首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 459 毫秒
1.
MYH9 encodes a class II nonmuscle myosin heavy chain-A (NMHC-IIA), a widely expressed 1960 amino acid polypeptide, with translated molecular weight of 220 kDa. From studies of type II myosin in invertebrates and analogy with the skeletal and smooth muscle myosin II, NMHC-IIA is considered to be involved in diverse cellular functions, including cell shape, motility and division. The current study assessed the consequences of two separate, naturally occurring MYH9 dominant mutant alleles, MYH9(R702C) and MYH9(R705H) linked to syndromic and nonsyndromic hearing loss, respectively, upon diverse NMHC-IIA related functions in two separate cultured cell lines. MYH9-siRNA-induced inhibition of NMHC-IIA in HeLa cells or HEK293 cells resulted in alterations in their shape, actin cytoskeleton and adhesion properties. However, HeLa or HEK293 cells transfected with naturally occurring MYH9 mutant alleles, MYH9(R702C) or MYH9(R705H), as well as in vitro generated deletion derivatives, MYH9(DeltaN592) or MYH9(DeltaC570), were unaffected. The effects of MYH9-siRNA-induced suppression underline the critical role of NMHC-IIA in maintenance of cell shape and adhesion. However, the results also indicate that the NMHC-IIA mutants, R702C and R705H do not inactivate or suppress the endogenous wild type NMHC-IIA within the HeLa or HEK293 cell assay system.  相似文献   

2.
Myosin II is an actin-binding protein composed of MHC (myosin heavy chain) IIs, RLCs (regulatory light chains) and ELCs (essential light chains). Myosin II expressed in non-muscle tissues plays a central role in cell adhesion, migration and division. The regulation of myosin II activity is known to involve the phosphorylation of RLCs, which increases the Mg2+-ATPase activity of MHC IIs. However, less is known about the details of RLC-MHC II interaction or the loss-of-function phenotypes of non-muscle RLCs in mammalian cells. In the present paper, we investigate three highly conserved non-muscle RLCs of the mouse: MYL (myosin light chain) 12A (referred to as MYL12A), MYL12B and MYL9 (MYL12A/12B/9). Proteomic analysis showed that all three are associated with the MHCs MYH9 (NMHC IIA) and MYH10 (NMHC IIB), as well as the ELC MYL6, in NIH 3T3 fibroblasts. We found that knockdown of MYL12A/12B in NIH 3T3 cells results in striking changes in cell morphology and dynamics. Remarkably, the levels of MYH9, MYH10 and MYL6 were reduced significantly in knockdown fibroblasts. Comprehensive interaction analysis disclosed that MYL12A, MYL12B and MYL9 can all interact with a variety of MHC IIs in diverse cell and tissue types, but do so optimally with non-muscle types of MHC II. Taken together, our study provides direct evidence that normal levels of non-muscle RLCs are essential for maintaining the integrity of myosin II, and indicates that the RLCs are critical for cell structure and dynamics.  相似文献   

3.
Type II myosin, the primary component of the thick filament of muscle fibers, is organized as a dimeric high molecular weight protein, and is composed of a pair of heavy chains (MHC) and two pairs of light chains. Myosin II transforms ATP energy into mechanical force. All type II myosins are conserved proteins but they have two variable regions that are located in different places of the molecule. Myosin molecules are encoded by a multigene family and many isoforms are generated. The expression of myosins depends on the developmental stage and on the type and degree of contractile activity and tissue, therefore several myosin isoforms are found in the same organism. Here we describe the use of different techniques that allowed demonstrating the presence of isoforms of the heavy chain type II myosin of Taenia solium cysticerci (larvae) and tapeworms (adults), a cestode parasite of importance in public health in many developing countries. Myosin was purified and used in comparative proteolytic fragmentation, ATPase activity, detection of antigenic differences and electrophoretic separation. The results obtained showed biochemical and immunochemical differences among cysticerci and tapeworms, and demonstrate the presence of myosin isoforms in T. solium that are probably associated to physiological requirements of each developmental stage.  相似文献   

