首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lee J  Kim SY  Joo K  Kim I  Lee J 《Proteins》2004,56(4):704-714
A novel method for ab initio prediction of protein tertiary structures, PROFESY (PROFile Enumerating SYstem), is proposed. This method utilizes the secondary structure prediction information of a query sequence and the fragment assembly procedure based on global optimization. Fifteen-residue-long fragment libraries are constructed using the secondary structure prediction method PREDICT, and fragments in these libraries are assembled to generate full-length chains of a query protein. Tertiary structures of 50 to 100 conformations are obtained by minimizing an energy function for proteins, using the conformational space annealing method that enables one to sample diverse low-lying local minima of the energy. We apply PROFESY for benchmark tests to proteins with known structures to demonstrate its feasibility. In addition, we participated in CASP5 and applied PROFESY to four new-fold targets for blind prediction. The results are quite promising, despite the fact that PROFESY was in its early stages of development. In particular, PROFESY successfully provided us the best model-one structure for the target T0161.  相似文献   

2.
The prediction of the effects of nonsynonymous single nucleotide polymorphisms (nsSNPs) on function depends critically on exploiting all information available on the three-dimensional structures of proteins. We describe software and databases for the analysis of nsSNPs that allow a user to move from SNP to sequence to structure to function. In both structure prediction and the analysis of the effects of nsSNPs, we exploit information about protein evolution, in particular, that derived from investigations on the relation of sequence to structure gained from the study of amino acid substitutions in divergent evolution. The techniques developed in our laboratory have allowed fast and automated sequence-structure homology recognition to identify templates and to perform comparative modeling; as well as simple, robust, and generally applicable algorithms to assess the likely impact of amino acid substitutions on structure and interactions. We describe our strategy for approaching the relationship between SNPs and disease, and the results of benchmarking our approach -- human proteins of known structure and recognized mutation.  相似文献   

3.
Many of the targets of structural genomics will be proteins with little or no structural similarity to those currently in the database. Therefore, novel function prediction methods that do not rely on sequence or fold similarity to other known proteins are needed. We present an automated approach to predict nucleic-acid-binding (NA-binding) proteins, specifically DNA-binding proteins. The method is based on characterizing the structural and sequence properties of large, positively charged electrostatic patches on DNA-binding protein surfaces, which typically coincide with the DNA-binding-sites. Using an ensemble of features extracted from these electrostatic patches, we predict DNA-binding proteins with high accuracy. We show that our method does not rely on sequence or structure homology and is capable of predicting proteins of novel-binding motifs and protein structures solved in an unbound state. Our method can also distinguish NA-binding proteins from other proteins that have similar, large positive electrostatic patches on their surfaces, but that do not bind nucleic acids.  相似文献   

4.
Mönnigmann M  Floudas CA 《Proteins》2005,61(4):748-762
The structure prediction of loops with flexible stem residues is addressed in this article. While the secondary structure of the stem residues is assumed to be known, the geometry of the protein into which the loop must fit is considered to be unknown in our methodology. As a consequence, the compatibility of the loop with the remainder of the protein is not used as a criterion to reject loop decoys. The loop structure prediction with flexible stems is more difficult than fitting loops into a known protein structure in that a larger conformational space has to be covered. The main focus of the study is to assess the precision of loop structure prediction if no information on the protein geometry is available. The proposed approach is based on (1) dihedral angle sampling, (2) structure optimization by energy minimization with a physically based energy function, (3) clustering, and (4) a comparison of strategies for the selection of loops identified in (3). Steps (1) and (2) have similarities to previous approaches to loop structure prediction with fixed stems. Step (3) is based on a new iterative approach to clustering that is tailored for the loop structure prediction problem with flexible stems. In this new approach, clustering is not only used to identify conformers that are likely to be close to the native structure, but clustering is also employed to identify far-from-native decoys. By discarding these decoys iteratively, the overall quality of the ensemble and the loop structure prediction is improved. Step (4) provides a comparative study of criteria for loop selection based on energy, colony energy, cluster density, and a hybrid criterion introduced here. The proposed method is tested on a large set of 3215 loops from proteins in the Pdb-Select25 set and to 179 loops from proteins from the Casp6 experiment.  相似文献   

