首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Xylans were isolated from the pericarp of prickly pear seeds of Opuntia ficus-indica (OFI) by alkaline extraction, fractionated by precipitation and purified. Six fractions were obtained and characterized by sugar analysis and NMR spectroscopy. They were assumed to be (4-O-methyl-D-glucurono)-D-xylans, with 4-O-alpha-D-glucopyranosyluronic acid groups linked at C-2 of a (1-->4)-beta-D-xylan. The sugar composition and the 1H and 13C NMR spectra showed that their chemical structures were very similar, but with different proportions of D-Xyl and 4-O-Me-D-GlcA. Our results showed that, on average, the water soluble xylans have one nonreducing terminal residue of 4-O-methyl-D-glucuronic acid for every 11 to 14 xylose units, whereas in the water non-soluble xylans, xylose units can varied from 18 to 65 residues for one nonreducing terminal residue of 4-O-methyl-D-glucuronic acid.  相似文献   

2.
Hemicellulose-type polysaccharides were isolated from the pericarp of seeds of Argania spinosa (L.) Skeels fruit by sequential alkaline extractions and fractionated by precipitation. Water soluble and water insoluble fractions were obtained, purified and characterized by sugar analysis and 1H and 13C NMR spectroscopy. The water soluble fractions were assumed to be (4-O-methyl-D-glucurono)-D-xylans, with 4-O-methyl-D-glucopyranosyluronic acid groups linked to C-2 of a (1-->4)-beta-D-xylan. The 1H NMR spectrum showed that the water soluble xylans have, on average, one non-reducing terminal residue of 4-O-methyl-D-glucuronic acid for every seven xylose units. The water insoluble fractions consisted of a neutral xylan with linear (1-->4)-beta-D-xylopyranosyl units.  相似文献   

3.
Sun YC  Wen JL  Xu F  Sun RC 《Bioresource technology》2011,102(10):5947-5951
Three organosolv and three alkaline hemicellulosic fractions were prepared from lignocellulosic biomass of the fast-growing shrub Tamarix austromongolica (Tamarix Linn.). Sugar analysis revealed that the organosolv-soluble fractions contained a higher content of glucose (33.7-6.5%) and arabinose (14.8-5.6%), and a lower content of xylose (62.2-54.8%) than the hemicellulosic fractions isolated with aqueous alkali solutions. A relatively high concentration of alkali resulted in a decreasing trend of the xylose/4-O-methyl-d-glucuronic acid ratio in the alkali-soluble fractions. The results of NMR analysis supported a major substituted structure based on a linear polymer of β-(1 → 4)-linked d-xylopyranosyl residues, having ramifications of α-l-arabinofuranose and 4-O-methyl-d-glucuronic acid residues monosubstituted at O-3 and O-2, respectively. Thermogravimetric analysis revealed that one step of major mass loss occurred between 200-400 °C, as hemicelluloses devolatilized with total volatile yield of about 55%. It was found that organosolv-soluble fractions are more highly ramified, and showed a higher thermal stability than the alkali-soluble fractions.  相似文献   

4.
Katarína Kolenová 《FEBS letters》2010,584(18):4063-4068
α-Glucuronidases of glycoside hydrolase family 115 of the xylose-fermenting yeast Pichia stipitis and wood-destroying fungus Schizophyllum commune liberate 4-O-methyl-d-glucuronic acid residues from aldouronic acids and glucuronoxylan. The specific activities of both enzymes depended on polymerization degree of the acidic xylooligosaccharides and were inhibited by linear β-1,4-xylooligosaccharides. These results suggest interaction of the enzyme with several xylopyranosyl residues of the xylan main chain. Using 1H NMR spectroscopy and reduced aldopentaouronic acid (MeGlcA3Xyl4-ol) as a substrate, it was found that both enzymes are inverting glycoside hydrolases releasing 4-O-methyl-d-glucuronic acid (MeGlcA) as its β-anomer.  相似文献   

5.
The O-polysaccharide of Mesorhizobium loti HAMBI 1148 was obtained by mild acid degradation of the lipopolysaccharide and studied by sugar and methylation analyses, Smith degradation, and 1H and 13C NMR spectroscopies, including 2D 1H/1H COSY, TOCSY, ROESY, and H-detected 1H/13C HSQC experiments. The O-polysaccharide was found to have a branched hexasaccharide-repeating unit of the following structure:where 2-acetamido-2-deoxy-4-O-methyl-d-glucose (d-GlcNAc4Me) and methyl group on 2-substituted d-rhamnose (Me) shown in italics are present in ∼80% and ∼40% repeating units, respectively. Similar studies of the O-polysaccharide from Mesorhizobium amorphae ATCC 19655 by sugar analysis and NMR spectroscopy revealed essentially the same structure but a higher content of 3-O-methyl-d-rhamnose (∼70%).  相似文献   