4.
Myosin is one of the most important skeletal muscle proteins. It is composed of myosin heavy chains and myosin light chains that exist with different isoforms coded by different genes. We studied the porcine myosin heavy chain 2B (MYH4) and the porcine skeletal muscle myosin regulatory light chain 2 (HUMMLC2B) genes. A single nucleotide polymorphism (SNP), identified for each gene, was used for linkage mapping of MYH4 and HUMMLC2B to porcine chromosome (Sscr) 12 and Sscr 3, respectively. The mapping of these two genes was confirmed by using a porcine-rodent radiation hybrid panel, even if for MYH4 the LOD score and the retention fraction were low. Allele frequencies at the two loci were studied in a sample of 307 unrelated pigs belonging to seven different pig breeds. Moreover the distribution of the alleles at these two loci was analysed in groups of pigs with extreme divergent (positive and negative) estimated breeding values (EBV) for four meat production traits that have undergone selection in Italian heavy pigs.  相似文献   

5.
非肌性肌球蛋白重链9基因,编码非肌性肌球蛋白重链ⅡA,既往研究其与May-Hegglin异常(May-Hegglin anomaly,MHA)、Fechtner综合征(Fechtner syndrome,FTNS)、Sebastian综合征(Sebastian syndrome,SBS)、Epstein综合征(Epstein syndrome,EPS)和Alport样综合征相关。2008年首次用混合连锁不平衡绘图(MALD)方法证实其与非糖尿病终末期肾病及局灶节段性肾小球硬化症相关,后陆续有该基因与高血压肾病、C1q肾病等的相关报道。本文综合国外该基因与肾脏病的相关研究,对其与肾脏病的关系研究进展做一概括,对今后的研究起一定的帮助作用。  相似文献   

6.
To investigate the molecular functions of the regions encoded by alternative exons from the single Drosophila myosin heavy chain gene, we made the first kinetic measurements of two muscle myosin isoforms that differ in all alternative regions. Myosin was purified from the indirect flight muscles of wild-type and transgenic flies expressing a major embryonic isoform. The in vitro actin sliding velocity on the flight muscle isoform (6.4 microm x s(-1) at 22 degrees C) is among the fastest reported for a type II myosin and was 9-fold faster than with the embryonic isoform. With smooth muscle tropomyosin bound to actin, the actin sliding velocity on the embryonic isoform increased 6-fold, whereas that on the flight muscle myosin slightly decreased. No difference in the step sizes of Drosophila and rabbit skeletal myosins were found using optical tweezers, suggesting that the slower in vitro velocity with the embryonic isoform is due to altered kinetics. Basal ATPase rates for flight muscle myosin are higher than those of embryonic and rabbit myosin. These differences explain why the embryonic myosin cannot functionally substitute in vivo for the native flight muscle isoform, and demonstrate that one or more of the five myosin heavy chain alternative exons must influence Drosophila myosin kinetics.  相似文献   

7.
Investigation of the mechanism underlying cell membrane-targeted WAVE2 capture by phosphatidylinositol 3,4,5-triphosphate (PIP3) through IRSp53 revealed an unidentified 250-kDa protein (p250) bound to PIP3. We identified p250 as nonmuscle myosin IIA heavy chain (MYH9) by mass spectrometry and immunoblot analysis using anti-MYH9 antibody. After stimulation with insulin-like growth factor I (IGF-I), MYH9 colocalized with PIP3 in lamellipodia at the leading edge of cells. Depletion of MYH9 expression by small interfering RNA (siRNA) and inhibition of myosin II activity by blebbistatin abrogated the formation of actin filament (F-actin) arcs and lamellipodia induced by IGF-I. MYH9 was constitutively associated with WAVE2, which was dependent on myosin II activity, and the MYH9-WAVE2 complex colocalized to PIP3 at the leading edge after IGF-I stimulation. These results indicate that MYH9 is required for lamellipodia formation since it provides contractile forces and tension for the F-actin network to form convex arcs at the leading edge through constitutive binding to WAVE2 and colocalization with PIP3 in response to IGF-I.  相似文献   

