首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Regulation of Metabolite Flux through Voltage-Gating of VDAC Channels   总被引:7,自引:0,他引:7  
The mitochondrial outer membrane channel, VDAC, is thought to serve as the major permeability pathway for metabolite flux between the cytoplasm and mitochondria. The permeability of VDAC to citrate, succinate, and phosphate was studied in channels reconstituted into planar phospholipid membranes. All ions showed large changes in permeability depending on whether the channel was in the open or in the low conductance, ``closed' state, with the closed state always more cation selective. This was especially true for the divalent and trivalent anions. Additionally, the anion flux when the voltage was zero was shown to decrease to 5–11% of the open state flux depending on the anion studied. These results give the first rigorous examination of the ability of metabolites to permeate through VDAC channels and indicate that these channels can control the flux of these ions through the outer membrane. This lends more evidence to the growing body of experiments that suggest that the outer mitochondrial membrane has a much more important role in controlling mitochondrial activity than has been thought historically. Received: 4 November 1996/Revised: 8 January 1997  相似文献   

2.
3.
Hyperpolarization-activated cyclic nucleotide-gated (HCN) ion channels play an important role in regulating electrical activity in the heart and brain. They are gated by the binding of cyclic nucleotides to a conserved, intracellular cyclic nucleotide-binding domain (CNBD), which is connected to the channel pore by a C-linker region. Binding of cyclic nucleotides increases the rate and extent of channel activation and shifts it to less hyperpolarized voltages. We probed the allosteric mechanism of different cyclic nucleotides on the CNBD and on channel gating. Electrophysiology experiments showed that cAMP, cGMP, and cCMP were effective agonists of the channel and produced similar increases in the extent of channel activation. In contrast, electron paramagnetic resonance (EPR) and nuclear magnetic resonance (NMR) on the isolated CNBD indicated that the induced conformational changes and the degrees of stabilization of the active conformation differed for the three cyclic nucleotides. We explain these results with a model where different allosteric mechanisms in the CNBD all converge to have the same effect on the C-linker and render all three cyclic nucleotides similarly potent activators of the channel.  相似文献   

4.
目的:研究有髓轴突横断损伤后郎飞结区钠通道聚集状态的变化.方法:用雪旺细胞-背根神经元髓鞘化共培养系统复制周围神经髓鞘形成和郎飞结发育,于髓鞘化培养基中共培养第14天用前房角切开刀造成有髓轴突横断损伤,在损伤后1、2、3、4、5、6、7、14天进行髓鞘碱性蛋白和钠通道免疫荧光染色,损伤前共培养作为对照.利用SPOT图像分析软件测量钠通道聚集簇的直径、长度和直径/长度比.结果:损伤前钠通道蛋白在有髓轴突郎飞结区形成直径/长度比略大于1的聚集簇;有髓轴灾横断损伤后钠通道蛋白沿轴突纵向扩散,钠通道聚集簇的直径/长度比逐渐减小,损伤后第14天已无法检测到钠通道表达.损伤区出现节段性脱髓鞘.结论:轴突横断损伤可造成钠通道聚集簇扩散、消失,导致郎飞结结构破坏.  相似文献   

5.
Ceramide, a proapoptotic sphingolipid, has been shown to form channels, in mitochondrial outer membranes, large enough to translocate proteins. In phospholipid membranes, electrophysiological studies and electron microscopic visualization both report that these channels form in a range of sizes with a modal value of 10 nm in diameter. A hydrogen bonded barrel-like structure consisting of hundreds of ceramide molecules has been proposed for the structure of the channel and this is supported by electrophysiological studies and molecular dynamic simulations. To our knowledge, the mechanical strength and deformability of such a large diameter but extremely thin cylindrical structure has never been reported. Here we present evidence for a reversible mechanical distortion of the cylinder following the addition of La3+. A microfluidic system was used to repeatedly lower and then restore the conductance by alternatively perfusing La3+ and EDTA. Although aspects of the kinetics of conductance drop and recovery are consistent with a disassembly/diffusion/reassembly model, others are inconsistent with the expected time scale of lateral diffusion of disassembled channel fragments in the membrane. The presence of a residual conductance following La3+ treatment and the relationship between the residual conductance and the initial conductance were both indicative of a distortion/recovery process in analogy with a pressure-induced distortion of a flexible cylinder.  相似文献   

6.
To study the structural composition and dynamics of gap junctions in living cells, we tagged their subunit proteins, termed connexins, with the autofluorescent tracer green fluorescent protein (GFP) and its cyan (CFP) and yellow (YFP) color variants. Tagged connexins assembled normally and channels were functional. High-resolution fluorescence images of gap junction plaques assembled from CFP and YFP tagged connexins revealed that the mode of channel distribution is strictly dependent on the connexin isoforms. Co-distribution as well as segregation into well-separated domains was observed. Based on accompanying studies we propose that channel distribution is regulated by intrinsic, connexin isoform specific signals. High-resolution time-lapse images revealed that gap junctions, contrary to previous expectations, are dynamic assemblies of channels. Channels within clusters and clusters themselves are mobile and constantly undergo structural rearrangements. Movements are complex and allow channels to move, comparable to other plasma membrane proteins not anchored to cytoskeletal elements. Comprehensive analysis, however, demonstrated that gap junction channel movements are not driven by diffusion described to propel plasma membrane protein movement. Instead, recent studies suggest that movements of gap junction channels are indirect and predominantly propelled by plasma membrane lipid flow that results from metabolic endo- and exocytosis.  相似文献   