6.
Xylanases of glycosyl hydrolase family 30 (GH30) have been shown to cleave β-1,4 linkages of 4-O-methylglucuronoxylan (MeGXn) as directed by the position along the xylan chain of an α-1,2-linked 4-O-methylglucuronate (MeGA) moiety. Complete hydrolysis of MeGXn by these enzymes results in singly substituted aldouronates having a 4-O-methylglucuronate moiety linked to a xylose penultimate from the reducing terminal xylose and some number of xylose residues toward the nonreducing terminus. This novel mode of action distinguishes GH30 xylanases from the more common xylanase families that cleave MeGXn in accessible regions. To help understand this unique biochemical function, we have determined the structure of XynC in its native and ligand-bound forms. XynC structure models derived from diffraction data of XynC crystal soaks with the simple sugar glucuronate (GA) and the tetrameric sugar 4-O-methyl-aldotetrauronate resulted in models containing GA and 4-O-methyl-aldotriuronate, respectively. Each is observed in two locations within XynC surface openings. Ligand coordination occurs within the XynC catalytic substrate binding cleft and on the structurally fused side β-domain, demonstrating a substrate targeting role for this putative carbohydrate binding module. Structural data reveal that GA acts as a primary functional appendage for recognition and hydrolysis of the MeGXn polymer by the protein. This work compares the structure of XynC with a previously reported homologous enzyme, XynA, from Erwinia chrysanthemi and analyzes the ligand binding sites. Our results identify the molecular interactions that define the unique function of XynC and homologous GH30 enzymes.  相似文献   

7.
A novel water-soluble heteropolysaccharide FVP60-B was extracted from the fruiting bodies of Flammulina velutipes with boiling water and purified by Sephacryl S-300 and S-400, which molecular weight was estimated to be 1.3 × 104 Da by HPLC. It is composed of l-fucose, d-mannose, d-glucose and d-galactose in a ratio of 1.16:0.82:1.00:3.08. Sugar analysis, methylation analysis together with 1H, 13C and 2D NMR spectroscopy disclosed that FVP60-B is consisted of a α-(1 → 6)-d-galactopyranan backbone with a terminal fucosyl, terminal glucosyl and α-(1 → 6)-d-mannopyranan units on O-2 of 2,6-O-substituted-d-galactosyl units.  相似文献   

8.
Cell wall and soluble polysaccharides that reacted with Trichosporon domesticum factor III serum were isolated from the type strain of T. domesticum. The fractions contained O-acetyl groups, which contributed to the serological reactivity. The antigenic structure was characterized by chromatographic and spectroscopic methods. The polysaccharide has an α-(1→3)- -mannan backbone with hetero-oligosaccharide side chains consisting of a 2-O-substituted β- -glucuronic acid residue bound to O-2 of the mannose residue, β- -xylopyranosyl residues located in the middle of the side chain, and a nonreducing terminal α- -arabinopyranosyl residue bound to O-4 of xylose. The mannan backbone is O-acetylated at O-6 of the mannose residues.  相似文献   

9.
The neutral and acidic sugar residue compositions of acidic gums from Prunus have been determined by a combination of methods including a simple but effective titrimetric procedure. The molar ratio Of d-glucuronic acid to 4-O-methyl-d-glucuronic acid residues has been determined.  相似文献   

10.
Methyl glycosides of xylo-oligosaccharides (linear and branched) and 4-O-methyl-d-glucuronic acid-containing oligomers closely reflecting the main structural features of native xylans were studied by thermal analysis and pyrolysis—gas chromatography. The number of monomeric residues in the oligosaccharides was found to affect markedly the course of active thermal decomposition. The thermal stability increases with increasing number of monomeric residues, but the ratio of the 2-furaldehyde formed to 3-hydroxy-2-penteno-1,5-lactone remains almost constant, the latter compound being formed from both xylopyranosyl and 4-O-methyl-d-glucuronic acid non-reducing residues in the molecule. A considerable difference in the course of thermal decomposition was observed on comparing reducing sugars to their glycosides, and when an ionic dehydrating catalyst was added to the pyrolyzed sample. The results suggest that the 4-O-methyl-α-d-glucopyranosyluronic acid linkage is the most thermally stable linkage in native (4-O-methylglucurono)xylans, and that the acetyl groups do not significantly accelerate the thermal decomposition of the polysaccharide.  相似文献   

