首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Penicillin was recovered from mycel-containing fermentation broth by direct reactive extraction into a counter-current extraction decanter, Type CA 226-290 of the Westfalia Separator Co., at room temperature via steady state operation. Penicillin concentrations in the feed varied from 3 to 41 g L(-1), Amberlite LA-2 carrier concentrations from 7 to 20 g L(-1)and/or DITDA carrier concentrations from 7.2 to 84 g L(-1), the LA-2-to-penicillin mole concentration ratio from 4 to 6.4, and/or the DITDA-to-penicillin mole concentration ratio was maintained at 2. The throughputs of the fermentation broth (520 to 880 L h(-1)) of the solvent phase (200 to 860 L h(-1)) and the over all throughput (800 to 1750 L h(-1)) were high. Extraction degrees of 72 to 96% were achieved between pH 4.6 and 5.1. Without carriers in the same pH range, extraction degrees of only 17 to 19% were attained. By reducing the pH to 2.3 and in the absence of carriers, the degree of extraction was increased to 61%. However, during the extraction, 6.5% of the penicillin decomposed. At these high throughputs, the steady state was attained within 1 to 4 min. Through the mechanical stress, the length of the hyphae was reduced and the protein content of the broth was increased by 50 to 100%. However, this protein content had no appreciable influence on the phase separation.  相似文献   

2.
A novel extractive fermentation for butyric acid production from glucose, using immobilized cells of Clostridium tyrobutyricum in a fibrous bed bioreactor, was developed by using 10% (v/v) Alamine 336 in oleyl alcohol as the extractant contained in a hollow-fiber membrane extractor for selective removal of butyric acid from the fermentation broth. The extractant was simultaneously regenerated by stripping with NaOH in a second membrane extractor. The fermentation pH was self-regulated by a balance between acid production and removal by extraction, and was kept at approximately pH 5.5 throughout the study. Compared with conventional fermentation, extractive fermentation resulted in a much higher product concentration (>300 g/L) and product purity (91%). It also resulted in higher reactor productivity (7.37 g/L. h) and butyric acid yield (0.45 g/g). Without on-line extraction to remove the acid products, at the optimal pH of 6.0, the final butyric acid concentration was only approximately 43.4 g/L, butyric acid yield was 0.423 g/g, and reactor productivity was 6.77 g/L. h. These values were much lower at pH 5.5: 20.4 g/L, 0.38 g/g, and 5.11 g/L. h, respectively. The improved performance for extractive fermentation can be attributed to the reduced product inhibition by selective removal of butyric acid from the fermentation broth. The solvent was found to be toxic to free cells in suspension, but not harmful to cells immobilized in the fibrous bed. The process was stable and provided consistent long-term performance for the entire 2-week period of study.  相似文献   

3.
This paper describes the bioconversion of 2-methyl-1,3-propanediol to (R)-beta-hydoxyisobutyric acid (HIBA) by Acetobacter ALEI in a hollow fiber membrane bioreaction system arrangement that allows the integration of three liquid phases: the aqueous bioconversion phase, the organic phase consisting of a solution of trioctyl phosphine oxide (TOPO) in isooctane, and the third phase consisting of a basic stripping solution that allows reextraction of HIBA from the organic phase. A comparison of HIBA mass transfer experiments was carried out in the membrane reactor with two and three phases for different pH and TOPO concentrations. The use of the three-phase arrangement allows the extraction of high quantities of HIBA from the aqueous medium (higher than 85%) independently of the pH, whereas in the two-phase system the percentage of HIBA extracted from the aqueous medium was lower, 42% in the best case, and strongly influenced by the pH. The percentage of the extractive agent TOPO in the organic phase influenced on the mass transfer rate in both bi- and triphasic arrangements. By simply integrating the re-extraction phase in the system it was possible to increase the extraction yield by 2-fold, reduce the amount of TOPO by 4-fold, and operate at the more favorable pH 4. A bioconversion experiment was done in these conditions (pH = 4, TOPO = 5%) to confirm the advantages of including the third stripping solution. Fed-batch operation of the triphasic membrane reactor was maintained for more than 20 h, reaching an HIBA concentration in the stripping solution of 29 g L(-)(1).  相似文献   

