首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cloud computing is becoming the new generation computing infrastructure, and many cloud vendors provide different types of cloud services. How to choose the best cloud services for specific applications is very challenging. Addressing this challenge requires balancing multiple factors, such as business demands, technologies, policies and preferences in addition to the computing requirements. This paper recommends a mechanism for selecting the best public cloud service at the levels of Infrastructure as a Service (IaaS) and Platform as a Service (PaaS). A systematic framework and associated workflow include cloud service filtration, solution generation, evaluation, and selection of public cloud services. Specifically, we propose the following: a hierarchical information model for integrating heterogeneous cloud information from different providers and a corresponding cloud information collecting mechanism; a cloud service classification model for categorizing and filtering cloud services and an application requirement schema for providing rules for creating application-specific configuration solutions; and a preference-aware solution evaluation mode for evaluating and recommending solutions according to the preferences of application providers. To test the proposed framework and methodologies, a cloud service advisory tool prototype was developed after which relevant experiments were conducted. The results show that the proposed system collects/updates/records the cloud information from multiple mainstream public cloud services in real-time, generates feasible cloud configuration solutions according to user specifications and acceptable cost predication, assesses solutions from multiple aspects (e.g., computing capability, potential cost and Service Level Agreement, SLA) and offers rational recommendations based on user preferences and practical cloud provisioning; and visually presents and compares solutions through an interactive web Graphical User Interface (GUI).  相似文献   

2.
Cloud computing, an on-demand computation model that consists of large data-centers (Clouds) managed by cloud providers, offers storage and computation needs for cloud users based on service level agreements (SLAs). Services in cloud computing are offered at relatively low cost. The model, therefore, forms a great target for many applications, such as startup businesses and e-commerce applications. The area of cloud computing has grown rapidly in the last few years; yet, it still faces some obstacles. For example, there is a lack of mechanisms that guarantee for cloud users the quality that they are actually getting, compared to the quality of service that is specified in SLAs. Another example is the concern of security, privacy and trust, since users lose control over their data and programs once they are sent to cloud providers. In this paper, we introduce a new architecture that aids the design and implementation of attestation services. The services monitor cloud-based applications to ensure software quality, such as security, privacy, trust and usability of cloud-based applications. Our approach is a user-centric approach through which users have more control on their own data/applications. Further, the proposed approach is a cloud-based approach where the powers of the clouds are utilized. Simulation results show that many services can be designed based on our architecture, with limited performance overhead.  相似文献   

3.
The performance of mobile devices including smart phones and laptops is steadily rising as prices plummet sharply. So, mobile devices are changing from being a mere interface for requesting services to becoming computing resources for providing and sharing services due to immeasurably improved performance. With the increasing number of mobile device users, the utilization rate of SNS (Social Networking Service) is also soaring. Applying SNS to the existing computing environment enables members of social network to share computing services without further authentication. To use mobile device as a computing resource, temporary network disconnection caused by user mobility and various HW/SW faults causing service disruption should be considered. Also these issues must be resolved to support mobile users and to provide user requirements for services. Accordingly, we propose fault tolerance and QoS (Quality of Services) scheduling using CAN (Content Addressable Network) in Mobile Social Cloud Computing (MSCC). MSCC is a computing environment that integrates social network-based cloud computing and mobile devices. In the computing environment, a mobile user can, through mobile devices, become a member of a social network through real world relationships. Essentially, members of a social network share cloud service or data with other members without further authentication by using their mobile device. We use CAN as the underlying MSCC to logically manage the locations of mobile devices. Fault tolerance and QoS scheduling consists of four sub-scheduling algorithms: malicious-user filtering, cloud service delivery, QoS provisioning, and replication and load-balancing. Under the proposed scheduling, a mobile device is used as a resource for providing cloud services, faults caused from user mobility or other reasons are tolerated and user requirements for QoS are considered. We simulate scheduling both with and without CAN. The simulation results show that our proposed scheduling algorithm enhances cloud service execution time, finish time and reliability and reduces the cloud service error rate.  相似文献   

4.

