首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The respiratory burst of rat alveolar macrophages stimulated by a variety of agents declines as a function of time of exposure to hyperoxia. Previous studies have evaluated this effect in terms of the stimulated O2⨪ production of a population of cells. The present study was designed to determine whether this decline is due to a “turning off” of the respiratory burst activity of some cells within the alveolar macrophage population or a general suppression of the activity of all cells. The phorbol myristate acetate (PMA) initiated respiratory burst of individual rat alveolar macrophages was monitored using the reaction of nitroblue tetrazolium (NBT), which results in the formation of a precipitate on active cells. The formazan staining was evaluated using black and white photographs of the cells and comparison to a scale constructed from photographed cells of four differing intensities of staining. Frequency distributions indicated that when the respiratory burst capability in the population of alveolar macrophages is impaired approximately 50% by oxygen exposure and/or culture in plastic vessels with artificial media, there is a gradual shift in NBT reduction rather than an “all or nothing” mechanism, in which the distribution would have reflected a shift from darkly stained cells to the very lessened or negligible staining observed at the end stage of oxygen toxicity.  相似文献   

2.
3.
The main experimental data on the organization of the respiratory center accumulated during the past 200 years are summarized. It is emphasized that the existence of separate, reciprocally interrelated, inspiratory and expiratory centers has never been proved. The notion of multiple respiratory centers in the CNS, including pneumotaxic, apneustic, gasping, and deep-exhalation centers, which allegedly underlie the multiple forms of respiratory movements, is demonstrated to be unjustified. Upon systemic consideration, the evidence in favor of the decisive role of neurons of the pre-Bötzinger complex and preinspiratory neurons in initiating the respiratory rhythm and maintaining rhythm generation in the respiratory center is contradictory and unconvincing. It is assumed that the respiratory center located in the medullary region of the brain of intact animals and humans fulfills the main functions of endogenous self-sustained generation of the respiratory rhythm, chemoregulation, and mechanoregulation in the respiratory system in an integrated manner, according to the general requirements of the body at a given moment.  相似文献   

4.
Several cytokines have previously been shown to prime macrophages for enhanced release of oxygen radicals in response to subsequent stimulation. We now demonstrate that the presence of the macrophage-specific colony stimulating factor-1 (CSF-1) inhibits the priming of murine macrophages by a variety of agents including tumor necrosis factor alpha, granulocyte/macrophage colony stimulating factor, interferon-gamma, and bacterial lipopolysaccharide. CSF-1 is also able to reduce the respiratory burst in the absence of priming. Our results indicate that CSF-1 is a potent negative regulator of the macrophage respiratory burst which acts to oppose the priming (enhancing) action of macrophage activating agents. We propose that CSF-1 may have a potentially important and previously unrecognized, role as a physiological regulator which restricts or terminates the activation of macrophages in order to prevent an uncontrolled inflammatory reaction.  相似文献   

5.
The relationship between glucose metabolism and the "respiratory burst" of phagocytosing polymorphonuclear leukocytes (PMN) was studied in a Renex 30-treated cell system of guinea pig PMN by a polarometric technique. Phagocytosing PMN were treated with a detergent (Renex 30) and recovery of respiratory activity was examined by addition of various concentrations of NADP and glucose-6-phosphate (G6P) to determine the availability of endogenously formed NADPH via the hexose monophosphate (HMP) pathway. The oxygen uptake by phagocytosing PMN ceased after the treatment with Renex 30 and was restored by the addition of NADP and G6P. Furthermore, the restoration of oxygen uptake was linearly proportional to the rate of NADPH formation on increase in either NADP or G6P concentration. Resting PMN showed no respiratory activity even in the presence of excess NADP and G6P, in which NADPH was formed at the same rate as in phagocytosing PMN. In a parallel experiment, recovery of respiratory activity was examined in the same system by addition of NAD and glyceraldehyde-3-phosphate (G3P) in that order to clarify whether the respiratory enzyme can utilize NADH formed via the glycolytic pathway. In contrast to the results in the NADPH-forming system, the addition of NAD and G3P induced slight oxygen uptake of Renex 30-treated PMN, but there was no difference in the oxygen uptake between resting and phagocytosis-activated PMN. The results indicated that the primary oxidase responsible for the "respiratory burst" is NADPH oxidase, and that its activity is coupled with glucose oxidation via the HMP pathway without the participation of other metabolic pathways such as glycolysis.  相似文献   