4.
A stable microbial population, consisting of seven bacterial strains and three yeast strains, was selected in batch cultures on a mixture of ortho and meta-xylene and butyl acetate as the sole source of carbon and energy. This population can completely degrade up to 10 g/L of a mixture of these xenobiotics (70% xylene and 30% butyl acetate wt/wt) in a two-phase aqueous-silicone oil system (70%/30% vol/vol) within 96 h, while for the usual one-phase system very low growth degradation rates were observed. Further organic solvents were tested and finally, silicon oil was selected as the best organic phase for such a two-phase system. With periodical pH adjustments to 6.0 in fed-batch mode, the culture showed a global degradation rate of 63 mg L-1 h-1.  相似文献   

5.
The extraction of antibodies using a polyethylene glycol (PEG)‐citrate aqueous two‐phase system (ATPS) was investigated. Studies using purified monoclonal antibody (mAb) identified operating ranges for successful phase formation and factors that significantly affected antibody partitioning. The separation of antibody and host cell protein (HCP) from clarified cell culture media was examined using statistical design of experiments (DOE). The partitioning of antibody was nearly complete over the entire range of the operating space examined. A model of the HCP partitioning was generated in which both NaCl and citrate concentrations were identified as significant factors. To achieve the highest purity, the partitioning of HCP from cell culture fluid into the product containing phase was minimized using a Steepest Descent algorithm. An optimal ATPS consisting of 14.0% (w/w) PEG, 8.4% (w/w) citrate, and 7.2% (w/w) NaCl at pH 7.2 resulted in a product yield of 89%, an approximate 7.6‐fold reduction in HCP levels relative to the clarified cell culture fluid before extraction and an overall purity of 70%. A system consisting of 15% (w/w) PEG, 8% (w/w) citrate, and 15% (w/w) NaCl at pH 5.5 reduced product‐related impurities (aggregates and low molecular product fragments) from ~40% to less than 0.5% while achieving 95% product recovery. At the experimental conditions that were optimized in the batch mode, a scale‐up model for the use of counter‐current extraction technology was developed to identify potential improvements in purity and recovery that could be realized in the continuous operational mode. © 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

6.
A new method for the determination of tranexamic acid (TA) in human plasma using high performance liquid chromatography with tandem mass spectrometric detection was described. TA and the internal standard, methyldopa, was extracted from a 200 l plasma sample by a one-step deproteination using perchloric acid. Chromatographic separation was performed on an Xtrra MS C18 Column (2.1 mm x 100 mm, 3.5 microm) with the mobile phase consisting of 10% acetonitrile in 2 mM ammonium acetate buffer (pH 3.5) at a flow rate of 0.15 ml/min. The total run time was 5 min for each sample. Detection and quantitation was performed by the mass spectrometer using the multiple reaction monitoring of the precursor-product ion pair m/z 158 --> 95 for TA and m/z 212 --> 166 for methyldopa, respectively. The method was linear over the concentration range of 0.02-10.00 g/ml with lower limit of quantification of 0.02 microg/ml for TA. The intra- and inter-day precision was less than 11% and accuracy ranged -10.88 to 11.35% at the TA concentrations tested. The present method provides a relatively simple and sensitive assay with short turn-around time. The method has been successfully applied to a clinical pharmacokinetic study of TA in 12 healthy subjects.  相似文献   