5.
Currently, one of the most serious problems in protein-folding simulations for de novo structure prediction is conformational sampling of medium-to-large proteins. In vivo, folding of these proteins is mediated by molecular chaperones. Inspired by the functions of chaperonins, we designed a simple chaperonin-like simulation protocol within the framework of the standard fragment assembly method: in our protocol, the strength of the hydrophobic interaction is periodically modulated to help the protein escape from misfolded structures. We tested this protocol for 38 proteins and found that, using a certain defined criterion of success, our method could successfully predict the native structures of 14 targets, whereas only those of 10 targets were successfully predicted using the standard protocol. In particular, for non-α-helical proteins, our method yielded significantly better predictions than the standard approach. This chaperonin-inspired protocol that enhanced de novo structure prediction using folding simulations may, in turn, provide new insights into the working principles underlying the chaperonin system.  相似文献   

6.
We suggest a new approach to the generation of candidate structures (decoys) for ab initio prediction of protein structures. Our method is based on random sampling of conformation space and subsequent local energy minimization. At the core of this approach lies the design of a novel type of energy function. This energy function has local minima with native structure characteristics and wide basins of attraction. The current work presents our motivation for deriving such an energy function and also tests the derived energy function.Our approach is novel in that it takes advantage of the inherently rough energy landscape of proteins, which is generally considered a major obstacle for protein structure prediction. When local minima have wide basins of attraction, the protein's conformation space can be greatly reduced by the convergence of large regions of the space into single points, namely the local minima corresponding to these funnels. We have implemented this concept by an iterative process. The potential is first used to generate decoy sets and then we study these sets of decoys to guide further development of the potential. A key feature of our potential is the use of cooperative multi-body interactions that mimic the role of the entropic and solvent contributions to the free energy.The validity and value of our approach is demonstrated by applying it to 14 diverse, small proteins. We show that, for these proteins, the size of conformation space is considerably reduced by the new energy function. In fact, the reduction is so substantial as to allow efficient conformational sampling. As a result we are able to find a significant number of near-native conformations in random searches performed with limited computational resources.  相似文献   

7.
The function of DNA‐ and RNA‐binding proteins can be inferred from the characterization and accurate prediction of their binding interfaces. However, the main pitfall of various structure‐based methods for predicting nucleic acid binding function is that they are all limited to a relatively small number of proteins for which high‐resolution three‐dimensional structures are available. In this study, we developed a pipeline for extracting functional electrostatic patches from surfaces of protein structural models, obtained using the I‐TASSER protein structure predictor. The largest positive patches are extracted from the protein surface using the patchfinder algorithm. We show that functional electrostatic patches extracted from an ensemble of structural models highly overlap the patches extracted from high‐resolution structures. Furthermore, by testing our pipeline on a set of 55 known nucleic acid binding proteins for which I‐TASSER produces high‐quality models, we show that the method accurately identifies the nucleic acids binding interface on structural models of proteins. Employing a combined patch approach we show that patches extracted from an ensemble of models better predicts the real nucleic acid binding interfaces compared with patches extracted from independent models. Overall, these results suggest that combining information from a collection of low‐resolution structural models could be a valuable approach for functional annotation. We suggest that our method will be further applicable for predicting other functional surfaces of proteins with unknown structure. Proteins 2012. © 2011 Wiley Periodicals, Inc.  相似文献   