6.
This paper reviews sensitive and simple quantitative evaluation of macrophage phagocytosing capacity by applying fluoresecin-labeled Sacharomyces cerevisiae cells. Yeast cells were conjugated with fluoresceinisothiocyanate (FITC) and used as fluorescent particles. A time course analysis within this method showed that phagocytosis of yeast cells was temperature dependent and that the number of that ones ingested by macrophages increased rapidly during the initial 60 min of incubation at 37 degrees C. Free fluorescent cells can be effectively removed by aspiration from the well. Furthermore, yeast cells required preopsonization with serum to achieve optimal uptake of the cells. The uptake of nonopsonized yeast cells by macrophages was significantly lower than that of opsonized cells (P < 0.05). We propose that about 50% of mouse macrophages can carry functionally active FcR responsible for phagocytosis.  相似文献   

7.
Various complexes of phagocytes with adsorbed (I) and entrapped (J) particles are formed during phagocytosis. Method of stereological reconstruction is proposed that allows to demonstrate the actual distribution of these complexes on the basis of morphometric analysis of their ultrathin sections. The principle of the method lies on the probability simulation of section distribution for a given distribution of complexes and on the solution of the reverse problem by stepwise determination of the relative quantity of each complex type (from the most complicated to the most simple one, when I = 0 and J = 0). The stereological analysis of phagocytosing murine peritoneal macrophages revealed an absolutely different and more adequate kinetical picture of phagocytosis, as compared to the morphometric data.  相似文献   

8.
This work analyses the chitin-binding and catalytic domains of the human macrophage chitotriosidase and investigates the physiological role of this glycoside hydrolase in a complex mechanism such as the innate immune system, especially its antifungal activity. Accordingly, we first analyzed the ability of its chitin-binding domain to interact with chitin embedded in fungal cell walls using the β-lactamase activity reporter system described in our previous work. The data showed that the chitin-binding activity was related to the cell wall composition of the fungi strains and that their peptide-N-glycosidase/zymolyase treatments increased binding to fungal by increasing protein permeability. We also investigated the antifungal activity of the enzyme against Candida albicans. The antifungal properties of the complete chitotriosidase were analyzed and compared with those of the isolated chitin-binding and catalytic domains. The isolated catalytic domain but not the chitin-binding domain was sufficient to provide antifungal activity. Furthermore, to explain the lack of obvious pathologic phenotypes in humans homozygous for a widespread mutation that renders chitotriosidase inactive, we postulated that the absence of an active chitotriosidase might be compensated by the expression of another human hydrolytic enzyme such as lysozyme. The comparison of the antifungal properties of chitotriosidase and lysozyme indicated that surprisingly, both enzymes have similar in vitro antifungal properties. Furthermore, despite its more efficient hydrolytic activity on chitin, the observed antifungal activity of chitotriosidase was lower than that of lysozyme. Finally, this antifungal duality between chitotriosidase and lysozyme is discussed in the context of innate immunity.  相似文献   

9.
Metabolic flux control analysis of NADH oxidation in bovine heart submitochondrial particles revealed high flux control coefficients for both Complex I and Complex III, suggesting that the two enzymes are functionally associated as a single enzyme, with channelling of the common substrate, Coenzyme Q. This is in contrast with the more accepted view of a mobile diffusable Coenzyme Q pool between these enzymes. Dilution with phospholipids of a mitochondrial fraction enriched in Complexes I and III, with consequent increased theoretical distance between complexes, determines adherence to pool behavior for Coenzyme Q, but only at dilution higher than 1:5 (protein:phospholipids), whereas, at lower phospholipid content, the turnover of NADH cytochrome c reductase is higher than expected by the pool equation.  相似文献   

