade of vertebrate GABAA receptors by bicuculline, pitrazepin and RU5135, none of the weak antagonism caused by these drugs on the insect GABA receptor was competitive. Flunitrazepam (10(-6) M) potentiated GABA responses, providing evidence for a benzodiazepine site on an insect GABA-receptor-chloride-channel complex.  相似文献   

4.
Effects of GABA-ergic agonists and antagonists were examined on the melanophores of a carp C. mrigala in vitro. GABA and baclofen both induced concentration - related dispersion in fish melanophores. Denervation of the melanophores by reserpine treatment potentiated the sensitivity of the melanophores to GABA. While denervation by cooling treatment inhibited the sensitivity of the melanophores to GABA, atropine, bicuculline and pentylenetetrazole all inhibited the dispersal responses of the melanophores induced by higher concentrations of GABA. 5-aminovaleric acid also significantly inhibited the dispersion of the melanophores induced either by GABA or baclofen. It is concluded that GABA-ergic agonist induced dispersal responses in C mrigala melanophores are mediated through specific GABA receptors. The presence of both GABAA and GABAB receptors in this fish melanophores has been indicated.  相似文献   

5.
GABA-induced potassium channels in cultured neurons   总被引:3,自引:0,他引:3  
When gamma-aminobutyric acid (GABA) or baclofen were applied to cultured rat hippocampal neurons, single-channel potassium currents appeared after a delay of 30 s or more in patches of membrane on the cell surface isolated from the agonists by the recording pipette. The appearance of currents in patches not exposed to agonist, the delay in their appearance and the suppression of currents in cells pre-incubated with pertussis toxin indicate the involvement of an intracellular second messenger system. The channels were associated with a GABAB receptor rather than a GABAA receptor as they were blocked by baclofen, a GABAB antagonist, but were not affected by bicuculline, a GABAA antagonist. A feature of the single channel currents was their variable amplitude: they had a maximum conductance of ca. 70 pS and displayed many lower conductance states that were integral multiples of 5-6 pS. In several cells exposed to GABA or baclofen, first small currents and then progressively larger currents appeared: current amplitude was a multiple of an elementary current. It is suggested that binding of GABA to GABAB receptors activates a second messenger system causing opening of oligomeric potassium channels.  相似文献   

6.
A set of procedures was developed to study the binding of gamma-[3H]aminobutyric acid ([3H]GABA) to GABAA and GABAB receptors, and to the Na(+)-dependent transport carrier, at 25 and 37 degrees C in the presence of physiological concentrations of Na+. The membrane preparation used in these procedures was not subjected to freeze-thawing or treatment with Triton X-100. Isoguvacine, (-)-baclofen, and (-)-nipecotate were used to block selectively the binding to GABAA receptors, GABAB receptors, and the transport site, respectively. Analysis of the binding characteristics of [3H]GABA to the GABAA receptor suggested the existence of high-(KD less than 30 nM), middle- (KD = 100-500 nM), and low-affinity (KD greater than 5 microM) binding sites. However, the binding data in the middle-affinity region (100-1,000 nM) were often indicative of cooperativity. The affinity between GABA and the GABAA receptor was reduced modestly by increases in temperature and by the presence of Cl- at physiological concentrations. Binding to the GABAB receptor required Ca2+ and Cl-. Apparent binding to the transport carrier required both Na+ and Cl-. A comparison of Bmax values in three brain regions revealed an inverse relationship between the high-affinity site of the GABAA receptor and the transport binding site.  相似文献   

7.
Basal and vasoactive intestinal peptide (VIP)-stimulated accumulations of cyclic AMP were measured in slices of rat cerebral cortex. Neither gamma-aminobutyric acid (GABA) nor the selective GABAB receptor agonist (-)-baclofen stimulated basal cyclic AMP accumulation, whereas VIP caused a large dose-dependent increase in cyclic AMP levels. However, in the presence of 100 microM (-)-baclofen, the effects of VIP on cyclic AMP accumulation were significantly enhanced, with the responses to 1 microM and 10 microM VIP being approximately doubled. The enhancing effects of (-)-baclofen was dose related (1-1,000 microM), but an enhancing effect was not observed with 100 microM (+)-baclofen. In the presence of the GABA uptake inhibitor nipecotic acid (1 mM), GABA caused a similar dose-related enhancement of the VIP response. The ability of either GABA or (-)-baclofen to augment VIP-stimulated production of cyclic AMP was not mimicked by the GABAA, agonists isoguvacine and 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol (THIP) and was not antagonized by the GABAA antagonist bicuculline. The putative GABAB antagonist 5-aminovaleric acid (1 mM) significantly reduced the effect of (-)-baclofen. The ability of (-)-baclofen to enhance VIP-stimulated accumulation of cyclic AMP was observed in slices of rat cerebral cortex, hippocampus, and hypothalamus. These results indicate that GABA and (-)-baclofen can enhance VIP-stimulated accumulation of cyclic AMP in rat brain slices via an interaction with specific GABAB receptors.  相似文献   