8.
Dictyostelium expresses 12 different myosins, including seven single-headed myosins I and one conventional two-headed myosin II. In this review we focus on the signaling pathways that regulate Dictyostelium myosin I and myosin II. Activation of myosin I is catalyzed by a Cdc42/Rac-stimulated myosin I heavy chain kinase that is a member of the p21-activated kinase (PAK) family. Evidence that myosin I is linked to the Arp2/3 complex suggests that pathways that regulate myosin I may also influence actin filament assembly. Myosin II activity is stimulated by a cGMP-activated myosin light chain kinase and inhibited by myosin heavy chain kinases (MHCKs) that block bipolar filament assembly. Known MHCKs include MHCK A and MHCK B, which have a novel type of kinase catalytic domain joined to a WD repeat domain, and MHC-protein kinase C (PKC), which contains both diacylglycerol kinase and PKC-related protein kinase catalytic domains. A Dictyostelium PAK (PAKa) acts indirectly to promote myosin II filament formation, suggesting that the MHCKs may be indirectly regulated by Rac GTPases.  相似文献   

9.
Cytoplasmic myosin from Drosophila melanogaster   总被引:20,自引:6,他引:14       下载免费PDF全文
Myosin is identified and purified from three different established Drosophila melanogaster cell lines (Schneider's lines 2 and 3 and Kc). Purification entails lysis in a low salt, sucrose buffer that contains ATP, chromatography on DEAE-cellulose, precipitation with actin in the absence of ATP, gel filtration in a discontinuous KI-KCl buffer system, and hydroxylapatite chromatography. Yield of pure cytoplasmic myosin is 5-10%. This protein is identified as myosin by its cross-reactivity with two monoclonal antibodies against human platelet myosin, the molecular weight of its heavy chain, its two light chains, its behavior on gel filtration, its ATP-dependent affinity for actin, its characteristic ATPase activity, its molecular morphology as demonstrated by platinum shadowing, and its ability to form bipolar filaments. The molecular weight of the cytoplasmic myosin's light chains and peptide mapping and immunochemical analysis of its heavy chains demonstrate that this myosin, purified from Drosophila cell lines, is distinct from Drosophila muscle myosin. Two-dimensional thin layer maps of complete proteolytic digests of iodinated muscle and cytoplasmic myosin heavy chains demonstrate that, while the two myosins have some tryptic and alpha-chymotryptic peptides in common, most peptides migrate with unique mobility. One-dimensional peptide maps of SDS PAGE purified myosin heavy chain confirm these structural data. Polyclonal antiserum raised and reacted against Drosophila myosin isolated from cell lines cross-reacts only weakly with Drosophila muscle myosin isolated from the thoraces of adult Drosophila. Polyclonal antiserum raised against Drosophila muscle myosin behaves in a reciprocal fashion. Taken together our data suggest that the myosin purified from Drosophila cell lines is a bona fide cytoplasmic myosin and is very likely the product of a different myosin gene than the muscle myosin heavy chain gene that has been previously identified and characterized.  相似文献   

10.
Structure-function studies on Acanthamoeba myosins IA, IB, and II   总被引:7,自引:0,他引:7  
Myosins IA and IB are globular proteins with only a single, short (for myosins) heavy chain (140,000 and 125,000 daltons for IA and IB, respectively) and are unable to form bipolar filaments. The amino acid sequence of IB heavy chain shows 55% similarity to muscle myosins in the N-terminal 670 residues, which contain the active sites, and a unique 500-residue C-terminus highly enriched in proline, glycine, and alanine. The C-terminal region contains a second actin-binding site which allows myosins IA and IB to cross-link actin filaments and support contractile activity. Myosins IA and IB are regulated solely by phosphorylation of one serine on the heavy chain positioned between the catalytic site and the actin-binding site that activates ATPase. Myosin II is a more conventional myosin in composition (two heavy chains and two pairs of light chains), heavy chain sequence (globular head 45% identical to muscle myosins and a coiled-coil helical tail), and structure (bipolar filaments). The tail of myosin II is much shorter than that of other conventional myosins, and it contains a 25 amino acid sequence in which helical structure is predicted to be weak or absent. The position of this sequence corresponds to the position of a bend in the monomer. Myosin II heavy chains also have a 29-residue nonhelical tailpiece which contains three regulatory, phosphorylatable serines. Phosphorylation at the tip of the tail regulates ATPase activity in the globular head apparently through an effect on filament structure.  相似文献   