7.
To study the structural composition and dynamics of gap junctions in living cells, we tagged their subunit proteins, termed connexins, with the autofluorescent tracer green fluorescent protein (GFP) and its cyan (CFP) and yellow (YFP) color variants. Tagged connexins assembled normally and channels were functional. High-resolution fluorescence images of gap junction plaques assembled from CFP and YFP tagged connexins revealed that the mode of channel distribution is strictly dependent on the connexin isoforms. Co-distribution as well as segregation into well-separated domains was observed. Based on accompanying studies we propose that channel distribution is regulated by intrinsic, connexin isoform specific signals. High-resolution time-lapse images revealed that gap junctions, contrary to previous expectations, are dynamic assemblies of channels. Channels within clusters and clusters themselves are mobile and constantly undergo structural rearrangements. Movements are complex and allow channels to move, comparable to other plasma membrane proteins not anchored to cytoskeletal elements. Comprehensive analysis, however, demonstrated that gap junction channel movements are not driven by diffusion described to propel plasma membrane protein movement. Instead, recent studies suggest that movements of gap junction channels are indirect and predominantly propelled by plasma membrane lipid flow that results from metabolic endo- and exocytosis.  相似文献   

8.
We consider the equilibrium or steady-state noise power density spectrum in the quantity N = Σxi=0 aiNi for an ensemble of independent and equivalent systems each of which can exist in the discrete set of states i = 0, 1, ···, x. Ni is the number of systems of the ensemble in state i and the ai's are constants. There is a transition rate constant αij for an arbitrary transition ij; the kinetic equations are linear. There are possible applications to enzyme and biochemical kinetics generally, to membrane transport, muscle contraction, binding on macromolecules, etc. In each case, noise measurements would provide information about the kinetic scheme. The particular application considered here is to K+ channels or gates (one channel = one system) in the squid axon membrane: aiK is the K+ conductance of a channel in state i and the kinetic scheme is of the Hodgkin-Huxley type (HH). Here we allow an arbitrary set of ai's. This is a generalization of our treatment of K+ channel noise in an earlier paper. The theory is discussed and some calculations made using Fishman's recent experimental results on K+ channel noise as a guide. Preliminary indications are that the HH choice of ai's may be oversimplified and that a0 0, a1a0, axax-1. Quite possibly the ai's increase from a0 to ax, though the early ai's must be relatively small to give the observed induction behavior in gK(t). An increase in equal steps is unsatisfactory because this is essentially HH with x = 1 (no induction). More refined experiments may modify these tentative conclusions. In any case, it appears from Fishman's work that noise measurements will probably be very useful in distinguishing between rival models of K+ channels.  相似文献   

9.
Transient receptor potential vanilloid subtype 1 (TRPV1) is a heat-sensitive ion channel also involved in pain sensation, and is the receptor for capsaicin, the active ingredient of hot chili peppers. The recent structures of TRPV1 revealed putative ligand density within the S1 to S4 voltage-sensor-like domain of the protein. However, questions remain regarding the dynamic role of the lipid bilayer in ligand binding to TRPV1. Molecular dynamics simulations were used to explore behavior of capsaicin in a 1-palmitoyl-2-oleoyl phosphatidylcholine bilayer and with the target S1–S4 transmembrane helices of TRPV1. Equilibrium simulations reveal a preferred interfacial localization for capsaicin. We also observed a capsaicin molecule flipping from the extracellular to the intracellular leaflet, and subsequently able to access the intracellular TRPV1 binding site. Calculation of the potential of mean force (i.e., free energy profile) of capsaicin along the bilayer normal confirms that it prefers an interfacial localization. The free energy profile indicates that there is a nontrivial but surmountable barrier to the flipping of capsaicin between opposing leaflets of the bilayer. Molecular dynamics of the S1–S4 transmembrane helices of the TRPV1 in a lipid bilayer confirm that Y511, known to be crucial to capsaicin binding, has a distribution along the bilayer normal similar to that of the aromatic group of capsaicin. Simulations were conducted of the TRPV1 S1–S4 transmembrane helices in the presence of capsaicin placed in the aqueous phase, in the lipid, or docked to the protein. No stable interaction between ligand and protein was seen for simulations initiated with capsaicin in the bilayer. However, interactions were seen between TRPV1 and capsaicin starting from the cytosolic aqueous phase, and capsaicin remained stable in the majority of simulations from the docked pose. We discuss the significance of capsaicin flipping from the extracellular to the intracellular leaflet and mechanisms of binding site access by capsaicin.  相似文献   