8.
The objectives of the present study were to examine the involvement of GABA and cholinergic receptors within the nucleus accumbens (ACB) on feedback regulation of somatodendritic dopamine (DA) release in the ventral tegmental area (VTA). Adult male Wistar rats were implanted with ipsilateral dual guide cannulae for in vivo microdialysis studies. Activation of the feedback system was accomplished by perfusion of the ACB with the DA uptake inhibitor GBR 12909 (GBR; 100 microm). To assess the involvement of GABA and cholinergic receptors in regulating this feedback system, antagonists (100 microm) for GABAA (bicuculline, BIC), GABAB (phaclofen, PHAC), muscarinic (scopolamine, SCOP), and nicotinic (mecamylamine, MEC) receptors were perfused through the probe in the ACB while measuring extracellular DA levels in the ACB and VTA. Local perfusion of the ACB with GBR significantly increased (500% of baseline) the extracellular levels of DA in the ACB and produced a concomitant decrease (50% of baseline) in the extracellular DA levels in the VTA. Perfusion of the ACB with BIC or PHAC alone produced a 200-400% increase in the extracellular levels of DA in the ACB but neither antagonist altered the levels of DA in the VTA. Co-perfusion of either GABA receptor antagonist with GBR further increased the extracellular levels of DA in the ACB to 700-800% of baseline. However, coperfusion with BIC completely prevented the reduction in the extracellular levels of DA in the VTA produced by GBR alone, whereas PHAC partially prevented the reduction. Local perfusion of the ACB with either MEC or SCOP alone had little effect on the extracellular levels of DA in the ACB or VTA. Co-perfusion of either cholinergic receptor antagonist with GBR markedly reduced the extracellular levels of DA in the ACB and prevented the effects of GBR on reducing DA levels in the VTA. Overall, the results of this study suggest that terminal DA release in the ACB is under tonic GABA inhibition mediated by GABAA (and possibly GABAB) receptors, and tonic cholinergic excitation mediated by both muscarinic and nicotinic receptors. Activation of GABAA (and possibly GABAB) receptors within the ACB may be involved in the feedback inhibition of VTA DA neurons. Cholinergic interneurons may influence the negative feedback system by regulating terminal DA release within the ACB.  相似文献   

9.
Y J Li  S P Duckles 《Life sciences》1991,48(24):2331-2339
The modulatory actions of gamma-aminobutyric acid (GABA) receptor agonists and omega-conotoxin GVIA (CTX) on sympathetic and sensory nerves were examined on contractile responses of the perfused rat mesentery to transmural nerve stimulation (TNS). GABA and baclofen, a selective GABAB receptor agonist, significantly inhibited vasoconstrictor responses to TNS, while muscimol, a selective GABAA receptor agonist, had no effect. In the guanethidine treated and methoxamine-contracted mesentery, TNS caused a vasodilator response which was unaffected by GABA. CTX (10(-8) M) markedly suppressed the vasoconstrictor response to TNS, but did not affect vasodilator responses. These findings suggest that in the rat mesentery: (1) GABA receptors modulate the activity of sympathetic nerves via prejunctional GABAB receptors, but do not influence sensory nerves, and (2) calcium channels which participate in sympathetic nerve activation have different properties than calcium channels in capsaicin-sensitive sensory nerves.  相似文献   

10.
朱辉  朱幸 《生理学报》1995,47(1):1-10
两栖类卵母细胞表达系统经注射鲫鱼脑mRNA后可表达多种神经递质受体和某些离子通道。本工作利用电压箝方法结合药理学手段对GABA受体和谷氨酸离子型受体作了较详细的研究。结果表明,由GABA诱发的电流反应中,约90%由GABAA受体介导,乘余约10%的成分对GABAA受体的专一性拮抗剂Bicuculline不敏感,而GABAB受体的专一性激动剂Baclofen不能引进电流反应,因此这部分受体特性与GA  相似文献   

