首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
脂氧合酶(LOX)是一类广泛存在于动植物中的非血红素铁蛋白,催化底物生成各种类花生酸物质,与人体的肿瘤、哮喘、炎症、动脉硬化等疾病密切相关。12/15脂氧酶(12/15-LOX)是一种脂质过氧化物酶,可以催化亚油酸,花生四烯酸等多不饱和脂肪酸生成具有生物活性的代谢产物,通过信号转导在许多病理生理过程中发挥着重要的作用,有研究表明,12/15-LOX通路可以刺激炎症因子的产生,参与多种炎性反应,而在脑卒中的发生发展以及病理过程中始终伴随的炎性反应,炎症及细胞因子等对脑卒中有一定的影响,在脑卒中炎症反应继发性脑组织损伤病理发展过程中起着重要的作用。因此,研究12/15-LOX与脑卒中炎症的关系,可以为临床治疗脑卒中提供新的靶点。本文就12/15-LOX在脑卒中后炎症反应中的作用做简要介绍。  相似文献   

2.
乳突果苗的组织培养及脂氧合酶的诱导   总被引:1,自引:0,他引:1  
马长乐  李靖  赵沛基 《广西植物》2009,29(3):386-389
脂氧合酶(LOX)是植物十八碳酸途径中一个很重要的酶,该酶作用的产物在植物生长发育过程以及在植物对环境胁迫反应中起着重要作用。首次建立了萝藦科植物乳突果苗的培养体系,并用仿真菌环境(几丁质)对乳突果组培苗进行刺激诱导,通过LC-ESI-MS检测脂氧合酶反应的产物。粗酶活性鉴定结果显示,经150mg/L几丁质诱导9h的乳突果组培苗产生了9-LOX,该酶可催化亚油酸生成9,10,11-三羟基-12-十八碳烯酸。推测在乳突果组培苗中,几丁质诱导的十八碳酸代谢途径沿着9-LOX方向进行。  相似文献   

3.
环氧合酶的研究进展   总被引:9,自引:0,他引:9  
环氧合酶 (COX)是由花生四烯酸合成前列腺素的关键酶。COX 1和COX 2结构相似 ,但在反应底物、抑制剂 ,以及细胞内定位都有明显不同。COX 1和COX 2催化产生的各种前列腺素可调节机体的生理和病理活动。本文主要就COX 1和COX 2两种同工酶在生化结构、基因表达的调节 ,以及生理和病理功能等方面的进展作一简要介绍  相似文献   

4.
胡麻的籽粒富含多不饱和脂肪酸-亚麻酸,易被脂氧合酶(LOX)氧化,导致油脂的酸败。因此,油脂的稳定性和风味是影响胡麻油质量的重要因素。脂氧合酶是一类非血红素双加氧酶,其催化不饱和脂肪酸如亚油酸和亚麻酸的氢过氧化反应。本研究旨在阐明在胡麻种子发育时期脂氧合酶基因(LuLOX1)的表达、酶活性与品质的关系。本试验利用基于亚麻全基因组DNA测序数据,对LuLOX1基因进行克隆,利用RT-PCR方法进行LuLOX1基因表达分析,采用分光光度计法进行LOX酶活性测定。结果显示,LuLOX1基因的cDNA全长为2 607 bp,编码868个氨基酸,LuLOX1蛋白分子质量和等电点分别为98.87 kD、6.36。LuLOX1在种子发育早期高表达,之后呈下降的趋势,成熟期几乎检测不到该基因的表达。LuLOX1的酶活性变化与LuLOX1基因表达模式一致。该研究结果表明,LuLOX1可能参与了种子发育过程中脂肪酸氧化的调控。本研究为进一步研究其功能,通过脂氧合酶调控改进胡麻油脂品质奠定了基础。  相似文献   

5.
豌豆叶绿体脂氧合酶(LOX)活性在连体叶片衰老过程中变化不大。ABA处理离体叶片2d叶绿体LOX活性升高,处理时间延长活性下降。抗氧化剂α-生育酚、谷胱甘肽、没食子酸丙酯抑制豌豆叶绿体LOX活性。脂质过氧化产物丙二醛对豌豆叶绿体LOX和大豆纯LOX-1的活性均有抑制作用,大豆LOX-1能促进离体豌豆叶绿体膜脂过氧化作用。因此,豌豆叶绿体LOX可能参与叶片衰老过程中叶绿体膜结构和功能的改变,又受膜脂过氧化产物的制约。  相似文献   

