首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Together with the rapid development of IT technology, cloud computing has been considered as the next generation’s computing infrastructure. One of the essential part of cloud computing is the virtual machine technology that enables to reduce the data center cost with better resource utilization. Especially, virtual desktop infrastructure (VDI) is receiving explosive attentions from IT markets because of its advantages of easier software management, greater data protection, and lower cost. However, sharing physical resources in VDI to consolidate multiple guest virtual machines (VMs) on a host has a tradeoff that can lead to significant I/O degradation. Optimizing I/O virtualization overhead is a challenging task because it needs to scrutinize multiple software layers between guest VMs and host where those VMs are executing. In this paper, we present a hypervisor-level cache, called hyperCache, which is possible to provide a shortcut in KVM/QEMU. It intercepts I/O requests in the hypervisor and analyses their I/O access patterns to select data retaining high access frequency. Also, it has a capability of maintaining the appropriate cache memory size by utilizing the cache block map. Our experimental results demonstrate that our method improves I/O bandwidth by up to 4.7x over the existing QEMU.  相似文献   

2.
Virtualization technology promises to provide better isolation and consolidation in traditional servers. However, with VMM (virtual machine monitor) layer getting involved, virtualization system changes the architecture of traditional software stack, bringing about limitations in resource allocating. The non-uniform VCPU (virtual CPU)-PCPU (physical CPU) mapping, deriving from both the configuration or the deployment of virtual machines and the dynamic runtime feature of applications, causes the different percentage of processor allocation in the same physical machine,and the VCPUs mapped these PCPUs will gain asymmetric performance. The guest OS, however, is agnostic to the non-uniformity. With assumption that all VCPUs have the same performance, it can carry out sub-optimal policies when allocating virtual resource for applications. Likewise, application runtime system can also make the same mistakes. Our focus in this paper is to understand the performance implications of the non-uniform VCPU-PCPU mapping in a virtualization system. Based on real measurements of a virtualization system with state of art multi-core processors running different commercial and emerging applications, we demonstrate that the presence of the non-uniform mapping has negative impacts on application’s performance predictability. This study aims to provide timely and practical insights on the problem of non-uniform VCPU mapping, when virtual machines being deployed and configured, in emerging cloud.  相似文献   

3.
Cloud computing took a step forward in the efficient use of hardware through virtualization technology. And as a result, cloud brings evident benefits for both users and providers. While users can acquire computational resources on-demand elastically, cloud vendors can also utilize maximally the investment costs for data centers infrastructure. In the Internet era, the number of appliances and services migrated to cloud environment increases exponentially. This leads to the expansion of data centers, which become bigger and bigger. Not just that these data centers must have the architecture with a high elasticity in order to serve the huge upsurge of tasks and balance the energy consumption. Although in recent times, many research works have dealt with finite capacity for single job queue in data centers, the multiple finite-capacity queues architecture receives less attention. In reality, the multiple queues architecture is widely used in large data centers. In this paper, we propose a novel three-state model for cloud servers. The model is deployed in both single and multiple finite capacity queues. We also bring forward several strategies to control multiple queues at the same time. This approach allows to reduce service waiting time for jobs and managing elastically the service capability for the whole system. We use CloudSim to simulate the cloud environment and to carry out the experiments in order to demonstrate the operability and effectiveness of the proposed method and strategies. The power consumption is also evaluated to provide insights into the system performance in respect of performance-energy trade-off.  相似文献   

4.
According to the fact that cloud servers have different energy consumption on different running states, as well as the energy waste problem caused by the mismatching between cloud servers and cloud tasks, we carry out researches on the energy optimal method achieved by a priced timed automaton for the cloud computing center in this paper. The priced timed automaton is used to model the running behaviors of the cloud computing system. After introducing the matching matrix of cloud tasks and cloud resources as well as the power matrix of the running states of cloud servers, we design a generation algorithm for the cloud system automaton based on the generation rules and reduction rules given ahead. Then, we propose another algorithm to settle the minimum path energy consumption problem in the cloud system automaton, therefore obtaining an energy optimal solution and an energy optimal value for the cloud system. A case study and repeated experimental analyses manifest that our method is effective and feasible.  相似文献   