8.
Thompson J  Baker D 《Proteins》2011,79(8):2380-2388
Prediction of protein structures from sequences is a fundamental problem in computational biology. Algorithms that attempt to predict a structure from sequence primarily use two sources of information. The first source is physical in nature: proteins fold into their lowest energy state. Given an energy function that describes the interactions governing folding, a method for constructing models of protein structures, and the amino acid sequence of a protein of interest, the structure prediction problem becomes a search for the lowest energy structure. Evolution provides an orthogonal source of information: proteins of similar sequences have similar structure, and therefore proteins of known structure can guide modeling. The relatively successful Rosetta approach takes advantage of the first, but not the second source of information during model optimization. Following the classic work by Andrej Sali and colleagues, we develop a probabilistic approach to derive spatial restraints from proteins of known structure using advances in alignment technology and the growth in the number of structures in the Protein Data Bank. These restraints define a region of conformational space that is high-probability, given the template information, and we incorporate them into Rosetta's comparative modeling protocol. The combined approach performs considerably better on a benchmark based on previous CASP experiments. Incorporating evolutionary information into Rosetta is analogous to incorporating sparse experimental data: in both cases, the additional information eliminates large regions of conformational space and increases the probability that energy-based refinement will hone in on the deep energy minimum at the native state.  相似文献   

9.
Template-based modeling is considered as one of the most successful approaches for protein structure prediction. However, reliably and accurately selecting optimal template proteins from a library of known protein structures having similar folds as the target protein and making correct alignments between the target sequence and the template structures, a template-based modeling technique known as threading, remains challenging, particularly for non- or distantly-homologous protein targets. With the recent advancement in protein residue-residue contact map prediction powered by sequence co-evolution and machine learning, here we systematically analyze the effect of inclusion of residue-residue contact information in improving the accuracy and reliability of protein threading. We develop a new threading algorithm by incorporating various sequential and structural features, and subsequently integrate residue-residue contact information as an additional scoring term for threading template selection. We show that the inclusion of contact information attains statistically significantly better threading performance compared to a baseline threading algorithm that does not utilize contact information when everything else remains the same. Experimental results demonstrate that our contact based threading approach outperforms popular threading method MUSTER, contact-assisted ab initio folding method CONFOLD2, and recent state-of-the-art contact-assisted protein threading methods EigenTHREADER and map_align on several benchmarks. Our study illustrates that the inclusion of contact maps is a promising avenue in protein threading to ultimately help to improve the accuracy of protein structure prediction.  相似文献   

10.
De novo structure prediction can be defined as a search in conformational space under the guidance of an energy function. The most successful de novo structure prediction methods, such as Rosetta, assemble the fragments from known structures to reduce the search space. Therefore, the fragment quality is an important factor in structure prediction. In our study, a method is proposed to generate a new set of fragments from the lowest energy de novo models. These fragments were subsequently used to predict the next‐round of models. In a benchmark of 30 proteins, the new set of fragments showed better performance when used to predict de novo structures. The lowest energy model predicted using our method was closer to native structure than Rosetta for 22 proteins. Following a similar trend, the best model among top five lowest energy models predicted using our method was closer to native structure than Rosetta for 20 proteins. In addition, our experiment showed that the C‐alpha root mean square deviation was improved from 5.99 to 5.03 Å on average compared to Rosetta when the lowest energy models were picked as the best predicted models. Proteins 2014; 82:2240–2252. © 2014 Wiley Periodicals, Inc.  相似文献   

11.
We introduce an energy function for contact maps of proteins. In addition to the standard term, that takes into account pair-wise interactions between amino acids, our potential contains a new hydrophobic energy term. Parameters of the energy function were obtained from a statistical analysis of the contact maps of known structures. The quality of our energy function was tested extensively in a variety of ways. In particular, fold recognition experiments revealed that for a fixed sequence the native map is identified correctly in an overwhelming majority of the cases tested. We succeeded in identifying the structure of some proteins that are known to pose difficulties for such tests (BPTI, spectrin, and cro-protein). In addition, many known pairs of homologous structures were correctly identified, even when the two sequences had relatively low sequence homology. We also introduced a dynamic Monte Carlo procedure in the space of contact maps, taking topological and polymeric constraints into account by restrictive dynamic rules. Various aspects of protein dynamics, including high-temperature melting and refolding, were simulated. Perspectives of application of the energy function and the method for structure checking and fold prediction are discussed. Proteins 26:391–410 © 1996 Wiley-Liss, Inc.  相似文献   