6.
植物脂氧合酶研究进展   总被引:6,自引:0,他引:6  
李靖  马长乐 《生物学杂志》2007,24(6):5-8,29
脂氧合酶(简称LOX)是广泛分布的含有非血红素离子的双加氧酶,它是植物十八碳酸代谢途径的关键酶.该途径也称LOX途径。因为该酶作用的产物在植物的生长发育过程中以及在植物对环境胁迫反应中起着重要的作用,因此一直是人们研究的热点。目前对于植物脂氧舍酶的研究主要集中在脂氧合酶基因的表达调控、LOX途径的生化研究以及代谢产物的生理功能这几个方面。  相似文献   

7.
脂氧合酶在诱导红豆杉细胞产紫杉醇中的作用   总被引:2,自引:0,他引:2  
对红豆杉悬浮培养细胞中脂氧合酶(LOX)在诱导子诱导紫杉醇合成中的作用进行了探讨。结果表明真菌诱导子处理可提高细胞内LOX的活性和紫杉醇的产量,而诱导前用LOX抑制剂菲尼酮处理,可完全抑制诱导子对LOX活性和紫杉醇合成的诱导作用。说明LOX途径可能参与了紫杉醇的合成过程。外加茉莉酸甲酯也可激活LOX活性和紫杉醇合成,诱导前用菲尼酮处理可抑制诱导子诱导的LOX活性和紫杉醇合成,说明外源茉莉酸甲酯可能是通过激活细胞内LOX途径而启动下游紫杉醇的合成。为了进一步研究脂氧合酶在紫杉醇合成中的作用。我们还对红豆杉细胞脂氧合酶的分布和分子量等性质进行了研究。  相似文献   

8.
烟草愈伤组织用茉莉酸甲酯(MJ, 1mgml-1)处理;同时将愈伤组织在含AIP(0.1mmol/L,水杨酸合成抑制剂)和/或AOA(1mmol/L,乙烯合成抑制剂)的MS培养基上进行暗培养,测定在活性氧产生和脂质过氧化中起作用的相关酶活性及一些代谢物的含量。结果表明,茉莉酸甲酯能激活超氧阴离子的产生,提高脂氧合酶同工酶1(LOX1)的活性从而启动脂质过氧化,对脂氧合酶同工酶3(LOX3)没有明显影响;降低过氧化氢(H2O2)的含量、超氧化物歧化酶(SOD)、过氧化氢酶(CAT)及抗坏血酸过氧化物酶(APX)等保护酶的活性,减少了膜脂过氧化中有毒物质丙二醛(MDA)的含量。AIP和AOA都对MJ的作用有不同程度的影响。MJ调节超氧阴离子和过氧化氢生成以及相关酶活性是通过不同的信号转导途径,MJ调节超氧阴离子和MDA生成、SOD和APX活性很可能是通过乙烯起作用,且对MDA生成和APX活性的调节可能通过水杨酸起作用;MJ直接调节LOX1活性,但对LOX3活性没有明显作用。  相似文献   

9.
《生理学报》2021,73(4):657-664
花生四烯酸(arachidonic acid, AA)是一种ω-6多不饱和脂肪酸,在生物体内主要是以磷脂的形式存在于细胞膜上。AA在细胞内主要通过环氧合酶(cyclooxygenase, COX)途径、脂氧合酶(lipoxygenases, LOX)途径、细胞色素P450单氧化酶(cytochrome P450 monooxygenase, CYP450)途径等进行代谢。糖脂代谢的稳态调控是维持机体基本生命活动的基础,肝脏是糖脂代谢调控的中枢器官。肝脏糖脂代谢紊乱与2型糖尿病、非酒精性脂肪性肝病等代谢性疾病的发生和发展密切相关。已有研究表明AA代谢与肝脏糖脂代谢紊乱有密切的关系。本文就AA代谢在肝脏糖脂代谢稳态调控中的作用及其作为脂肪肝和胰岛素抵抗等代谢性疾病治疗靶点的价值作一综述。  相似文献   

10.
选用抗旱型小麦品种陕合6号和水分敏感型小麦品种郑引1号的黄化幼苗为材料,研究了光处理对小麦幼叶脂氧合酶活性和膜脂氧化作用的影响。结果表明:光处理后黄叶变绿,叶片中的LOX活性降低,丙二醛含量和叶绿素含量增加,膜透性升高,IUFA升高。LOX活性与光抑制过程的恢复,光保护过程及膜脂过氧化作用有关。光诱导产生的膜脂过氧化作用是一种“准膜脂过氧化作用”。  相似文献   