7.
Lactic acid has extensive uses in the food, pharmaceutical, cosmetic and chemical industry. Lately, its use in producing biodegradable polymeric materials (polylactate) makes the production of lactic acid from fermentation broths very important. The major part of the production cost accounts for the cost of separation from very dilute reaction media where productivity is low as a result of the inhibitory nature of lactic acid. The current method of extraction/separation is both expensive and unsustainable. Therefore, there is great scope for development of alternative technology that will offer efficiency, economic, and environmental benefits. One of the promising technologies for recovery of lactic acid from fermentation broth is reactive liquid-liquid extraction. In this paper the extraction and recovery of lactic acid based on reactive processes is examined and the performance of a hydrophobic microporous hollow-fiber membrane module (HFMM) is evaluated. First, equilibrium experiments were conducted using organic solutions consisting of Aliquat 336/trioctylamine (as a carrier) and tri-butyl phosphate (TBP)/sunflower oil (as a solvent) The values of the distribution coefficient were obtained as a function of feed pH, composition of the organic phase (ratio of carrier to solvent), and temperature (range 8-40 degrees C). The optimum extraction was obtained with the organic phase consisting of a mixture of 15 wt % tri-octylamine (TOA) and 15% Aliquat 336 and 70% solvent. The organic phase with TBP performed best but is less suitable because of its damaging properties (toxicity and environmental impact) and cost. Sunflower oil, which performed moderately, can be regarded as a better option as it has many desirable characteristics (nontoxic, environment- and operator-friendly) and it costs much less. The percentage extraction was approximately 33% at pH 6 and at room temperature (can be enhanced by operating at higher temperatures) at a feed flow rate of 15-20 L/h. These results suggest that the hollow-fiber membrane process yields good percentage extraction at the fermentation conditions and its in situ application could improve the process productivity by suppressing the inhibitory effect of lactic acid.  相似文献   

8.
The gentle mixing characteristics of a Graesser contactor can help to avoid the formation of stable emulsions, which is one advantage of this type of contactor when used with reversed micellar extraction. In this study, the performance of the Graesser contactor in lysozyme extraction from hen egg white is investigated. The concentration profile of lysozyme in the aqueous and organic phases indicated that, while substantial axial mixing occurred in the contactor, the extraction yield was in the range of 97% to 99%. The number of mass transfer units (N(ox)) was determined using a diffusion model, and the influence of aqueous-to-organic phase flow ratio, rotor speed, and total throughput on contactor performance was studied. It was found that the diffusion model could describe quite well the extraction of lysozyme from hen egg white using reversed micelles. The optimal conditions for the extraction at steady state were found to be a rotor speed of 5 rpm, an aqueous-to-organic phase flow ratio of 60:20 mL/min, and a total throughput of 80 mL/min. In addition, back-extraction was also performed using the conventional method (1.5 M KBr at pH 11.5) in the contactor. It was found that this mass transfer was not well described by a diffusion model, although 85% of the lysozyme could be recovered with the operating conditions used: a rotor speed of 10 rpm, and an aqueous-to-organic flow rate of 10:10 mL/min.  相似文献   

9.
In this study, the Salmonella/microsome assay, using the micro-suspension method, was utilized to evaluate water for public supply at three sites in Rio Grande do Sul. The first site selected was in an area under industrial influence and the others were in non-industrial reference areas. Based on 40 L samples of raw water and/or after conventional treatment, compounds were extracted with XAD4 resins using natural and acidic pH, and the extracts were analyzed in the TA98 and TA100 strains with and without S9. Raw water extracts in the industrial region induced 27.4 revertants/L (rev/L) for TA100+S9 up to 226.3 rev/L for TA100-S9, both for acidic pH extracts. After conventional treatment the responses varied from 20.6 rev/L (TA98-S9) for natural pH extracts to 755.5 rev/L (TA98-S9) for acidic pH extracts. For acidic extracts obtained from reference site samples, the response, with metabolic activation only, ranged from negative to minimal. Direct mutagenic responses in acidic extracts may be elevated in treated extracts, compared with raw water extracts, influenced by the presence of by-products of the chlorination process. However, the mutagenicity observed in the treated water extracts in the industrial area increased and reflected mainly the combination of directly and indirectly acting compounds in the source waters, that are heavily influenced by anthropogenic factors.  相似文献   

10.
In the present work, the applicability of hollow fiber-based liquid phase microextraction (HF-LPME) was evaluated for the extraction and preconcentration of valerenic acid prior to its determination by reversed-phase HPLC/UV. The target drug was extracted from 5.0 mL of aqueous solution with pH 3.5 into an organic extracting solvent (dihexyl ether) impregnated in the pores of a hollow fiber and finally back extracted into 10 μ L of aqueous solution with pH 9.5 located inside the lumen of the hollow fiber. In order to obtain high extraction efficiency, the parameters affecting the HF-LPME, including pH of the donor and acceptor phases, type of organic phase, ionic strength, the volume ratio of donor to acceptor phase, stirring rate and extraction time were studied and optimized. Under the optimized conditions, enrichment factor up to 446 was achieved and the relative standard deviation (RSD) of the method was 4.36% (n = 9). The linear range was 7.5-850 μg L?1 with correlation coefficient (r2=0.999), detection limits was 2.5 μg L?1 and the LOQ was 7.5 μg L?1. The proposed method was evaluated by extraction and determination of valerenic acid in some Iranian wild species of Valerianaceae.  相似文献   