12.
Analysis of the results of the recent protein structure prediction experiment for our method shows that we achieved a high level of success, Of the 18 available prediction targets of known structure, the assessors have identified 11 chains which either entirely match a previously known fold, or which partially match a substantial region of a known fold. Of these 11 chains, we made predictions for 9, and correctly assigned the folds in 5 cases. We have also identified a further 2 chains which also partially match known folds, and both of these were correctly predicted. The success rate for our method under blind testing is therefore 7 out of 11 chains. A further 2 folds could have easily been recognized but failed due to either overzealous filtering of potential matches, or to simple human error on our part. One of the two targets for which we did not submit a prediction, prosubtilisin, would not have been recognized by our usual criteria, but even in this case, it is possible that a correct prediction could have been made by considerin a combination of pairwise energy and solvation energy Z-scores. Inspection of the threading alignments for the (αβ)8 barrels provides clues as to how fold recognition by threading works, in that these folds are recognized by parts rather than as a whole. The prospects for developing sequence threading technology further is discussed. © 1995 Wiley-Liss, Inc.  相似文献   

13.
Drug development for neglected diseases has been historically hampered due to lack of market incentives. The advent of public domain resources containing chemical information from high throughput screenings is changing the landscape of drug discovery for these diseases. In this work we took advantage of data from extensively studied organisms like human, mouse, E. coli and yeast, among others, to develop a novel integrative network model to prioritize and identify candidate drug targets in neglected pathogen proteomes, and bioactive drug-like molecules. We modeled genomic (proteins) and chemical (bioactive compounds) data as a multilayer weighted network graph that takes advantage of bioactivity data across 221 species, chemical similarities between 1.7 105 compounds and several functional relations among 1.67 105 proteins. These relations comprised orthology, sharing of protein domains, and shared participation in defined biochemical pathways. We showcase the application of this network graph to the problem of prioritization of new candidate targets, based on the information available in the graph for known compound-target associations. We validated this strategy by performing a cross validation procedure for known mouse and Trypanosoma cruzi targets and showed that our approach outperforms classic alignment-based approaches. Moreover, our model provides additional flexibility as two different network definitions could be considered, finding in both cases qualitatively different but sensible candidate targets. We also showcase the application of the network to suggest targets for orphan compounds that are active against Plasmodium falciparum in high-throughput screens. In this case our approach provided a reduced prioritization list of target proteins for the query molecules and showed the ability to propose new testable hypotheses for each compound. Moreover, we found that some predictions highlighted by our network model were supported by independent experimental validations as found post-facto in the literature.  相似文献   

14.
Inference of protein functions is one of the most important aims of modern biology. To fully exploit the large volumes of genomic data typically produced in modern-day genomic experiments, automated computational methods for protein function prediction are urgently needed. Established methods use sequence or structure similarity to infer functions but those types of data do not suffice to determine the biological context in which proteins act. Current high-throughput biological experiments produce large amounts of data on the interactions between proteins. Such data can be used to infer interaction networks and to predict the biological process that the protein is involved in. Here, we develop a probabilistic approach for protein function prediction using network data, such as protein-protein interaction measurements. We take a Bayesian approach to an existing Markov Random Field method by performing simultaneous estimation of the model parameters and prediction of protein functions. We use an adaptive Markov Chain Monte Carlo algorithm that leads to more accurate parameter estimates and consequently to improved prediction performance compared to the standard Markov Random Fields method. We tested our method using a high quality S.cereviciae validation network with 1622 proteins against 90 Gene Ontology terms of different levels of abstraction. Compared to three other protein function prediction methods, our approach shows very good prediction performance. Our method can be directly applied to protein-protein interaction or coexpression networks, but also can be extended to use multiple data sources. We apply our method to physical protein interaction data from S. cerevisiae and provide novel predictions, using 340 Gene Ontology terms, for 1170 unannotated proteins and we evaluate the predictions using the available literature.  相似文献   