11.
By means of local microapplication of GABA, picrotoxin and CGP 52432, different roles of GABAA and GABAB receptors in the geneses of primary and secondary components of evoked potentials in the somatosensory barrel cortex of rats were shown. The authors conclude that the aftereffect rhythmical components of the evoked potentials are caused by the local pacemaker mechanisms based on endogene properties of barrel neurons.  相似文献   

12.
Responses of neurons in the antennal lobe (AL) of the moth Manduca sexta to stimulation of the ipsilateral antenna by odors consist of excitatory and inhibitory synaptic potentials. Stimulation of primary afferent fibers by electrical shock of the antennal nerve causes a characteristic IPSP-EPSP synaptic response in AL projection neurons. The IPSP in projection neurons reverses below the resting potential, is sensitive to changes in external and internal chloride concentration, and thus is apparently mediated by an increase in chloride conductance. The IPSP is reversibly blocked by 100 microM picrotoxin or bicuculline. Many AL neurons respond to application of GABA with a strong hyperpolarization and an inhibition of spontaneous spiking activity. GABA responses are associated with an increase in neuronal input conductance and a reversal potential below the resting potential. Application of GABA blocks inhibitory synaptic inputs and reduces or blocks excitatory inputs. EPSPs can be protected from depression by application of GABA. Muscimol, a GABA analog that mimics GABA responses at GABAA receptors but not at GABAB receptors in the vertebrate CNS, inhibits many AL neurons in the moth.  相似文献   

13.
Experiments on isolated strips of the rabbit uterus showed the stimulating effects of small doses of GABA, AOAA and phenibut on uterine contractility, while large doses exerted the reverse (suppressing) effects. Administration of bicuculline and picrotoxin before or after the above-mentioned drugs reduced their suppressing effects on uterine muscle contractility. The data postulate the involvement of GABAA and GABAB receptors in the drugs action on the rabbit uterus.  相似文献   

14.
The present study describes the effects of gamma-aminobutyric acid (GABA) and itsantagonists, bicuculline and 2-hydroxysaclofen, on visual responses of neurons in the pigeon nucleuslentiformis mesencephali (nLM). The results indicate that GABA significantly reduces bothspontaneous activity and visual responsiveness, and GABAA antagonist bicuculline but not GABABantagonist 2-hydroxysaclofen enhances visual responses of nLM cells examined. Furthermore,inhibition produced by motion in the null-direction of pretectal neurons is diminished by bicucullinebut not by 2-hydroxysaclofen. It is therefore concluded that the null-direction inhibition of directionalcells in the pigeon nLM is predominantly mediated by GABA and GABAA receptors. This inhibitionmay at least in part underlie directional asymmetry of optokinetic responses.  相似文献   

15.
GABA binding in bovine adrenal medulla membranes is sensitive to baclofen   总被引:1,自引:0,他引:1  
1. The data summarized in this report reveals the existence of GABA binding in the bovine adrenal medulla membranes. 2. Since this binding was displaced not only by muscimol and bicuculline but also by baclofen, results suggest the possibility that both types of receptors (GABAA and GABAB) could be present in bovine adrenal membranes.  相似文献   

16.
K Taniyama  K Takeda  H Ando  T Kuno  C Tanaka 《FEBS letters》1991,278(2):222-224
The functional GABAB receptor was expressed in Xenopus oocytes by injecting mRNA obtained from the cerebellum of the rat. Application of GABA in the presence of bicuculline induced a hyperpolarization under current-clamp conditions and an outward current under voltage-clamp conditions. Baclofen mimicked the effect of GABA in the presence of bicuculline, and the effect of baclofen was antagonized by phaclofen. The GABA-induced outward current was slightly inhibited by treatment with GDP-beta-S and was completely inhibited by treatment with GTP-gamma-S. The activation of protein kinase C by 12-O-tetradecanoylphorbol-13-acetate (TPA), but not 4 alpha-phorbol-12,13-didecanoate, suppressed the GABAB receptor-mediated hyperpolarization, and the effect of TPA was antagonized by sphingosine. Thus, activation of protein kinase C inhibits the expressed GABAB receptor-mediated response.  相似文献   