10.
In this paper, using the monocyte/macrophage cell line RAW264.7, we systematically investigate the impact of macrophage enrichment with unsaturated fatty acids on cellular radical synthesis. We found that the intracellular production of reactive nitrogen and oxygen intermediates depends on the activation status of the macrophages. For unstimulated macrophages PUFA enrichment resulted in an increase in cellular radical synthesis. For stimulated macrophages, instead, an impeding action of unsaturated fatty acids on the respiratory burst could be seen. Of particular importance, the impact of unsaturated fatty acids on the macrophage respiratory burst was also observed in RAW264.7 cells cocultivated with viable bacteria of the species Rhodococcus equi or Pseudomonas aeruginosa. PUFA supplementation of macrophages in the presence of R. equi or P. aeruginosa reduced the pathogen-stimulated synthesis of reactive nitrogen and oxygen intermediates. Furthermore, the unsaturated fatty acids were found to impede the expression of the myeloperoxidase gene and to reduce the activity of the enzyme. Hence, our data provide indications of a possible value of PUFA application to people suffering from chronic infections with R. equi and P. aeruginosa as a concomitant treatment to attenuate an excessive respiratory burst.  相似文献   

11.
Protein phosphorylation and the respiratory burst   总被引:5,自引:0,他引:5  
The exposure of 32P-loaded neutrophils to any of a variety of activating agents induces changes in the levels of phosphorylation of a large number of phosphoproteins. The uptake of phosphate by one set of phosphoproteins in particular, a family whose members migrate at Mr 48K with near neutral pI values, appears to be closely related to the activation of the respiratory burst oxidase, the O2--producing enzyme of phagocytes that is responsible for the generation of microbicidal oxidants by these cells. Evidence for the relationship between the phosphorylation of these proteins and the activation of the respiratory burst oxidase has been furnished by kinetic studies as well as by studies on protein phosphorylation in neutrophils from patients with chronic granulomatous disease, a group of inherited disorders affecting this oxidase. The details of this relationship are obscure, although the evidence suggests that these phosphoproteins act in substoichiometric amounts with respect to the oxidase.  相似文献   

12.
Phagocytes play a central role in the host defense system, and the relationship between the mechanism of their activation and cytoskeletal reorganization has been studied. We have previously reported a possible involvement of cofilin, an actin-binding protein, in phagocyte functions through its phosphorylation/dephosphorylation and translocation to the plasma membrane regions. In this work, we have obtained a new line of evidence showing an important role of cofilin in phagocyte functions using the mouse macrophage cell line J774.1 and an antisense oligonucleotide to cofilin. Upon stimulation with opsonized zymosan (OZ), cofilin was phosphorylated, and it accumulated around phagocytic vesicles. As the antisense oligonucleotide to cofilin, a 20-mer S-oligo corresponding to the sequence including the AUG translational initiation site was found to be effective. In the cells treated with the antisense oligonucleotide, the amount of cofilin was less than 30% of that in the control cells, and the level of F-actin was two or three times higher than that in the control cells before and throughout the cell activation. In the antisense oligonucleotide-treated cells, OZ-triggered superoxide production was three times faster than that in the control cells. Furthermore, phagocytosis of OZ was enhanced by the antisense. These results show that cofilin plays an essential role in the control of phagocyte function through regulation of actin filament dynamics.  相似文献   