11.
Myosin was isolated from extracts of a clonal cell line of pheochromocytoma (PC12) cells by ammonium sulfate fractionation and gel filtration. This myosin consisted of heavy chains and two light chains (20 and 17 kDa). The 20 kDa light chain could be phosphorylated by a protein kinase which was also present in the extracts and which eluted after myosin from the gel filtration column. Myosin phosphorylation was partly inhibited by EGTA and by the calmodulin-inhibiting drug trifluoperazine. The Mg2+-ATPase of phosphorylated myosin, but not of unphosphorylated myosin, was activated by skeletal muscle actin. Ca2+ did not affect the Mg2+-ATPase activity of either myosin preparation at low ionic strength. The phosphorylation of myosin may activate a contractile mechanism controlling the Ca2+-dependent secretion of norepinephrine from the cells.  相似文献   

12.
In previous work from this laboratory, a partially purified protein kinase from the soil amoeba Acanthamoeba castellanii was shown to phosphorylate the heavy chain of the two single-headed Acanthamoeba myosin isoenzymes, myosin IA and IB, resulting in a 10- to 20-fold increase in their actin-activated Mg2+-ATPase activities (Maruta, H., and Korn, E.D. (1977) J. Biol. Chem. 252, 8329-8332). A myosin I heavy chain kinase has now been purified to near homogeneity from Acanthamoeba by chromatography on DE-52 cellulose, phosphocellulose, and Procion red dye, followed by chromatography on histone-Sepharose. Myosin I heavy chain kinase contains a single polypeptide of 107,000 Da by electrophoretic analysis. Molecular sieve chromatography yields a Stokes radius of 4.1 nm, consistent with a molecular weight of 107,000 for a native protein with a frictional ratio of approximately 1.3:1. The kinase catalyzes the incorporation of 0.9 to 1.0 mol of phosphate into the heavy chain of both myosins IA and IB. Phosphoserine has been shown to be the phosphorylated amino acid in myosin IB. The kinase has highest specific activity toward myosin IA and IB, about 3-4 mumol of phosphate incorporated/min/mg (30 degrees C) at concentrations of myosin I that are well below saturating levels. The kinase also phosphorylates histone 2A, isolated smooth muscle light chains, and, to a very small extent, casein, but has no activity toward phosvitin or myosin II, a third Acanthamoeba myosin isoenzyme with a very different structure from myosin IA and IB. Myosin I heavy chain kinase requires Mg2+ but is not dependent on Ca2+, Ca2+/calmodulin, or cAMP for activity. The kinase undergoes an apparent autophosphorylation.  相似文献   

13.
A third isoform of myosin I has been isolated from Acanthamoeba and designated myosin IC. Peptide maps and immunoassays indicate that myosin IC is not a modified form of myosin IA, IB, or II. However, myosin IC has most of the distinctive properties of a myosin I. It is a globular protein of native Mr approximately 162,000, apparently composed of a single 130-kDa heavy chain and a pair of 14-kDa light chains. It is soluble in MgATP at low ionic strength, conditions favoring filament assembly by myosin II. Myosin IC has high Ca2+- and (K+,EDTA)-ATPase activities. Its low Mg2+-ATPase activity is stimulated to a maximum rate of 20 s-1 by the addition of F-actin if its heavy chain has been phosphorylated by myosin I heavy chain kinase. The dependence of the Mg2+-ATPase activity of myosin IC on F-actin concentration is triphasic; and, at fixed concentrations of F-action, this activity increases cooperatively as the concentration of myosin IC is increased. These unusual kinetics were first demonstrated for myosins IA and IB and shown to be due to the presence of two actin-binding sites on each heavy chain which enable those myosins I to cross-link actin filaments. Myosin IC is also capable of cross-linking F-actin, which, together with the kinetics of its actin-activated Mg2+-ATPase activity, suggests that it, like myosins IA and IB, possesses two independent actin-binding domains.  相似文献   

14.
Dictyostelium conventional myosin (myosin II) is an abundant protein that plays a role in various cellular processes such as cytokinesis, cell protrusion and development. This review will focus on the signal transduction pathways that regulate myosin II during cell movement. Myosin II appears to have two modes of action in Dictyostelium: local stabilization of the cytoskeleton by myosin filament association to the actin meshwork (structural mode) and force generation by contraction of actin filaments (motor mode). Some processes, such as cell movement under restrictive environment, require only the structural mode of myosin. However, cytokinesis in suspension and uropod retraction depend on motor activity as well. Myosin II can self-assemble into bipolar filaments. The formation of these filaments is negatively regulated by heavy chain phosphorylation through the action of a set of novel alpha kinases and is relatively well understood. However, only recently it has become clear that the formation of bipolar filaments and their translocation to the cortex are separate events. Translocation depends on filamentous actin, and is regulated by a cGMP pathway and possibly also by the cAMP phosphodiesterase RegA and the p21-activated kinase PAKa. Myosin motor activity is regulated by phosphorylation of the regulatory light chain through myosin light chain kinase A. Unlike conventional light chain kinases, this enzyme is not regulated by calcium but is activated by cGMP-induced phosphorylation via an upstream kinase and subsequent autophosphorylation.  相似文献   