15.
Short motifs are known to play diverse roles in proteins, such as in mediating the interactions with other molecules, binding to membranes, or conducting a specific biological function. Standard approaches currently employed to detect short motifs in proteins search for enrichment of amino acid motifs considering mostly the sequence information. Here, we presented a new approach to search for common motifs (protein signatures) which share both physicochemical and structural properties, looking simultaneously at different features. Our method takes as an input an amino acid sequence and translates it to a new alphabet that reflects its intrinsic structural and chemical properties. Using the MEME search algorithm, we identified the proteins signatures within subsets of protein which encompass common sequence and structural information. We demonstrated that we can detect enriched structural motifs, such as the amphipathic helix, from large datasets of linear sequences, as well as predicting common structural properties (such as disorder, surface accessibility, or secondary structures) of known functional‐motifs. Finally, we applied the method to the yeast protein interactome and identified novel putative interacting motifs. We propose that our approach can be applied for de novo protein function prediction given either sequence or structural information. Proteins 2013; © 2012 Wiley Periodicals, Inc.  相似文献   

16.
MOTIVATION: The Majority Vote approach has demonstrated that protein-protein interactions can be used to predict the structure or function of a protein. In this article we propose a novel method for the prediction of such protein characteristics based on frequencies of pairwise interactions. In addition, we study a second new approach using the pattern frequencies of triplets of proteins, thus for the first time taking network structure explicitly into account. Both these methods are extended to jointly consider multiple organisms and multiple characteristics. RESULTS: Compared to the standard non-network-based method, namely the Majority Vote method, in large networks our predictions tend to be more accurate. For structure prediction, the Frequency-based method reaches up to 71% accuracy, and the Triplet-based method reaches up to 72% accuracy, whereas for function prediction, both the Triplet-based method and the Frequency-based method reach up to 90% accuracy. Function prediction on proteins without homologues showed slightly less but comparable accuracies. Including partially annotated proteins substantially increases the number of proteins for which our methods predict their characteristics with reasonable accuracy. We find that the enhanced Triplet-based method does not currently yield significantly better results than the enhanced Frequency-based method, suggesting that triplets of interactions do not contain substantially more information about protein characteristics than interaction pairs. Our methods offer two main improvements over current approaches--first, multiple protein characteristics are considered simultaneously, and second, data is integrated from multiple species. In addition, the Triplet-based method includes network structure more explicitly than the Majority Vote and the Frequency-based method. AVAILABILITY: The program is available upon request. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.  相似文献   

17.
Wu KP  Lin HN  Chang JM  Sung TY  Hsu WL 《Nucleic acids research》2004,32(17):5059-5065
We develop a knowledge-based approach (called PROSP) for protein secondary structure prediction. The knowledge base contains small peptide fragments together with their secondary structural information. A quantitative measure M, called match rate, is defined to measure the amount of structural information that a target protein can extract from the knowledge base. Our experimental results show that proteins with a higher match rate will likely be predicted more accurately based on PROSP. That is, there is roughly a monotone correlation between the prediction accuracy and the amount of structure matching with the knowledge base. To fully utilize the strength of our knowledge base, a hybrid prediction method is proposed as follows: if the match rate of a target protein is at least 80%, we use the extracted information to make the prediction; otherwise, we adopt a popular machine-learning approach. This comprises our hybrid protein structure prediction (HYPROSP) approach. We use the DSSP and EVA data as our datasets and PSIPRED as our underlying machine-learning algorithm. For target proteins with match rate at least 80%, the average Q3 of PROSP is 3.96 and 7.2 better than that of PSIPRED on DSSP and EVA data, respectively.  相似文献   