13.
14.
Sarcospan is a component of the dystrophin-glycoprotein complex that forms a tight subcomplex with the sarcoglycans. The sarcoglycan-sarcospan subcomplex functions to stabilize α-dystroglycan at the plasma membrane and perturbations of this subcomplex are associated with autosomal recessive limb-girdle muscular dystrophy. In order to characterize protein interactions within this subcomplex, we first demonstrate that sarcospan forms homo-oligomers within the membrane. Experiments with a panel of site-directed mutants reveal that proper structure of the large extracellular loop is an important determinant of oligo formation. Furthermore, the intracellular N- and C-termini contribute to stability of sarcospan-mediated webs. Point mutation of each cysteine residue reveals that Cys 162 and Cys 164 within the large extracellular loop form disulfide bridges, which are critical for proper sarcospan structure. The extracellular domain of sarcospan also forms the main binding site for the sarcoglycans. We propose a model whereby sarcospan forms homo-oligomers that cluster the components of the dystrophin-glycoprotein complex within the membrane.  相似文献   

15.
Chemokines mediate their biological activity through activation of G protein coupled receptors, but most chemokines, including RANTES, are also able to bind glycosaminoglycans (GAGs). Here, we have investigated, by site-directed mutagenesis and chemical acetylation, the role of RANTES basic residues in the interaction with GAGs using surface plasmon resonance kinetic analysis. Our results indicate that (i) RANTES exhibited selectivity in GAGs binding with highest affinity (K(d) = 32.1 nM) for heparin, (ii) RANTES uses the side chains of residues R44, K45, and R47 for heparin binding, and blocking these residues in combination abolished heparin binding. The biological relevance of RANTES-GAGs interaction was investigated in CHO-K1 cells expressing CCR5, CCR1, or CCR3 and the various GAGs that bind RANTES. Our results indicate that the heparin binding site, defined as the 40s loop, is only marginally involved in CCR5 binding and activation, but largely overlaps the CCR1 and CCR3 binding and activation domain in RANTES. In addition, enzymatic removal of cell surface GAGs by glycosidases did not affect CCR5 binding and Ca(2+) response. Furthermore, addition of soluble GAGs inhibited both CCR5 binding and functional response, with a rank of potency similar to that found in surface plasmon resonance experiments. Thus, cell surface GAGs is not a prerequisite for receptor binding or signaling, but soluble GAGs can inhibit the binding and the functional response of RANTES to CCR5 expressing cells. However, the marked selectivity of RANTES for different GAGs may serve, in vivo, to control the concentration of specific chemokines in inflammatory situations and locations.  相似文献   

16.
Turning on the respiratory burst   总被引:12,自引:0,他引:12  
The respiratory burst is a distinguishing property of phagocytes. It is induced by chemotactic stimulation or phagocytosis and reflects the activation of a membrane-bound enzyme system that transfers electrons from cytosolic NADPH to extracellular oxygen, producing superoxide. The products of the burst are essential for the killing of microorganisms, but are also a cause of tissue damage and inflammation. Studies aimed at a better understanding of the regulation of the respiratory burst should help in the search for new ways to treat infections and inflammation.  相似文献   

17.
The structural and functional integrity of biological membranes is vital to life. The interplay of lipids and membrane proteins is crucial for numerous fundamental processes ranging from respiration, photosynthesis, signal transduction, solute transport to motility. Evidence is accumulating that specific lipids play important roles in membrane proteins, but how specific lipids interact with and enable membrane proteins to achieve their full functionality remains unclear. X-ray structures of membrane proteins have revealed tight and specific binding of lipids. For instance, cardiolipin, an anionic phospholipid, has been found to be associated to a number of eukaryotic and prokaryotic respiratory complexes. Moreover, polar and septal accumulation of cardiolipin in a number of prokaryotes may ensure proper spatial segregation and/or activity of proteins. In this review, we describe current knowledge of the functions associated with cardiolipin binding to respiratory complexes in prokaryotes as a frame to discuss how specific lipid binding may tune their reactivity towards quinone and participate to supercomplex formation of both aerobic and anaerobic respiratory chains. This article is part of a Special Issue entitled: 17th European Bioenergetics Conference (EBEC 2012).  相似文献   