In a cloud computing environment, there are many providers offering various services of different quality attributes. Selecting a cloud service that meets user requirements from such a large number of cloud services is a complex and time-consuming process. At the same time, user requirements are sometimes described as uncertain (sets or intervals), something which should be taken into account while selecting cloud services. This paper proposes an efficient method for ranking cloud services while accounting for uncertain user requirements. For this purpose, a requirement interval is defined to fulfill uncertain user requirements. Since there are a large number of cloud services, the services falling outside the requirement interval are filtered out. Finally, the analytic hierarchy process is employed for ranking. The results evaluate the proposed method in terms of optimality of ranking, scalability, and sensitivity analyses. According to the test results, the proposed method outperforms the previous methods.

  相似文献   

5.
In cloud computing, service providers offer cost-effective and on-demand IT services to service users on the basis of Service Level Agreements (SLAs). However the effective management of SLAs in cloud computing is essential for the service users to ensure that they achieve the desired outcomes from the formed service. In this paper, we introduce a SLA management framework that will enable service users to select the best available service provider on the basis of its reputation and then monitor the run time performance of the service provider to determine whether or not it will fulfill its promise defined in the SLA. Such analysis will assist the service user to make an informed decision about the continuation of service with the service provider.  相似文献   

6.
Cloud computing provides many kinds of application services for cloud users, but security problems have caused great impact on Software as a Service (SaaS). As a commercial model, SaaS is related among different participants who could be malicious or dishonest. This paper presents a Software Service Signature (S3) to deal with several security issues in SaaS and keep the interests and rights of all participants in safety. Our design is based on ID-based proxy signatures from pairings. The analysis shows that the proposed scheme can effectively strengthen the security through authentication in cloud computing.  相似文献   

7.
Cloud computing is an emerging computing paradigm in which IT resources and capacities are provided as services over the Internet. Promising as it is, this paradigm also brings forth new challenges for security when users want to securely outsource the computation of cryptographic operations to the untrusted cloud servers. As we know, modular exponentiation is one of the basic operations among most of current cryptosystems. In this paper, we present the generic secure outsourcing schemes enabling users to securely outsource the computations of exponentiations to the untrusted cloud servers. With our techniques, a batch of exponentiations (e.g. t exponentiations) can be efficiently computed by the user with only O(n+t) multiplications, where n is the number of bits of the exponent. Compared with the state-of-the-art algorithm, the proposed schemes are superior in both efficiency and verifiability. Furthermore, there are not any complicated pre-computations on the user side. Finally, the schemes are proved to be secure under the Subset Sum Problem.  相似文献   

8.
Power management is becoming very important in data centers. To apply power management in cloud computing, Green Computing has been proposed and considered. Cloud computing is one of the new promising techniques, that are appealing to many big companies. In fact, due to its dynamic structure and property in online services, cloud computing differs from current data centers in terms of power management. To better manage the power consumption of web services in cloud computing with dynamic user locations and behaviors, we propose a power budgeting design based on the logical level, using distribution trees. By setting multiple trees or forest, we can differentiate and analyze the effect of workload types and Service Level Agreements (SLAs, e.g. response time) in terms of power characteristics. Based on these, we introduce classified power capping for different services as the control reference to maximize power saving when there are mixed workloads.  相似文献   

9.
Cloud services are on-demand services provided to end-users over the Internet and hosted by cloud service providers. A cloud service consists of a set of interacting applications/processes running on one or more interconnected VMs. Organizations are increasingly using cloud services as a cost-effective means for outsourcing their IT departments. However, cloud service availability is not guaranteed by cloud service providers, especially in the event of anomalous circumstances that spontaneously disrupt availability including natural disasters, power failure, and cybersecurity attacks. In this paper, we propose a framework for developing intelligent systems that can monitor and migrate cloud services to maximize their availability in case of cloud disruption. The framework connects an autonomic computing agent to the cloud to automatically migrate cloud services based on anticipated cloud disruption. The autonomic agent employs a modular design to facilitate the incorporation of different techniques for deciding when to migrate cloud services, what cloud services to migrate, and where to migrate the selected cloud services. We incorporated a virtual machine selection algorithm for deciding what cloud services to migrate that maximizes the availability of high priority services during migration under time and network bandwidth constraints. We implemented the framework and conducted experiments to evaluate the performance of the underlying techniques. Based on the experiments, the use of this framework results in less down-time due to migration, thereby leading to reduced cloud service disruption.  相似文献   