11.
The simultaneous separation of volatile fermentation products from product-inhibited fermentations can greatly increase the productivity of a bioreactor by reducing the product concentration in the bioreactor, as well as concentrating the product in an output stream free of cells, substrate, or other feed impurities. The Immobilized Cell Reactor-Separator (ICRS) consists of two column reactors: a cocurrent gas-liquid "enricher" followed by a countercurrent "stripper" The columns are four-phase tubular reactors consisting of (1) an inert gas phase, (2) the liquid fermentation broth, (3) the solid column internal packing, and (4) the immobilized biological catalyst or cells. The application of the ICRS to the ethanol-from-whey-lactose fermentation system has been investigated. Operation in the liquid continuous or bubble flow regime allows a high liquid holdup in the reactor and consequent long and controllable liquid residence time but results in a high gas phase pressure drop over the length of the reactor and low gas flow rates. Operation in the gas continuous regime gives high gas flow rates and low pressure drop but also results in short liquid residence time and incomplete column wetting at low liquid loading rates using conventional gas-liquid column packings. Using cells absorbed to conventional ceramic column packing (0.25-in. Intalox saddles), it was found that a good reaction could be obtained in the liquid continuous mode, but little separation, while in the gas continuous mode there was little reaction but good separation. Using cells sorbed to an absorbant matrix allowed operation in the gas continuous regime with a liquid holdup of up to 30% of the total reactor volume. Good reaction rates and product separation were obtained using this matrix. High reaction rates were obtained due to high density cell loading in the reactor. A dry cell density of up to 92 g/L reactor was obtained in the enricher. The enricher ethanol productivity ranged from 50 to 160 g/L h while the stripper productivity varied from 0 to 32 g/L h at different feed rates and concentrations. A separation efficiency of as high as 98% was obtained from the system.  相似文献   

12.
李雨奎 《动物学杂志》2011,46(3):104-108
测定了剑状矛蚌(Lanceolaria gladiola)在不同温度和不同pH条件下的滤水率.结果表明,在不同温度(10~28℃)条件下,剑状矛蚌的滤水率均随温度升高而上升,达到最大值后呈下降趋势,其中滤水率最大值出现在24℃时,大、中、小个体组剑状矛蚌滤水率最大值分别为0.826 L/h、0.768 L/h和0.65...  相似文献   

13.
Ground spruce wood was extracted with water at 170 °C at four different pH levels (3.8, 4.0, 4.2 and 4.4) achieved by using phthalate buffers. Static batch extractions were carried out in an accelerated solvent extractor (ASE-300). The extracted non-cellulosic carbohydrates, predominantly galactoglucomannans (GGMs), were characterised mainly by sugar unit analysis and molar mass determination. Compared to extraction with plain water, extractions with phthalate buffer solutions gave similar yields of non-cellulosic carbohydrates, but gave up to 70% less monosaccharides, and consequently higher molar masses of extracted GGMs. Moreover, at these pH levels, the hydrolysis of acetyl groups were decreased by 40% compared to extraction with plain water, thus maintaining the water solubility of GGMs. It is concluded that hot water extraction of hemicelluloses in high-molar-mass form (average Mw about 10 kDa) from wood in good yields (8% of wood) demands appropriate control of pH, to a level of about 4.  相似文献   