18.
MOTIVATION: Obtaining soluble proteins in sufficient concentrations is a recurring limiting factor in various experimental studies. Solubility is an individual trait of proteins which, under a given set of experimental conditions, is determined by their amino acid sequence. Accurate theoretical prediction of solubility from sequence is instrumental for setting priorities on targets in large-scale proteomics projects. RESULTS: We present a machine-learning approach called PROSO to assess the chance of a protein to be soluble upon heterologous expression in Escherichia coli based on its amino acid composition. The classification algorithm is organized as a two-layered structure in which the output of primary support vector machine (SVM) classifiers serves as input for a secondary Naive Bayes classifier. Experimental progress information from the TargetDB database as well as previously published datasets were used as the source of training data. In comparison with previously published methods our classification algorithm possesses improved discriminatory capacity characterized by the Matthews Correlation Coefficient (MCC) of 0.434 between predicted and known solubility states and the overall prediction accuracy of 72% (75 and 68% for positive and negative class, respectively). We also provide experimental verification of our predictions using solubility measurements for 31 mutational variants of two different proteins.  相似文献   

19.
Cell-surface-anchored immunoglobulin superfamily (IgSF) proteins are widespread throughout the human proteome, forming crucial components of diverse biological processes including immunity, cell-cell adhesion, and carcinogenesis. IgSF proteins generally function through protein-protein interactions carried out between extracellular, membrane-bound proteins on adjacent cells, known as trans-binding interfaces. These protein-protein interactions constitute a class of pharmaceutical targets important in the treatment of autoimmune diseases, chronic infections, and cancer. A molecular-level understanding of IgSF protein-protein interactions would greatly benefit further drug development. A critical step toward this goal is the reliable identification of IgSF trans-binding interfaces. We propose a novel combination of structure and sequence information to identify trans-binding interfaces in IgSF proteins. We developed a structure-based binding interface prediction approach that can identify broad regions of the protein surface that encompass the binding interfaces and suggests that IgSF proteins possess binding supersites. These interfaces could theoretically be pinpointed using sequence-based conservation analysis, with performance approaching the theoretical upper limit of binding interface prediction accuracy, but achieving this in practice is limited by the current ability to identify an appropriate multiple sequence alignment for conservation analysis. However, an important contribution of combining the two orthogonal methods is that agreement between these approaches can estimate the reliability of the predictions. This approach was benchmarked on the set of 22 IgSF proteins with experimentally solved structures in complex with their ligands. Additionally, we provide structure-based predictions and reliability scores for the 62 IgSF proteins with known structure but yet uncharacterized binding interfaces.  相似文献   

20.
Recent work has shown that the accuracy of ab initio structure prediction can be significantly improved by integrating evolutionary information in form of intra-protein residue-residue contacts. Following this seminal result, much effort is put into the improvement of contact predictions. However, there is also a substantial need to develop structure prediction protocols tailored to the type of restraints gained by contact predictions. Here, we present a structure prediction protocol that combines evolutionary information with the resolution-adapted structural recombination approach of Rosetta, called RASREC. Compared to the classic Rosetta ab initio protocol, RASREC achieves improved sampling, better convergence and higher robustness against incorrect distance restraints, making it the ideal sampling strategy for the stated problem. To demonstrate the accuracy of our protocol, we tested the approach on a diverse set of 28 globular proteins. Our method is able to converge for 26 out of the 28 targets and improves the average TM-score of the entire benchmark set from 0.55 to 0.72 when compared to the top ranked models obtained by the EVFold web server using identical contact predictions. Using a smaller benchmark, we furthermore show that the prediction accuracy of our method is only slightly reduced when the contact prediction accuracy is comparatively low. This observation is of special interest for protein sequences that only have a limited number of homologs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号