11.
With the combined techniques of on-line liquid chromatography/electron spin resonance (LC/ESR) and on-line liquid chromatography/mass spectrometry (LC/MS), we have previously characterized all classes of lipid-derived carbon-centered radicals (*Ld) formed from omega-6 polyunsaturated fatty acids (PUFAs: linoleic acid and arachidonic acid). In the present study, the carbon-centered radicals formed from two omega-3 PUFAs (linolenic acid and docosahexaenoic acid) resulting from their reactions with soybean lipoxygenase in the presence of alpha-[4-pyridyl 1-oxide]-N-tert-butylnitrone (POBN) were investigated using the combination of LC/ESR and LC/MS techniques. A total of 16 POBN trapped carbon-centered radicals formed from the peroxidation of linolenic acid and 11 formed from the peroxidation of docosahexaenoic acid were detected by LC/ESR, identified by LC/MS, and structurally confirmed by tandem mass analysis (MS/MS). The on-line ESR chromatograms and MS chromatograms obtained from two omega-3 PUFAs closely resembled each other not only because the four major beta-scission products, including an ethyl radical and three isomeric pentenyl radicals, were formed from each PUFA, but also because isomeric POBN adducts of lipid dihydroxyallylic radicals from both PUFAs had almost identical chromatographic retention times.  相似文献   

12.
Using the combined techniques of on-line high performance liquid chromatography/electron spin resonance (LC/ESR) and mass spectrometry (MS), we previously identified spin-trapped adducts of all expected carbon-centered lipid-derived radicals ((*)L(d)) formed in linoleic acid peroxidation. In the present study, spin trapped lipid-derived carbon-centered radicals formed from the reactions of two omega-6 polyunsaturated fatty acids (PUFAs: linoleic and arachidonic acids) with soybean lipoxygenase in the presence of alpha-[4-pyridyl 1-oxide]-N-tert-butyl nitrone (POBN) were identified using a combination of LC/ESR and LC/MS. All expected lipid-derived carbon-centered radicals in lipoxygenase-dependent peroxidations of linoleic acid and arachidonic acid were detected and identified by the combination of LC/ESR and LC/MS with confirmation by tandem mass spectrometry (MS/MS). The five classes of (*)L(d) formed from both omega-6 PUFAs including lipid alkyl radicals (L(*)), epoxyallyic radicals (OL(*)), dihydroxyallyic radicals ((*)L(OH)(2)), and a variety of R(*) and (*)RCOOH from beta-scission of lipid alkoxyl radicals, gave distinct retention times: POBN/(*)L(OH)(2) approximately 4-6 min, POBN/R(*) and POBN/(*)RCOOH approximately 8-22 min, POBN/L(*) and PBON/OL(*) approximately 25-36 min. The major beta-scission products in peroxidations of omega-6 PUFAs were the pentyl radicals. The ratio of beta-scission products, however, varied significantly depending on pH, [PUFA], as well as [O(2)].  相似文献   

13.
When dimethyl sulfoxide (DMSO) is oxidized via hydroxyl radical (HO(.-)), it forms methyl radicals ((.-)CH(3)) that can be spin trapped and detected by electron spin resonance (ESR). This ESR spin trapping technique has been widely used in many biological systems to indicate in vivo HO(.-) formation. However, we recently reported that (.-)CH(3) might not be the only carbon-centered radical that was trapped and detected by ESR from in vivo DMSO oxidation. In the present study, newly developed combination techniques consisting of dual spin trapping (free radicals trapped by both regular and deuterated alpha-[4-pyridyl 1]-N-tert-butyl nitrone, d(0)/d(9)-POBN) followed by LC/ESR and LC/MS were used to characterize and quantify all POBN-trapped free radicals from the interaction of HO(.-) and DMSO. In addition to identifying the two well-known free radicals, (.-)CH(3) and (.-)OCH(3), from this interaction, we also characterized two additional free radicals, (.-)CH(2)OH and (.-)CH(2)S(O)CH(3). Unlike ESR, which can measure POBN adducts only in their radical forms, LC/MS identified and quantified all three redox forms, including the ESR-active radical adduct and two ESR-silent forms, the nitrone adduct (oxidized adduct) and the hydroxylamine (reduced adduct). In the bile of rats treated with DMSO and POBN, the ESR-active form of POBN/(.-)CH(3) was not detected. However, with the addition of the LC/MS technique, we found approximately 0.75 microM POBN/(.-)CH(3) hydroxylamine, which represents a great improvement in radical detection sensitivity and reliability. This novel protocol provides a comprehensive way to characterize and quantify in vitro and in vivo free radical formation and will have many applications in biological research.  相似文献   