10.
Cloud computing is an emerging technology and is being widely considered for resource utilization in various research areas. One of the main advantages of cloud computing is its flexibility in computing resource allocations. Many computing cycles can be ready in very short time and can be smoothly reallocated between tasks. Because of this, there are many private companies entering the new business of reselling their idle computing cycles. Research institutes have also started building their own cloud systems for their various research purposes. In this paper, we introduce a framework for virtual cluster system called vcluster which is capable of utilizing computing resources from heterogeneous clouds and provides a uniform view in computing resource management. vcluster is an IaaS (Infrastructure as a Service) based cloud resource management system. It distributes batch jobs to multiple clouds depending on the status of queue and system pool. The main design philosophy behind vcluster is cloud and batch system agnostic and it is achieved through plugins. This feature mitigates the complexity of integrating heterogeneous clouds. In the pilot system development, we use FermiCloud and Amazon EC2, which are a private and a public cloud system, respectively. In this paper, we also discuss the features and functionalities that must be considered in virtual cluster systems.  相似文献   

11.
With the development of web technologies and cloud computing, more and more services which provide similar functionality but differ in QoS are deployed on the Internet via cloud platforms. Recently, skyline analysis is adopted to select candidate services with better QoS to facilitate the process of QoS-aware service composition. However, the fast increasing number of services, multiple QoS attributes to be considered, and dynamic service environment pose a big challenge to skyline service selection. In this paper, we present a parallel skyline service selection method to improve the efficiency by upgrading the MapReduce paradigm. An angle-based dataspace partitioning approach is employed in our MapReduce based skyline service selection. In particular, we explore the dominance power of local skyline services to improve the efficiency of selection, and present two detailed algorithms. To handle the dynamic nature of service environment, we employ Paper-Tape (PT) model which is used to rapidly locate varying services, and present a dynamic skyline service selection algorithm based on PT model. By experimenting over both real and synthetical datasets, we demonstrate the efficiency of our proposed methods.  相似文献   

12.
Nowadays, complex smartphone applications are developed that support gaming, navigation, video editing, augmented reality, and speech recognition which require considerable computational power and battery lifetime. The cloud computing provides a brand new opportunity for the development of mobile applications. Mobile Hosts (MHs) are provided with data storage and processing services on a cloud computing platform rather than on the MHs. To provide seamless connection and reliable cloud service, we are focused on communication. When the connection to cloud server is increased explosively, each MH connection quality has to be declined. It causes several problems: network delay, retransmission, and so on. In this paper, we propose proxy based architecture to improve link performance for each MH in mobile cloud computing. By proposed proxy, the MH need not keep connection of the cloud server because it just connected one of proxy in the same subnet. And we propose the optimal access network discovery algorithm to optimize bandwidth usage. When the MH changes its point of attachment, proposed discovery algorithm helps to connect the optimal access network for cloud service. By experiment result and analysis, the proposed connection management method has better performance than the 802.11 access method.  相似文献   