15.
A family of autosomal-dominant diseases including May-Hegglin anomaly, Fechtner syndrome, Sebastian syndrome, Alport syndrome, and Epstein syndrome are commonly characterized by giant platelets and thrombocytopenia. In addition, there may be leukocyte inclusions, deafness, cataracts, and nephritis, depending on the syndrome. Mutations in the human nonmuscle myosin IIA heavy chain gene (MYH9) have been linked to these diseases. Two of the recently described mutations, N93K and R702C, are conserved in smooth and nonmuscle myosins from vertebrates and lie in the head domain of myosin. Interestingly, the two mutations lie within close proximity in the three-dimensional structure of myosin. These two mutations were engineered into a heavy meromyosin-like recombinant fragment of nonmuscle myosin IIA, which was expressed in baculovirus along with the appropriate light chains. The R702C mutant displays 25% of the maximal MgATPase activity of wild type heavy meromyosin and moves actin filaments at half the wild type rate. The effects of the N93K mutation are more dramatic. This heavy meromyosin has only 4% of the maximal MgATPase activity of wild type and does not translocate actin filaments in an in vitro motility assay. Biochemical characterization of the mutant is consistent with this mutant being unable to fully adopt the "on" conformation.  相似文献   

16.
Synthesis of myosin heavy and light chains in muscle cultures   总被引:11,自引:8,他引:3       下载免费PDF全文
The weight ratio of myosin/actin, the myosin heavy chain content as the percentage of total protein (wt/wt), and the kinds of myosin light chains were determined in (a) standard muscle cultures, (b) pure myotube cultures, and (c) fibroblast cultures. Cells for these cultures were obtained from the breast of 11-day chick embryos. Standard cultures contain, in addition to myotubes, large numbers of replicating mononucleated cells. By killing these replicating cells with cytosine arabinoside, pure myotube cultures were obtained. The myosin/actin ratio (wt/wt) for pure myotube, standard muscle, and fibroblast cultures average 3.1, 1.9, and 1.1 respectively. By day 7, myosin in myotube cultures represents a minimum of 7% of the total protein, but about 3% in standard cultures and less than 1.5% in fibroblasts cultures. Myosin from standard cultures contains light chain LC1, LC2, and LC3, with a relative stoichiometry of the molarity of 1.0:1.9:0.5 and mol wt of 25,000, 18,000 and 16,000 daltons, identical to those in adult fast muscle. Myosin from pure myotubes exhibits light chains LC1 and LC2, with a molar ratio of 1.5:1.6. Myosin from fibroblast cultures possesses two light chains with a stoichiometry of 1.8:1.8 and mol wt of 20,000 and 16,000 daltons. Clearly, the faster migrating light chain, LC3, found in standard cultures is synthesized not by the myotubes but ty the mononucleated cells. In myotubes, both the assembly of the sarcomeres and the interaction between thick and thin filaments required for spontaneous contraction occur in the absence of light chain LC3. One set of structural genes for the myosin light and heavy chains appears to be active in mononucleated cells, whereas another set appears to be active in multinucleated myotubes.  相似文献   

17.
New Zealand White rabbits were infused with [3H]tyrosine for periods of 5--6 h and then different methods of extraction were applied for the purification of the main muscle proteins and protein fractions. Myosin (I), prepared from salt extraction of muscle mince, consistently had a higher specific radioactivity than did myosin (II), isolated by dissociation of actomyosin. Actins (IA) and (IB), extracted from acetone-dried powders prepared by different treatments of myosin-extracted muscle mince, gave specific radioactivities approx. 0.6 that of myosin (I) and 0.7 that of myosin(II). Actin (II), isolated by dissociation of actomyosin, had a specific radioactivity similar to that of myosin (II) from the same source, but higher than those of actins (IA) and (IB). The differences between the specific radioactivities of the proteins, in particular actin, purified by the various methods, are attributed to the loss of newly synthesized material of high specific radioactivity during the initial extraction procedures. It is suggested that actin (II) and myosin (II) are representative preparations for the total population of each protein and that, on this basis, myosin and actin have similar rates of synthesis. Total muscle protein, myofibrils, actomyosin and sarcoplasm were all found to have very similar specific radioactivities at the end of a 6 h infusion.  相似文献   