10.
Four x-ray crystal structures of prokaryotic homologs of ligand-gated ion channels have recently been determined: ELIC from Erwinia chrysanthemi, two structures of a proton-activated channel from Gloebacter violaceus (GLIC1 and GLIC2) and that of the E221A mutant (GLIC1M). The availability of numerous structures of channels in this family allows for aspects of channel gating and ion conduction to be examined. Here, we determine the likely conduction states of the four structures as well as IV curves, ion selectivity, and steps involved in ion permeation by performing extensive Brownian dynamics simulations. Our results show that the ELIC structure is indeed nonconductive, but that GLIC1 and GLIC1M are both conductive of ions with properties different from those seen in experimental studies of the channel. GLIC2 appears to reflect an open state of the channel with a predicted conductance of 10.8-12.4 pS in 140 mM NaCl solution, which is comparable to the experimental value 8 ± 2 pS. The extracellular domain of the channel is shown to have an important influence on the channel current, but a less significant role in ion selectivity.  相似文献   

11.
A one-step (birth–death) process is used to investigate stochastic noise in an elementary two-phenotype evolutionary game model based on a payoff matrix. In this model, we assume that the population size is finite but not fixed and that all individuals have, in addition to the frequency-dependent fitness given by the evolutionary game, the same background fitness that decreases linearly in the total population size. Although this assumption guarantees population extinction is a globally attracting absorbing barrier of the Markov process, sample trajectories do not illustrate this result even for relatively small carrying capacities. Instead, the observed persistent transient behavior can be analyzed using the steady-state statistics (i.e., mean and variance) of a stochastic model for intrinsic noise that assumes the population does not go extinct. It is shown that there is good agreement between the theory of these statistics and the simulation results. Furthermore, the ESS of the evolutionary game can be used to predict the mean steady state.  相似文献   

12.
13.
The genetic code serves as one of the natural links for life’s two conceptual frameworks-the informational and operational tracks- bridging the nucleotide sequence of DNA and RNA to the amino acid sequence of protein and thus its structure and function.On the informational track,DNA and its four building blocks have four basic variables:order,length,GC and purine contents;the latter two exhibit unique characteristics in prokaryotic genomes where protein-coding sequences dominate.Bridging the two tracks,tRNAs and their aminoacyl tRNA synthases that interpret each codon-nucleotide triplet,together with ribosomes,form a complex machinery that translates genetic information encoded on the messenger RNAs into proteins.On the operational track,proteins are selected in a context of cellular and organismal functions constantly.The principle of such a functional selection is to minimize the damage caused by sequence alteration in a seemingly random fashion at the nucleotide level and its function-altering consequence at the protein level;the principle also suggests that there must be complex yet sophisticated mechanisms to protect molecular interactions and cellular processes for cells and organisms from the damage in addition to both immediate or short-term eliminations and long-term selections.The twocentury study of selection at species and population levels has been leading a way to understand rules of inheritance and evolution at molecular levels along the informational track,while ribogenomics,epigenomics and other operationally-defined omics(such as the metabolite-centric metabolomics) have been ushering biologists into the new millennium along the operational track.  相似文献   

14.
15.
Abstract

Mechanisms and rates of hydrolytic dephosphorylation of 5′-hydrogenphosphonates, 5′-phosphorofluoridates, and 5′-phosphates of natural and 3′-substituted thymidines in human serum were studied. The stability of 5′-phosphonates of 2′-deoxy- and 2′,3′-dideoxyadenosines in calf and human sera was found.  相似文献   

16.
17.
18.
19.
Research on VDAC has accelerated as evidence grows of its importance in mitochondrial function and in apoptosis. New investigators entering the field are often confounded by the VDAC literature and its many apparent conflicts and contradictions. This review is an effort to shed light on the situation and identify reliable information from more questionable claims. Our views on the most important controversial issues are as follows: VDAC is only present in the mitochondrial outer membrane. VDAC functions as a monomer. VDAC functions normally with or without Ca2+. It does not form channels that mediate the flux of proteins through membranes (peptides and unfolded proteins are excluded from this statement). Closure of VDAC, not VDAC opening, leads to mitochondria outer membrane permeabilization and apoptosis.  相似文献   

20.
Intracellular localization of VDAC proteins in plants   总被引:1,自引:0,他引:1  
Voltage-dependent anion channels (VDACs) are porin-type -barrel diffusion pores. They are prominent in the outer membrane of mitochondria and facilitate metabolite exchange between the organelle and the cytosol. Here we studied the subcellular distribution of a plant VDAC-like protein between plastids and mitochondria in green and non-green tissue. Using in vitro studies of dual-import into mitochondria and chloroplasts as well as transient expression of fluorescence-labeled polypeptides, it could be clearly demonstrated that this VDAC isoform targets exclusively to mitochondria and not to plastids. Our results support the idea that plastids evolved a concept of solute exchange with the cytosol different from that of mitochondria.Abbreviations AOX Alternative oxidase - p Precursor form - POM36 Putative outer mitochondrial membrane proteins of 36 kDa - SSU Small subunit of ribulose-1,5-bisphosphate carboxylase-oxygenase (Rubisco) - VDAC Voltage-dependent anion channel  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号