14.
Through free radical-mediated peroxidation, cyclooxygenase (COX) can metabolize dihomo-γ-linolenic acid (DGLA) and arachidonic acid (AA) to form well-known bioactive metabolites, namely, the 1-series of prostaglandins (PGs1) and the 2-series of prostaglandins (PGs2), respectively. Unlike PGs2, which are generally viewed as proinflammatory and procarcinogenic PGs, PGs1 may possess anti-inflammatory and anti-cancer activity. Previous studies using ovine COX along with spin trapping and the LC/ESR/MS technique have shown that certain exclusive free radicals are generated from different free radical reactions in DGLA and AA peroxidation. However, it has been unclear whether the differences were associated with the contrasting bioactivity of DGLA vs AA. The aim of this study was to refine the LC/MS and spin trapping technique to make it possible for the association between free radicals and cancer cell growth to be directly tested. Using a colon cancer cell line, HCA-7 colony 29, and LC/MS along with a solid-phase extraction, we were able to characterize the reduced forms of radical adducts (hydroxylamines) as the free radicals generated from cellular COX-catalyzed peroxidation. For the first time, free radicals formed in the COX-catalyzed peroxidation of AA vs DGLA and their association with cancer cell growth were assessed (cell proliferation via MTS and cell cycle distribution via propidium iodide staining) in the same experimental setting. The exclusive free radicals formed from the COX-catalyzed peroxidation of AA and DGLA were shown to be correlated with the cell growth response. Our results indicate that free radicals generated from the distinct radical reactions in COX-catalyzed peroxidation may represent the novel metabolites of AA and DGLA that correspond to their contrasting bioactivity.  相似文献   

15.
Yu Q  Shan Z  Ni K  Qian SY 《Free radical research》2008,42(5):442-455
Gamma-linolenic acid (GLA) has been reported as a potential anti-cancer and anti-inflammatory agent and has received substantial attention in cancer care research. One of the many proposed mechanisms for GLA biological activity is free radical-mediated lipid peroxidation. However, no direct evidence has been obtained for the formation of GLA-derived radicals. In this study, a combination of LC/ESR and LC/MS was used with alpha-[4-pyridyl-1-oxide]-N-tert-butyl nitrone (POBN) to profile the carbon-centred radicals that are generated in lipoxygenase-catalysed GLA peroxidation. A total of four classes of GLA-derived radicals were characterized including GLA-alkyl, epoxyallylic, dihydroxyallylic radicals and a variety of carbon-centred radicals stemming from the beta-scissions of GLA-alkoxyl radicals. By means of an internal standard in LC/MS, one also quantified each radical adduct in all its redox forms, including an ESR-active form and two ESR-silent forms. The results provided a good starting point for ongoing research in defining the possible biological effects of radicals generated from GLA peroxidation.  相似文献   

16.
Polyunsaturated fatty acid (PUFA) peroxyl radicals play a crucial role in lipid oxidation. ESR spectroscopy with the spin-trapping technique is one of the most direct methods for radical detection. There are many reports of the detection of PUFA peroxyl radical adducts; however, it has recently been reported that attempted spin trapping of organic peroxyl radicals at room temperature formed only alkoxyl radical adducts in detectable amounts. Therefore, we have reinvestigated spin trapping of the linoleic, arachidonic, and linolenic acid-derived PUFA peroxyl radicals. The slow-flow technique allowed us to obtain well-resolved ESR spectra of PUFA-derived radical adducts in a mixture of soybean lipoxygenase, PUFA, and the spin trap 5,5-dimethyl-1-pyrroline N-oxide (DMPO). However, interpretation of the ESR spectra was complicated by the overlapping of the PUFA-derived alkoxyl radical adduct spectra. In order to understand these spectra, PUFA-derived alkoxyl radical adducts were modeled by various alkoxyl radical adducts. For the first time, we synthesized a wide range of DMPO adducts with primary and secondary alkoxyl radicals. It was found that many ESR spectra previously assigned as DMPO/peroxyl radical adducts based on their close similarity to the ESR spectrum of the DMPO/superoxide radical adduct, in conjunction with their insensitivity to superoxide dismutase, are indeed alkoxyl radical adducts. We have reassigned the PUFA alkylperoxyl radical adducts to their corresponding alkoxyl radical adducts. Using hyperfine coupling constants of model DMPO/alkoxyl radical adducts, the computer simulation of DMPO/PUFA alkoxyl radical adducts was performed. It was found that the trapped, oxygen-centered PUFA-derived radical is a secondary, chiral alkoxyl radical. The presence of a chiral carbon atom leads to the formation of two diastereomers of the DMPO/PUFA alkoxyl radical adduct. Therefore, attempted spin trapping of the PUFA peroxyl radical by DMPO at room temperature leads to the formation of the PUFA alkoxyl radical adduct.  相似文献   