11.
The physicochemical properties and structural characteristics of seven alkali-soluble hemicellulosic preparations were determined. These were extracted from bamboo (Bambusa rigida) with 1 M NaOH, KOH, LiOH, NH3·H2O, (CH3CH2)3N, Ca(OH)2, Ba(OH)2, respectively, at 50 °C for 3 h, were comparatively studied. Sugar analysis showed that these hemicelluloses contained d-xylose as the major constituent, along with d-glucose and l-arabinose in noticeable amounts. Uronic acids, principally 4-O-methyl-d-glucuronic acid, occurred in a small amount. Furthermore, based on the sugar analysis and FTIR and NMR spectroscopy, it can be concluded that the hemicelluloses consist of a backbone of β-(1→4)-linked d-xylopyranosyl units having branches of arabinose and 4-O-methyl-d-glucuronic acid. Nitrobenzene oxidation revealed that the hemicelluloses obtained are mostly free of bound lignins. Moreover, it is noteworthy that hemicelluloses isolated with the different alkaline solutions presented different chemical compositions and slightly dissimilar structural features, indicating that alkalinity played an important role in cleaving the chemical linkages between the hemicelluloses and the lignins.  相似文献   

12.
Carrageenan was extracted from the red seaweed Sarconema scinaioides of Indian waters and was characterized. The crude carrageenan as well as its alkali modified derivative was composed of 3,6-anhydro galactose, 6-O-methyl galactose as well as galactose moieties in various proportions. Linkage analysis exhibited that these two carrageenan samples consisted of 4-linked 3,6-anhydrogalactose residue sulphated at position 2, and 3-linked galactose residue sulphated at position 4. The physicochemical and rheological data along with molecular weight data, FT-IR, 1D and 2D NMR (1H, 13C, COSY and HSQC) spectrometry suggested that the polysaccharide was composed predominantly of iota- along with a small amount of its precursor nu (ν)-carrageenan, unlike the hybrid carrageenans (iota-, pyruvated- and kappa-carrageenans) from this seaweed reported in the literature. This Indian seaweed species would be a potentially important source of iota-carrageenan.  相似文献   

13.
Methylated anthocyanin glycosides were isolated from red Canna indica flower and identified as malvidin 3-O-(6-O-acetyl-β-d-glucopyranoside)-5-O-β-d-glucopyranoside (1), malvidin 3,5-O-β-d-diglucopyranoside (2), cyanidin-3-O-(6″-O-α-rhamnopyranosyl-β-glucopyranoside (3), cyanidin-3-O-(6″-O-α-rhamnopyranosyl)-β-galactopyranoside (4), cyanidin-3-O-β-glucopyranoside (5) and cyanidin-O-β-galactopyranoside (6) by HPLC-PDA. Their structures were subsequently determined on the basis of spectroscopic analyses, that is, 1H NMR, 13C NMR, HMQC, HMBC, ESI-MS, and UV-vis. Compounds (1-4) were found to be in major quantity while compounds (5-6) were in minor quantity.  相似文献   

14.
In order to conduct metabolomic studies in a model plant for genome research, such as Arabidopsis thaliana (Arabidopsis), it is a prerequisite to obtain structural information for the isolated metabolites from the plant of interest. In this study, we isolated metabolites of Arabidopsis in a relatively non-targeted way, aiming at the construction of metabolite standards and chemotaxonomic comparison. Anthocyanins (5 and 7) called A8 and A10 were isolated and their structures were elucidated as cyanidin 3-O-[2-O-(β-d-xylopyranosyl)-6-O-(4-O-(β-d-glucopyranosyl)-E-p-coumaroyl)-β-d-glucopyranoside]-5-O-[6-O-(malonyl)-β-d-glucopyranoside] and cyanidin 3-O-[2-O-(2-O-(E-sinapoyl)-β-d-xylopyranosyl)-6-O-(4-O-(β-d-glucopyranosyl)-E-p-coumaroyl)-β-d-glucopyranoside]-5-O-[β-d-glucopyranoside] from analyses of 1D NMR, 2D NMR (1H NMR, NOE, 13C NMR, HMBC and HMQC), HRFABMS, FT-ESI-MS and GC-TOF-MS data. In addition, 35 known compounds, including six anthocyanins, eight flavonols, one nucleoside, one indole glucosinolate, four phenylpropanoids and a derivative, together with three indoles, one carotenoid, one apocarotenoid, three galactolipids, two chlorophyll derivatives, one steroid, one hydrocarbon, and two dicarboxylic acids, were also isolated and identified from their spectroscopic data.  相似文献   

15.
The distribution of the 4-O-methyl-d-glucuronic acid residues in birch xylan has been studied. Elimination of the 4-O-methyl-d-glucuronic acid residues of methylated birch-xylan was followed by specific cleavage of the xylan backbone at the originally branched d-xylose residues, using a technique involving sequential oxidation, β-elimination, and mild hydrolysis with acid. The molecular weight distribution of the resulting methylated oligosaccharides indicates that the 4-O-methyl-d-glucuronic acid residues are irregularly distributed in birch xylan.  相似文献   

16.

Background

Trichoderma reesei CE16 acetyl esterase (AcE) is a component of the plant cell wall degrading system of the fungus. The enzyme behaves as an exo-acting deacetylase removing acetyl groups from non-reducing end sugar residues.