5.
Large scale clusters based on virtualization technologies have been widely used in many areas, including the data center and cloud computing environment. But how to save energy is a big challenge for building a “green cluster” recently. However, previous researches, including local approaches, which focus on saving the energy of the components in a single workstation without a global vision on the whole cluster, and cluster-wide energy saving techniques, which can only be applied to homogeneous workstations and specific applications, cannot solve the challenges. This paper describes the design and implementation of a novel scheme, called Magnet, that uses live migration of virtual machines to transfer load among the nodes on a multi-layer ring-based overlay. This scheme can reduce the power consumption greatly by regarding all the cluster nodes as a whole based on virtualization technologies. And, it can be applied to both the homogeneous and heterogeneous servers. Experimental measurements show that the new method can reduce the power consumption by 74.8% over base at most with certain adjustably acceptable overhead. The effectiveness and performance insights are also analytically verified.  相似文献   

6.
The emergence of cloud computing has made it become an attractive solution for large-scale data processing and storage applications. Cloud infrastructures provide users a remote access to powerful computing capacity, large storage space and high network bandwidth to deploy various applications. With the support of cloud computing, many large-scale applications have been migrated to cloud infrastructures instead of running on in-house local servers. Among these applications, continuous write applications (CWAs) such as online surveillance systems, can significantly benefit due to the flexibility and advantages of cloud computing. However, with specific characteristics such as continuous data writing and processing, and high level demand of data availability, cloud service providers prefer to use sophisticated models for provisioning resources to meet CWAs’ demands while minimizing the operational cost of the infrastructure. In this paper, we present a novel architecture of multiple cloud service providers (CSPs) or commonly referred to as Cloud-of-Clouds. Based on this architecture, we propose two operational cost-aware algorithms for provisioning cloud resources for CWAs, namely neighboring optimal resource provisioning algorithm and global optimal resource provisioning algorithm, in order to minimize the operational cost and thereby maximizing the revenue of CSPs. We validate the proposed algorithms through comprehensive simulations. The two proposed algorithms are compared against each other to assess their effectiveness, and with a commonly used and practically viable round-robin approach. The results demonstrate that NORPA and GORPA outperform the conventional round-robin algorithm by reducing the operational cost by up to 28 and 57 %, respectively. The low complexity of the proposed cost-aware algorithms allows us to apply it to a realistic Cloud-of-Clouds environment in industry as well as academia.  相似文献   

7.
This paper presents a recovery protocol for block I/O operations in Slice, a storage system architecture for high-speed LANs incorporating network-attached block storage. The goal of the Slice architecture is to provide a network file service with scalable bandwidth and capacity while preserving compatibility with off-the-shelf clients and file server appliances. The Slice prototype virtualizes the Network File System (NFS) protocol by interposing a request switching filter at the client's interface to the network storage system. The distributed Slice architecture separates functions typically combined in central file servers, introducing new challenges for failure atomicity. This paper presents a protocol for atomic file operations and recovery in the Slice architecture, and related support for reliable file storage using mirrored striping. Experimental results from the Slice prototype show that the protocol has low cost in the common case, allowing the system to deliver client file access bandwidths approaching gigabit-per-second network speeds.  相似文献   