13.
Cloud computing technology plays a very important role in many areas, such as in the construction and development of the smart city. Meanwhile, numerous cloud services appear on the cloud-based platform. Therefore how to how to select trustworthy cloud services remains a significant problem in such platforms, and extensively investigated owing to the ever-growing needs of users. However, trust relationship in social network has not been taken into account in existing methods of cloud service selection and recommendation. In this paper, we propose a cloud service selection model based on the trust-enhanced similarity. Firstly, the direct, indirect, and hybrid trust degrees are measured based on the interaction frequencies among users. Secondly, we estimate the overall similarity by combining the experience usability measured based on Jaccard’s Coefficient and the numerical distance computed by Pearson Correlation Coefficient. Then through using the trust degree to modify the basic similarity, we obtain a trust-enhanced similarity. Finally, we utilize the trust-enhanced similarity to find similar trusted neighbors and predict the missing QoS values as the basis of cloud service selection and recommendation. The experimental results show that our approach is able to obtain optimal results via adjusting parameters and exhibits high effectiveness. The cloud services ranking by our model also have better QoS properties than other methods in the comparison experiments.  相似文献   

14.
Through a Privacy Calculus (i.e. risk–benefit trade-off) lens, this study identifies factors that contribute to consumers’ adoption of personalised nutrition services. We argue that consumers’ intention to adopt personalised nutrition services is determined by perceptions of Privacy Risk, Personalisation Benefit, Information Control, Information Intrusiveness, Service Effectiveness, and the Benevolence, Integrity, and Ability of a service provider. Data were collected in eight European countries using an online survey. Results confirmed a robust and Europe-wide applicable cognitive model, showing that consumers’ intention to adopt personalised nutrition services depends more on Perceived Personalisation Benefit than on Perceived Privacy Risk. Perceived Privacy Risk was mainly determined by perceptions of Information Control, whereas Perceived Personalisation Benefit primarily depended on Perceived Service Effectiveness. Services that required increasingly intimate personal information, and in particular DNA, raised consumers’ Privacy Risk perceptions, but failed to increase perceptions of Personalisation Benefit. Accordingly, to successfully exploit personalised nutrition, service providers should convey a clear message regarding the benefits and effectiveness of personalised nutrition services. Furthermore, service providers may reduce Privacy Risk by increasing consumer perceptions of Information Control. To enhance perceptions of both Information Control and Service Effectiveness, service providers should make sure that consumers perceive them as competent and reliable.  相似文献   

15.

Infrastructure as a Service (IaaS) is a cloud computing service provided over the internet to facilitate the provisioning of various services such as storage, processes, etc. The provider in the IaaS market may offer some purchasing plans including: reservation, on-demand, and spot plans for its resources. As in real scenarios, demand volume for each plan is assumed to be a random variable with a given probability distribution. The provider maximizes its average revenue in the long run by optimal allocation of its resources among the plans. We formulate an Integer Linear Programming (ILP) model with a stochastic constraint, to determine the number of resources to be allocated for each plan in every time slot in the planning horizon. First, fixed prices are considered for each plan, then two mechanisms of Continuous Double Auction and Second Price Sealed Bid Auction are considered for reservations and spot plans, respectively, to obtain market-driven prices of the services. The Seasonal Weighted Moving Average method is used to predict the amount of demand in every slot. Finally, the proposed mechanisms are evaluated through simulations and the results confirm the effectiveness of the methods in maximizing the revenue and overall utilization of the available IaaS capacity.

  相似文献   

16.
The emergence of cloud computing has made it become an attractive solution for large-scale data processing and storage applications. Cloud infrastructures provide users a remote access to powerful computing capacity, large storage space and high network bandwidth to deploy various applications. With the support of cloud computing, many large-scale applications have been migrated to cloud infrastructures instead of running on in-house local servers. Among these applications, continuous write applications (CWAs) such as online surveillance systems, can significantly benefit due to the flexibility and advantages of cloud computing. However, with specific characteristics such as continuous data writing and processing, and high level demand of data availability, cloud service providers prefer to use sophisticated models for provisioning resources to meet CWAs’ demands while minimizing the operational cost of the infrastructure. In this paper, we present a novel architecture of multiple cloud service providers (CSPs) or commonly referred to as Cloud-of-Clouds. Based on this architecture, we propose two operational cost-aware algorithms for provisioning cloud resources for CWAs, namely neighboring optimal resource provisioning algorithm and global optimal resource provisioning algorithm, in order to minimize the operational cost and thereby maximizing the revenue of CSPs. We validate the proposed algorithms through comprehensive simulations. The two proposed algorithms are compared against each other to assess their effectiveness, and with a commonly used and practically viable round-robin approach. The results demonstrate that NORPA and GORPA outperform the conventional round-robin algorithm by reducing the operational cost by up to 28 and 57 %, respectively. The low complexity of the proposed cost-aware algorithms allows us to apply it to a realistic Cloud-of-Clouds environment in industry as well as academia.  相似文献   