17.
The function of chloride (Cl-) channel proteins is to regulate the transport of Cl- across membranes. There are two major kinds of Cl- channels: 1) those activated by binding of a transmitter such as gamma-aminobutyric acid (GABA), glycine, or glutamate, and thus are receptors; and 2) those activated by membrane depolarization or by calcium. There are two kinds of GABA receptors: GABAA is the major inhibitory receptor of vertebrate brain and the one that operates a Cl- channel, and the GABAB receptor, which is proposed to regulate cAMP production that is stimulated by other receptors. Except for binding of GABA, these two GABA receptors differ completely in their drug specificities. However, there are many similarities among the GABAA receptor, the glycine receptor, and the voltage-dependent Cl- channel. The two receptors and Cl- channels bind avermectin, whereas bicuculline binds only to mammalian GABAA and glycine receptors, not to the insect brain GABAA receptor. Barbiturates bind to GABAA and voltage-dependent Cl- channels, possibly directly activating them. Benzodiazepines potentiate both the glycine and GABAA receptors. Several insecticides act on the GABAA receptor and voltage-dependent Cl- channel. It is suggested that the GABAA receptor is the primary target for the action of toxaphene and cyclodiene insecticides but a secondary target for lindane and type II pyrethroids. On the other hand, the Cl- channel may be a primary target for avermectin and lindane but a secondary one for cyclodienes. The similarity in certain drug specificities and the operation of Cl- channels suggest a degree of homology between the subunits of GABAA and glycine receptors and the voltage-dependent Cl- channels.  相似文献   

18.
It is generally accepted that gamma-aminobutyric acid (GABA) is one of the main inhibitory transmitter in the mammalian brain. There are three types of GABA receptors in the vertebrata central nervous system: the GABAA, GABAB and GABAC receptors. The GABAA receptor is a GABA-gated Cl- channel and is the tetramer ore the pentamer made of some classes of subunit (alpha, beta, gamma, delta). GABAB receptors are not affiliated with Cl(-) ionophore. GABAB receptors appear to be coupled to Ca2+ and K+ channels of presynaptic membranes. It seems they regulate the release of neurotransmitters release. The structural and functional properties of GABA receptors are discussed.  相似文献   

19.
This study investigated whether changes in GABA-mediated neurotransmission within the nucleus of the solitary tract (NTS) contribute to the changes in breathing (resting ventilation and the acute HVR) that occur following exposure to chronic hypoxia (CH). Rats were exposed to 9 days of hypobaric hypoxia (0.5 atm) and then subjected to acute hypoxic breathing trials before and after bilateral microinjections of GABA, bicuculline (a GABAA-receptor antagonist), or bicuculline plus CGP-35348 (a GABAB receptor antagonist) into the caudal regions of the NTS. Breathing was measured using whole body plethysmography. CH caused an increase in resting ventilation when the animals were breathing 30% O2 but did not alter ventilation during acute hypoxia (10% O2). GABA alone had no effect on breathing in either the control or chronically hypoxic rats. Bicuculline and bicuculline/CGP had no effect on breathing in control rats. Following CH, bicuculline and bicuculline/CGP reduced minute ventilation (VI) during acute exposure to 30% O2 but had no effect during acute exposure to 10% O2. The bicuculline-induced reduction in VI resulted from a decrease in breathing frequency (fR) and tidal volume (VT). The bicuculline/CGP-induced reduction in VI was due to a decrease in fR with no change in VT. The results suggest that changes in GABA receptor-mediated neurotransmission, within the NTS, are involved in the increase in resting ventilation that occurs following CH.  相似文献   

20.
Up to 60% of gamma-[3H]aminobutyric acid ([3H]GABA) bound specifically to rat cerebellar membranes in the absence of Ca2+ was insensitive to the GABAA antagonist bicuculline and to the GABAB agonist baclofen. This indicates that a significant component of specifically bound [3H]GABA is associated with non-GABAA, non-GABAB binding sites. The presence of this binding component appeared seasonal, peaking in the month of September (early spring) each year over a 4-year period. The calcium independence and bicuculline and baclofen insensitivity of the binding indicate that this binding is not to the classical GABAA and GABAB binding sites. High concentrations of muscimol and isoguvacine inhibited non-GABAA, non-GABAB binding. Scatchard analysis of the non-GABAA, non-GABAB binding sites indicated two kinetic components: KD1 = 42 nM and KD2 = 9.2 microM; Bmax1 = 1.6 pmol/mg of protein and Bmax2 = 28 pmol/mg of protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号