8.
The delivery of scalable, rich multimedia applications and services on the Internet requires sophisticated technologies for transcoding, distributing, and streaming content. Cloud computing provides an infrastructure for such technologies, but specific challenges still remain in the areas of task management, load balancing, and fault tolerance. To address these issues, we propose a cloud-based distributed multimedia streaming service (CloudDMSS), which is designed to run on all major cloud computing services. CloudDMSS is highly adapted to the structure and policies of Hadoop, thus it has additional capacities for transcoding, task distribution, load balancing, and content replication and distribution. To satisfy the design requirements of our service architecture, we propose four important algorithms: content replication, system recovery for Hadoop distributed multimedia streaming, management for cloud multimedia management, and streaming resource-based connection (SRC) for streaming job distribution. To evaluate the proposed system, we conducted several different performance tests on a local testbed: transcoding, streaming job distribution using SRC, streaming service deployment and robustness to data node and task failures. In addition, we performed three different tests in an actual cloud computing environment, Cloudit 2.0: transcoding, streaming job distribution using SRC, and streaming service deployment.  相似文献   

9.

Background

The clinical decision support system can effectively break the limitations of doctors’ knowledge and reduce the possibility of misdiagnosis to enhance health care. The traditional genetic data storage and analysis methods based on stand-alone environment are hard to meet the computational requirements with the rapid genetic data growth for the limited scalability.

Methods

In this paper, we propose a distributed gene clinical decision support system, which is named GCDSS. And a prototype is implemented based on cloud computing technology. At the same time, we present CloudBWA which is a novel distributed read mapping algorithm leveraging batch processing strategy to map reads on Apache Spark.

Results

Experiments show that the distributed gene clinical decision support system GCDSS and the distributed read mapping algorithm CloudBWA have outstanding performance and excellent scalability. Compared with state-of-the-art distributed algorithms, CloudBWA achieves up to 2.63 times speedup over SparkBWA. Compared with stand-alone algorithms, CloudBWA with 16 cores achieves up to 11.59 times speedup over BWA-MEM with 1 core.

Conclusions

GCDSS is a distributed gene clinical decision support system based on cloud computing techniques. In particular, we incorporated a distributed genetic data analysis pipeline framework in the proposed GCDSS system. To boost the data processing of GCDSS, we propose CloudBWA, which is a novel distributed read mapping algorithm to leverage batch processing technique in mapping stage using Apache Spark platform.
  相似文献   

10.
Data centers are the backbone of cloud infrastructure platform to support large-scale data processing and storage. More and more business-to-consumer and enterprise applications are based on cloud data center. However, the amount of data center energy consumption is inevitably lead to high operation costs. The aim of this paper is to comprehensive reduce energy consumption of cloud data center servers, network, and cooling systems. We first build an energy efficient cloud data center system including its architecture, job and power consumption model. Then, we combine the linear regression and wavelet neural network techniques into a prediction method, which we call MLWNN, to forecast the cloud data center short-term workload. Third, we propose a heuristic energy efficient job scheduling with workload prediction solution, which is divided into resource management strategy and online energy efficient job scheduling algorithm. Our extensive simulation performance evaluation results clearly demonstrate that our proposed solution has good performance and is very suitable for low workload cloud data center.  相似文献   

11.
With the development of ubiquitous computing technology, users are using mobile devices which are for producing and accessing information. Due to the limited computing capability and storage, however, mobile cloud computing technology are emerging research issues in the architecture, design, and implementation. This paper proposes the trust management approach by analyzing user behavioral patterns for reliable mobile cloud computing. For this, we suggest a method to quantify a one-dimensional trusting relation based on the analysis of telephone call data from mobile devices. After that, we integrate inter-user trust relationship in mobile cloud environment. As a result, trustworthiness of data in data production, management, overall application, is enhanced.  相似文献   

12.

Data transmission and retrieval in a cloud computing environment are usually handled by storage device providers or physical storage units leased by third parties. Improving network performance considering power connectivity and resource stability while ensuring workload balance is a hot topic in cloud computing. In this research, we have addressed the data duplication problem by providing two dynamic models with two variant architectures to investigate the strengths and shortcomings of architectures in Big Data Cloud Computing Networks. The problems of the data duplication process will be discussed accurately in each model. Attempts have been made to improve the performance of the cloud network by taking into account and correcting the flaws of the previously proposed algorithms. The accuracy of the proposed models have been investigated by simulation. Achieved results indicate an increase in the workload balance of the network and a decrease in response time to user requests in the model with a grouped architecture for all the architectures. Also, the proposed duplicate data model with peer-to-peer network architecture has been able to increase the cloud network optimality compared to the models presented with the same architecture.