14.
The bioconversion of L-phenylalanine (L-Phe) to 2-phenylethanol (PEA) by the yeast Saccharomyces cerevisiae is limited by the toxicity of the product. PEA extraction by a separate organic phase in the fermenter is the ideal in situ product recovery (ISPR) technique to enhance productivity. Oleic acid was chosen as organic phase for two-phase fed-batch cultures, although it interfered to some extent with yeast viability. There was a synergistic inhibitory impact toward S. cerevisiae in the presence of PEA, and therefore a maximal PEA concentration in the aqueous phase of only 2.1 g/L was achieved, compared to 3.8 g/L for a normal fed-batch culture. However, the overall PEA concentration in the fermenter was increased to 12.6 g/L, because the PEA concentration in the oleic phase attained a value of 24 g/L. Thus, an average volumetric PEA production rate of 0.26 g L(-1) h(-1) and a maximal volumetric PEA production rate of 0.47 g L(-1) h(-1) were achieved in the two-phase fed-batch culture. As ethanol inhibition had to be avoided, the production rates were limited by the intrinsic oxidative capacity of S. cerevisiae. In addition, the high viscosity of the two-phase system lowered the k(l)a, and therefore also the productivity. Thus, if a specific ISPR technique is planned, it consequently has to be remembered that the productivity of this bioconversion process is also quickly limited by the k(l)a of the fermenter at high cell densities.  相似文献   

15.
Summary Penicillin G was extracted from mycelfree fermentation broths by means of the carrier (Amberlite LA-2) in n-butylacetate at pH 5 in a 7.6 m high pilot plant Karr-column with degrees of extraction E=98–99% and penicillin enrichments up to 3. The reextraction was carried out with phosphate buffer at pH-values above 7.5 with degree of extractions E=86–88% and penicillin enrichments up to 3. The penicillin and carrier losses were negligible. The influence of the process variables on the extraction degree was investigated. The penicillin extraction of the model medium and the fermentation broths were compared. Recommendations are given for the optimal penicillin recovery with reactive extraction.Symbols a specific interfacial area with regard to the volume of the continuous phase - cA concentration of carrier - cAHP,O concentration of complex in feed - cP,cP,O concentration of penicillin acid anion in theaqueous phase, in the feed - d 32 Sauter droplet diameter - E degree of extraction - f stroke frequency - V aq throughput of the aqueous phase - V 0 throughput of the organic phase - Z dimensionsless longitudinal coordinate of the column with regard to its active length (4m) - holdup of the organic phase  相似文献   

16.
Extractive fermentation for lactic acid production   总被引:8,自引:0,他引:8  
Lactic acid extractive fermentation was demonstrated using Alamine 336 in oleyl alcohol at acidic pH. The use of an efficient extraction system was possible through employment of the cell immobilization procedure. Process modeling was performed to relate the various process parameters such as flow rate, concentration, and pH. In experiments with 15% Alamine 336/oleyl alcohol, the bioreactor operation resulted in a higher productivity (12 g/L gel h) compared to that of a control fermentation (7 g/L gel h). Strategies for optimizing the extractive fermentation process were proposed considering both productivity and product recovery.  相似文献   

17.
The ferrous-iron oxidation kinetics of a bacterial culture consisting predominantly of Leptospirillum ferrooxidans were studied in continuous-flow bioreactors. The bacterial culture was fed with a salts solution containing 12 g/L ferrous-iron, at dilution rates ranging from 0.01 to 0.06 l/h, and temperatures ranging from 30 to 40 degrees C, at a pH of 1.75. The growth rate, and the oxygen and ferrous-iron utilization rates of the bacteria, were monitored by means of off-gas analysis and redox-potential measurement. The degree-of-reduction balance was used to compare the theoretical and experimental values of r(CO(2)), -r(O(2)) and -r(Fe(+2)), and the correlation found to be good. The maximum bacterial yield on ferrous-iron and the maintenance coefficient on ferrous-iron, were determined using the Pirt equation. An increase in the temperature from 30 to 40 degrees C did not appear to have an effect on either the maximum yield or maintenance coefficient on ferrous-iron. The average maximum bacterial yield and maintenance coefficient on ferrous-iron were found to be 0.0059 mmol C/mmol Fe(2+) and 0.7970 mmol Fe(2+)/mmol C)/h, respectively. The maximum specific growth rate was found to be 0.077 l/h. The maximum specific ferrous-iron utilization rate increased from 8.65 to 13.58 mmol Fe(2+)/mmol C/h across the range from 30 to 40 degrees C, and could be described using the Arrhenius equation. The kinetic constant in bacterial ferrous-iron oxidation increased linearly with increasing temperature. The ferrous-iron kinetics could be accurately described in terms of the ferric/ferrous-iron ratio by means of a Michaelis-Menten-based model modified to account for the effect of temperature. A threshold ferrous-iron level, below which no further ferrous-iron utilization occurred, was found at a ferric/ferrous-iron ratio of about 2500. At an overall iron concentration of 12 g/L, this value corresponds to a threshold ferrous-iron concentration of 78.5 x10(-3) mM.  相似文献   