Methods

In this work we demonstrate this exo-deacetylating activity on natural acetylated xylooligosaccharides using MALDI ToF MS.

Results

The combined action of GH10 xylanase and acetylxylan esterases (AcXEs) leads to formation of neutral and acidic xylooligosaccharides with a few resistant acetyl groups mainly at their non-reducing ends. We show here that these acetyl groups serve as targets for TrCE16 AcE. The most prominent target is the 3-O-acetyl group at the non-reducing terminal Xylp residues of linear neutral xylooligosaccharides or on aldouronic acids carrying MeGlcA at the non-reducing terminus. Deacetylation of the non-reducing end sugar may involve migration of acetyl groups to position 4, which also serves as substrate of the TrCE16 esterase.

Conclusion

Concerted action of CtGH10 xylanase, an AcXE and TrCE16 AcE resulted in close to complete deacetylation of neutral xylooligosaccharides, whereas substitution with MeGlcA prevents removal of acetyl groups from only a small fraction of the aldouronic acids. Experiments with diacetyl derivatives of methyl β-d-xylopyranoside confirmed that the best substrate of TrCE16 AcE is 3-O-acetylated Xylp residue followed by 4-O-acetylated Xylp residue with a free vicinal hydroxyl group.

General significance

This study shows that CE16 acetyl esterases are crucial enzymes to achieve complete deacetylation and, consequently, complete the saccharification of acetylated xylans by xylanases, which is an important task of current biotechnology.  相似文献   

17.
Thiourea, PhNHC(S)NHP(O)(OPri)2 (LH) chelates of CoII, NiII, and PdII ions have been obtained and investigated by single-crystal X-ray diffraction, UV, IR, NMR spectroscopy, and EI mass-spectrometry. The unusual 1,3-N,S-coordination via sulfur and NP(O) nitrogen atoms has been found in the trans-square-planar NiL2 and PdL2 complexes, whereas the 1,5-O,S-coordination is realized in the tetrahedral CoL2 complex. DFT calculations have revealed significant stabilization of the 1,3-N,S-structures due to stronger crystal field and the NH-OP hydrogen bonds.  相似文献   

18.
The structures of water-soluble birch and beech xylans, extracted from holocellulose using dimethyl sulfoxide, were determined employing 1H and 13C NMR spectroscopy together with chemical analysis. These polysaccharides were found to be O-acetyl-(4-O-methylglucurono)xylans containing one 4-O-methylglucuronic acid substituent for approximately every 15 D-xylose residues. The average degree of acetylation of the xylose residues in these polymers was 0.4. The presence of the structural element -->4)[4-O-Me-alpha-D-GlcpA-(1-->2)][3-O-Ac]-beta-D-Xylp-(1--> was demonstrated. Additional acetyl groups were present as substituents at C-2 and/or C-3 of the xylopyranosyl residues. Utilizing size-exclusion chromatography in combination with mass spectroscopy, the weight-average molar masses (and polydispersities) were shown to be 8000 (1.09) and 11,100 (1.08) for birch and beech xylan, respectively.  相似文献   

19.
Chemical structure of fomitellan A, a polysaccharide with a mitogenic effect isolated from the fruiting bodies of Fomitella fraxinea, has been assigned as a mannofucogalactan with a repeating unit of penta-saccharide, which was composed of a (1→6)-linked d-galactopyranosyl backbone having a C-2 position substituted with disaccharide units of 3-O-d-mannopyranosyl-l-fucopyranosyl residue. The 1H and 13C NMR signals of fomitellan A have been completely assigned by extensive NMR experiments.  相似文献   

20.
The X-ray diffraction analysis of N-o-nitrophenyl-2,3,4,6-tetra-O-acetyl-β-d-glucopyranosylamine (1), N-m-nitrophenyl-2,3,4,6-tetra-O-acetyl-β-d-glucopyranosylamines, N-p-nitrophenyl-2,3,4,6-tetra-O-acetyl-β-d-glucopyranosylamines, and their N-acetyl derivatives was performed. The sugar moieties always adopt 4C1 conformations, however, due to crystal packing forces they are always slightly distorted. It was found that except N-acetyl, N-m-nitrophenyl-2,3,4,6-tetra-O-acetyl-β-d-glucopyranosylamine (5), none of the glucopyranosylamines studied in this paper form strong hydrogen bonds in the crystal lattice. Additionally, (5) crystallizes with a molecule of water, which occupies a special crystallographic position (on the twofold axis) and links two sugar molecules by hydrogen bonds. The CP MAS NMR spectra confirmed the presence of the intermolecular hydrogen bond involving the molecule of water in (5). Moreover, it was proved that in (1) an intramolecular hydrogen bond is formed between the glycosidic linkage and the nitro group.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号