  相似文献   

13.
Recently, the video data has very huge volume, taking one city for example, thousands of cameras are built of which each collects high-definition video over 24–48 GB every day with the rapidly growth; secondly, data collected includes variety of formats involving multimedia, images and other unstructured data; furthermore the valuable information contains in only a few frames called key frames of massive video data; and the last problem caused is how to improve the processing velocity of a large amount of original video with computers, so as to enhance the crime prediction and detection effectiveness of police and users. In this paper, we conclude a novel architecture for next generation public security system, and the “front + back” pattern is adopted to address the problems brought by the redundant construction of current public security information systems which realizes the resource consolidation of multiple IT resources, and provides unified computing and storage environment for more complex data analysis and applications such as data mining and semantic reasoning. Under the architecture, we introduce cloud computing technologies such as distributed storage and computing, data retrieval of huge and heterogeneous data, provide multiple optimized strategies to enhance the utilization of resources and efficiency of tasks. This paper also presents a novel strategy to generate a super-resolution image via multi-stage dictionaries which are trained by a cascade training process. Extensive experiments on image super-resolution validate that the proposed solution can get much better results than some state-of-the-arts ones.  相似文献   

14.
Large cluster-based cloud computing platforms increasingly use commodity Ethernet technologies, such as Gigabit Ethernet, 10GigE, and Fibre Channel over Ethernet (FCoE), for intra-cluster communication. Traffic congestion can become a performance concern in the Ethernet due to consolidation of data, storage, and control traffic over a common layer-2 fabric, as well as consolidation of multiple virtual machines (VMs) over less physical hardware. Even as networking vendors race to develop switch-level hardware support for congestion management, we make the case that virtualization has opened up a complementary set of opportunities to reduce or even eliminate network congestion in cloud computing clusters. We present the design, implementation, and evaluation of a system called XCo, that performs explicit coordination of network transmissions over a shared Ethernet fabric to proactively prevent network congestion. XCo is a software-only distributed solution executing only in the end-nodes. A central controller uses explicit permissions to temporally separate (at millisecond granularity) the transmissions from competing senders through congested links. XCo is fully transparent to applications, presently deployable, and independent of any switch-level hardware support. We present a detailed evaluation of our XCo prototype across a number of network congestion scenarios, and demonstrate that XCo significantly improves network performance during periods of congestion. We also evaluate the behavior of XCo for large topologies using NS3 simulations.  相似文献   

15.
With the advent of cloud and virtualization technologies and the integration of various computer communication technologies, today’s computing environments can provide virtualized high quality services. The network traffic has also continuously increased with remarkable growth. Software defined networking/network function virtualization (SDN/NFV) enhancing the infrastructure agility, thus network operators and service providers are able to program their own network functions on vendor independent hardware substrate. However, in order for the SDN/NFV to realize a profit, it must provide a new resource sharing and monitoring procedures among the regionally distributed and virtualized computers. In this paper, we proposes a NFV monitoring architecture based practical measuring framework for network performance measurement. We also proposes a end-to-end connectivity support platform across a whole SDN/NFV networks has not been fully addressed.  相似文献   

16.
Virtual machines (VM) migration can improve availability, manageability, performance and fault tolerance of systems. Current migration researches mainly focus on the promotion of the efficiency by using shared storage, priority-based policy etc.. But the effect of migration is not well concerned. In fact, once physical servers are overloaded from denial-of-service attack (DDoS) attack, a hasty migration operation not only unable to alleviate the harm of the attack, but also increases the harmfulness. In this paper, a novel DDoS attack, Cloud-Droplet-Freezing (CDF) attack, is described according to the characteristics of cloud computing cluster. Our experiments show that such attack is able to congest internal network communication of cloud server cluster, whilst consume resources of physical server. Base on the analysis of CDF attack, we highlight the method of evaluating potential threats hidden behind the normal VM migration and analyze the flaws of existing intrusion detection systems/prevention system for defensing the CDF attack.  相似文献   