17.
In this paper we present SNUAGE, a platform-as-a-service security framework for building secure and scalable multi-layered services based on the cloud computing model. SNUAGE ensures the authenticity, integrity, and confidentiality of data communication over the network links by creating a set of security associations between the data-bound components on the presentation layer and their respective data sources on the data persistence layer. SNUAGE encapsulates the security procedures, policies, and mechanisms in these security associations at the service development stage to form a collection of isolated and protected security domains. The secure communication among the entities in one security domain is governed and controlled by a standalone security processor and policy attached to this domain. This results into: (1) a safer data delivery mechanism that prevents security vulnerabilities in one domain from spreading to the other domains and controls the inter-domain information flow to protect the privacy of network data, (2) a reusable security framework that can be employed in existing platform-as-a-service environments and across diverse cloud computing service models, and (3) an increase in productivity and delivery of reliable and secure cloud computing services supported by a transparent programming model that relieves application developers from the intricate details of security programming. Last but not least, SNUAGE contributes to a major enhancement in the energy consumption and performance of supported cloud services by providing a suitable execution container in its protected security domains for a wide suite of energy- and performance-efficient cryptographic constructs such as those adopted by policy-driven and content-based security protocols. An energy analysis of the system shows, via real energy measurements, major savings in energy consumption on the consumer devices as well as on the cloud servers. Moreover, a sample implementation of the presented security framework is developed using Java and deployed and tested in a real cloud computing infrastructure using the Google App Engine service platform. Performance benchmarks show that the proposed framework provides a significant throughput enhancement compared to traditional network security protocols such as the Secure Sockets Layer and the Transport Layer Security protocols.  相似文献   

18.
19.
The delivery of scalable, rich multimedia applications and services on the Internet requires sophisticated technologies for transcoding, distributing, and streaming content. Cloud computing provides an infrastructure for such technologies, but specific challenges still remain in the areas of task management, load balancing, and fault tolerance. To address these issues, we propose a cloud-based distributed multimedia streaming service (CloudDMSS), which is designed to run on all major cloud computing services. CloudDMSS is highly adapted to the structure and policies of Hadoop, thus it has additional capacities for transcoding, task distribution, load balancing, and content replication and distribution. To satisfy the design requirements of our service architecture, we propose four important algorithms: content replication, system recovery for Hadoop distributed multimedia streaming, management for cloud multimedia management, and streaming resource-based connection (SRC) for streaming job distribution. To evaluate the proposed system, we conducted several different performance tests on a local testbed: transcoding, streaming job distribution using SRC, streaming service deployment and robustness to data node and task failures. In addition, we performed three different tests in an actual cloud computing environment, Cloudit 2.0: transcoding, streaming job distribution using SRC, and streaming service deployment.  相似文献   

20.

Over the last decades, web services are used for performing specific tasks demanded by users. The most important task of service’s classification system is to match an anonymous input service with the stored pre-classified web services. The most challenging issue is that web services are currently organized and classified according to syntax while the context of the requested service is ignored. Due to this motivation, Cloud-based Classification Methodology is proposed as it presents a new methodology based on semantic web service’s classification. Furthermore, cloud computing is used for not only storing but also allocating the high scale of web services with both high availability and accessibility. Fog technology is employed to reduce the latency and to speed up response time. The experimental results using the suggested methodology show a better performance of the proposed system regarding both precision and accuracy in comparison with most of the methods discussed in the literature of the current study.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号