18.
A previously unrecognized nonmuscle myosin II heavy chain (NMHC II), which constitutes a distinct branch of the nonmuscle/smooth muscle myosin II family, has recently been revealed in genome data bases. We characterized the biochemical properties and expression patterns of this myosin. Using nucleotide probes and affinity-purified antibodies, we found that the distribution of NMHC II-C mRNA and protein (MYH14) is widespread in human and mouse organs but is quantitatively and qualitatively distinct from NMHC II-A and II-B. In contrast to NMHC II-A and II-B, the mRNA level in human fetal tissues is substantially lower than in adult tissues. Immunofluorescence microscopy showed distinct patterns of expression for all three NMHC isoforms. NMHC II-C contains an alternatively spliced exon of 24 nucleotides in loop I at a location analogous to where a spliced exon appears in NMHC II-B and in the smooth muscle myosin heavy chain. However, unlike neuron-specific expression of the NMHC II-B insert, the NMHC II-C inserted isoform has widespread tissue distribution. Baculovirus expression of noninserted and inserted NMHC II-C heavy meromyosin (HMM II-C/HMM II-C1) resulted in significant quantities of expressed protein (mg of protein) for HMM II-C1 but not for HMM II-C. Functional characterization of HMM II-C1 by actin-activated MgATPase activity demonstrated a V(max) of 0.55 + 0.18 s(-1), which was half-maximally activated at an actin concentration of 16.5 + 7.2 microm. HMM II-C1 translocated actin filaments at a rate of 0.05 + 0.011 microm/s in the absence of tropomyosin and at 0.072 + 0.019 microm/s in the presence of tropomyosin in an in vitro motility assay.  相似文献   

19.
This work aimed to determine whether the heavy chains of myosin from different striated muscle were phosphorylated. Myosin and its heavy chains were prepared from cardiac and skeletal muscles of rats injected in vivo with radioactive phosphates.The results for radioactive phosphate localization indicate the absence of phosphate from pure heavy chains and from any of their purified fragments, whatever the striated muscle used. In addition, phosphates are present in the myosin phosphorylated light chain and in a contaminating protein closely associated to the myosin heavy chain.  相似文献   

20.
Contents of myofibrillar proteins in cardiac, skeletal, and smooth muscles   总被引:1,自引:0,他引:1  
The in situ contents of myosin, actin, alpha-actinin, tropomyosin, troponin, desmin were estimated in dog cardiac, rabbit skeletal, and chicken smooth muscles. Whole muscle tissues were dissolved with 8 M guanidine hydrochloride and subjected to two-dimensional gel electrophoresis, which is a nonequilibrium pH gradient electrophoresis (Murakami, U. & Uchida, K. (1984) J. Biochem. 95, 1577-1584) with some modification. The amount of protein in a spot on a slab gel was determined by quantification of the extracted dye. Dye binding capacity of individual myofibrillar proteins was determined by using the purified protein. Myosin contents were 82 +/- 7 pmol/mg wet weight in cardiac muscle, 105 +/- 10 pmol/mg wet weight in skeletal muscle, and 45 +/- 4 pmol/mg wet weight in smooth muscle. Actin contents were 339 +/- 15 pmol/mg wet weight in cardiac muscle, 625 +/- 27 pmol/mg wet weight in skeletal muscle, and 742 +/- 13 pmol/mg wet weight in smooth muscle. The subunit stoichiometry of myosin in the three types of muscles was two heavy chains and four light chains, and there was one light chain 2 for every heavy chain. The molar ratio of actin to tropomyosin was 7/1 in the three types of muscles. Striking differences were seen in the molar ratio of myosin to actin: 1.0/4.1 in cardiac muscle, 1.0/6.0 in skeletal muscle, and 1.0/16.5 in smooth muscle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号