17.
Cloud computing should inherently support various types of data-intensive workloads with different storage access patterns. This makes a high-performance storage system in the Cloud an important component. Emerging flash device technologies such as solid state drives (SSDs) are a viable choice for building high performance computing (HPC) cloud storage systems to address more fine-grained data access patterns. However, the bit-per-dollar SSD price is still higher than the prices of HDDs. This study proposes an optimized progressive file layout (PFL) method to leverage the advantages of SSDs in a parallel file system such as Lustre so that small file I/O performance can be significantly improved. A PFL can dynamically adjust chunk sizes and stripe patterns according to various I/O traffics. Extensive experimental results show that this approach (i.e. building a hybrid storage system based on a combination of SSDs and HDDs) can actually achieve balanced throughput over mixed I/O workloads consisting of large and small file access patterns.  相似文献   

18.
I/O intensive applications have posed great challenges to computational scientists. A major problem of these applications is that users have to sacrifice performance requirements in order to satisfy storage capacity requirements in a conventional computing environment. Further performance improvement is impeded by the physical nature of these storage media even when state-of-the-art I/O optimizations are employed.In this paper, we present a distributed multi-storage resource architecture, which can satisfy both performance and capacity requirements by employing multiple storage resources. Compared to a traditional single storage resource architecture, our architecture provides a more flexible and reliable computing environment. This architecture can bring new opportunities for high performance computing as well as inherit state-of-the-art I/O optimization approaches that have already been developed. It provides application users with high-performance storage access even when they do not have the availability of a single large local storage archive at their disposal. We also develop an Application Programming Interface (API) that provides transparent management and access to various storage resources in our computing environment. Since I/O usually dominates the performance in I/O intensive applications, we establish an I/O performance prediction mechanism which consists of a performance database and a prediction algorithm to help users better evaluate and schedule their applications. A tool is also developed to help users automatically generate performance data stored in databases. The experiments show that our multi-storage resource architecture is a promising platform for high performance distributed computing.  相似文献   

19.
There are typically multiple heterogeneous servers providing various services in cloud computing. High power consumption of these servers increases the cost of running a data center. Thus, there is a problem of reducing the power cost with tolerable performance degradation. In this paper, we optimize the performance and power consumption tradeoff for multiple heterogeneous servers. We consider the following problems: (1) optimal job scheduling with fixed service rates; (2) joint optimal service speed scaling and job scheduling. For problem (1), we present the Karush-Kuhn-Tucker (KKT) conditions and provide a closed-form solution. For problem (2), both continuous speed scaling and discrete speed scaling are considered. In discrete speed scaling, the feasible service rates are discrete and bounded. We formulate the problem as an MINLP problem and propose a distributed algorithm by online value iteration, which has lower complexity than a centralized algorithm. Our approach provides an analytical way to manage the tradeoff between performance and power consumption. The simulation results show the gain of using speed scaling, and also prove the effectiveness and efficiency of the proposed algorithms.  相似文献   

20.
3D morphing is a popular technique for creating a smooth transition between two objects. In this paper we integrate volume morphing and rendering in a distributed network environment to speed up the computation efficiency. We describe our proposed system architecture of distributed volume morphing and the proposed algorithms, along with their implementation and performance on the networked workstations. A load evaluation function is proposed to partition the workload and the workstation cluster for better load balancing and then to improve the performance under highly uneven load situation. The performance evaluation for five load balancing strategies are conducted. Among them, the strategy ‘Request’ performs the best in terms of speedup. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号