18.
Itaconic acid is a promising organic acid and is commercially produced by submerged fermentation of Aspergillus terreus. The cultivation process of the sensitive filamentous fungus has been studied intensively since 1932, with respect to fermentation media components, oxygen supply, shearing rate, pH value, or culture method. Whereas increased final titers were achieved over the years, the productivity has so far remained quite low. In this study, the impact of the pH on the itaconic acid production was investigated in detail. The pH during the growth and production phase had a significant influence on the final itaconic acid concentration and pellet diameter. The highest itaconic acid concentration of 160 g/L was achieved at a 1.5-L scale within 6.7 days by raising and controlling the pH value to pH 3.4 in the production phase. An ammonia solution and an increased phosphate concentration were used with an itaconic acid yield of 0.46 (w/w) and an overall productivity of 0.99 g/L/h in a fed-batch mode. A cultivation with a lower phosphate concentration resulted in an equal final concentration with an increased yield of 0.58 (w/w) after 11.8 days and an overall productivity of 0.57 g/L/h. This optimized process was successfully transferred from a 1.5-L scale to a 15-L scale. After 9.7 days, comparable pellet morphology and a final concentration of 150 g/L itaconic acid was reached. This paper provides a process strategy to yield a final titer of itaconic acid from a wild-type strain of A. terreus which is in the same range as the well-known citric acid production.  相似文献   

19.
An extractor has been developed for microporous membrane liquid–liquid extraction (MMLLE) of lipophilic xenobiotics at trace levels in biological fluids. This new construction allows the sample phase to be stirred, while the organic phase is pumped. The extractor was evaluated using human blood plasma with added organophosphate esters. The size exclusion properties of the membrane reduced lipid co-extraction by 94% compared to ordinary liquid–liquid extraction. In combination with a solid-phase extraction (SPE) step, the method was shown to remove plasma lipids efficiently and thus allow gas chromatographic separation of the compounds. The clean-up method described, including the SPE step, showed a high level of reproducibility, and recoveries of between 72 and 83% were obtained for five of the organophosphate esters after a 200-min extraction period. Using this technique, triphenyl phosphate and an isomer of octyl diphenyl phosphate were detected in human plasma obtained from blood donors. The concentration of triphenyl phosphate ranged between 0.13 and 0.15 μg/g plasma.  相似文献   

20.
Extractive fermentation is a technique that can be used to reduce the effect of end product inhibition through the use of a water-immiscible phase that removes fermentation products in situ. This has the beneficial effect of not only removing inhibitory products as they are formed (thus keeping reaction rates high) but also has the potential for reducing product recovery costs. We have chosen to examine the ethanol fermentation as a model system for end product inhibition and extractive fermentation and have developed a computer model predicting the productivity enhancement possible with this technique together with other key parameters such as extraction efficiency and residual glucose concentration. The model accommodates variable liquid flowrates entering and leaving the system, since it was found that the aqueous outlet flowrate could be up to 35% lower than the inlet flowrate during extractive fermentation of concentrated glucose feeds due to the continuous removal of ethanol from the fermentation broth by solvent extraction. The model predicts a total ethanol productivity of 82.6 g/L h if a glucose feed of 750 g/L is fermented with a solvent having a distribution coefficient of 0.5 at a solvent dilution rate of 5.0 h(-1). This is more than 10 times higher than for a conventional chemostat fermentation of a 250 g/L glucose feed. The model has furthermore illustrated the possible trade-offs that exist between obtaining a high extraction efficiency and a low residual glucose concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号