18.
Plastocyanin is one of the best characterized of the photosynthetic electron transfer proteins. Since the determination of the structure of poplar plastocyanin in 1978, the structure of algal (Scenedesmus, Enteromorpha, Chlamydomonas) and plant (French bean) plastocyanins has been determined either by crystallographic or NMR methods, and the poplar structure has been refined to 1.33 Å resolution. Despite the sequence divergence among plastocyanins of algae and vascular plants (e.g., 62% sequence identity between theChlamydomonas and poplar proteins), the three-dimensional structures are remarkably conserved (e.g., 0.76 Å rms deviation in the C positions between theChlamydomonas and poplar proteins). Structural features include a distorted tetrahedral copper binding site at one end of an eight-stranded antiparallel -barrel, a pronounced negative patch, and a flat hydrophobic surface. The copper site is optimized for its electron transfer function, and the negative and hydrophobic patches are proposed to be involved in recognition of physiological reaction partners. Chemical modification, cross-linking, and site-directed mutagenesis experiments have confirmed the importance of the negative and hydrophobic patches in binding interactions with cytochromef and Photosystem I, and validated the model of two functionally significant electron transfer paths in plastocyanin. One putative electron transfer path is relatively short (4 Å) and involves the solvent-exposed copper ligand His-87 in the hydrophobic patch, while the other is more lengthy (12–15 Å) and involves the nearly conserved residue Tyr-83 in the negative patch.  相似文献   

19.
H(2)O(2) produced by stimulation of the macrophage NADPH oxidase is involved both in bacterial killing and as a second messenger in these cells. Protein tyrosine phosphatases (PTPs) are targets for H(2)O(2) signaling through oxidation of their catalytic cysteine, resulting in inhibition of their activity. Here, we show that, in the rat alveolar macrophage NR8383 cell line, H(2)O(2) produced through the ADP-stimulated respiratory burst induces the formation of a disulfide bond between PTP1B and GSH that was detectable with an antibody to glutathione-protein complexes and was reversed by DTT addition. PTP1B glutathionylation was dependent on H(2)O(2) as the presence of catalase at the time of ADP stimulation inhibited the formation of the conjugate. Interestingly, other PTPs, i.e., SHP-1 and SHP-2, did not undergo glutathionylation in response to ADP stimulation of the respiratory burst, although glutathionylation of these proteins could be shown by reaction with 25 mM glutathione disulfide in vitro. While previous studies have suggested the reversible oxidation of PTP1B during signaling or showed PTP1B glutathionylation in vitro, the present study directly demonstrates that physiological stimulation of H(2)O(2) production results in PTP1B glutathionylation in intact cells, which may affect downstream signaling.  相似文献   

20.
Respiratory burst develops in myeloid blast cells if they differentiate functionally along the monocytic or granulocytic lineage. Using the nitroblue tetrazolium (NBT) assay we studied the effects of recombinant human granulocyte/macrophage colony stimulating factor (rhuGM-CSF), rhuG-CSF and rhuM-CSF on development of respiratory burst activity in primary blast cells from patients with myeloid leukemia. Assessing suspension cultures containing cells from patients with acute myeloid leukemia (AML, n = 13) or myeloid-blast crisis (myBC) of chronic myeloid leukemia (CML, n = 5) it was found that the percentage of NBT positive cells was increased by at least 20% as compared to control cultures by rhuGM-CSF in 6/17 cases, by rhuG-CSF in 7/17 cases and by rhuM-CSF in 0/16 cases, representing in 'responders' a mean increase of 267% and 270% in the absolute number of NBT positive cells by rhuGM-CSF and rhuG-CSF, respectively. Morphological examination of cultured cells from 'responders', as compared to controls, showed decreased blast cell content but generally no evidence of terminal differentiation. The demonstration of Auer rods in NBT positive cells indicates that respiratory burst developed in a leukemic clone. These findings may be of physiological, pathophysiological and clinical relevance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号