17.
Docosapentaenoic acid (DPA) is a unique fatty acid that exists in two isomeric forms (n-3 and n-6), which differ in their physiological behaviors. DPA can undergo free radical-mediated peroxidation via lipoxygenase (LOX). 15-LOX, one of the LOX isomers, has received much attention in cancer research because of its very different expression level in normal tissues compared to tumors and some bioactive fatty acid metabolites modulating the tumorigenic pathways in cancer. However, the mechanism linking 15-LOX, DPA metabolites, and their bioactivities is still unclear, and the free radicals generated in DPA peroxidation have never been characterized. In this study, we have studied radicals formed from both soybean and human cellular (PC3-15LOS cells) 15-LOX-catalyzed peroxidation of DPAs at various pH's using a combination of LC/ESR/MS with the spin trapping technique. We observed a total of three carbon-centered radicals formed in 15-LOX-DPA (n-3) stemming from its 7-, 17-, and 20-hydroperoxides, whereas only one formed from 17-hydroperoxide in DPA (n-6). A change in the reaction pH from 8.5 (15-LOX enzyme optimum) to 7.4 (physiological) and to 6.5 (tumor, acidic) not only decreased the total radical formation but also altered the preferred site of oxygenation. This pH-dependent alteration of radical formation and oxygenation pattern may have significant implications and provide a basis for our ongoing investigations of LOXs as well as fatty acids in cancer biology.  相似文献   

18.
Like arachidonic acid (AA), dihomo-γ-linolenic acid (DGLA) is a 20-carbon ω-6 polyunsaturated fatty acid and a substrate of cyclooxygenase (COX). Through free radical reactions, COX metabolizes DGLA and AA to form well-known bioactive metabolites, namely, the 1 and 2 series of prostaglandins (PGs1 and PGs2), respectively. Unlike PGs2, which are viewed as proinflammatory, PGs1 possess anti-inflammatory and anticancer activities. However, the mechanisms linking the PGs to their bioactivities are still unclear, and radicals generated in COX-DGLA have not been detected. To better understand PG biology and determine whether different reactions occur in COX-DGLA and COX-AA, we have used LC/ESR/MS with a spin trap, α-(4-pyridyl-1-oxide)-N-tert-butyl nitrone (POBN), to characterize the carbon-centered radicals formed from COX-DGLA in vitro, including cellular peroxidation. A total of five types of DGLA-derived radicals were characterized as POBN adducts: m/z 266, m/z 296, and m/z 550 (same as or similar to COX-AA) and m/z 324 and m/z 354 (exclusively from COX-DGLA). Our results suggest that C-15 oxygenation to form PGGs occurs in both COX-DGLA and COX-AA; however, C-8 oxygenation occurs exclusively in COX-DGLA. This new finding will be further investigated for its association with various bioactivities of PGs, with potential implications for inflammatory diseases.  相似文献   

19.
γ-Linolenic acid (GLA) has been reported as a potential anti-cancer and anti-inflammatory agent and has received substantial attention in cancer care research. One of the many proposed mechanisms for GLA biological activity is free radical-mediated lipid peroxidation. However, no direct evidence has been obtained for the formation of GLA-derived radicals. In this study, a combination of LC/ESR and LC/MS was used with α-[4-pyridyl-1-oxide]-N-tert-butyl nitrone (POBN) to profile the carbon-centred radicals that are generated in lipoxygenase-catalysed GLA peroxidation. A total of four classes of GLA-derived radicals were characterized including GLA-alkyl, epoxyallylic, dihydroxyallylic radicals and a variety of carbon-centred radicals stemming from the β-scissions of GLA-alkoxyl radicals. By means of an internal standard in LC/MS, one also quantified each radical adduct in all its redox forms, including an ESR-active form and two ESR-silent forms. The results provided a good starting point for ongoing research in defining the possible biological effects of radicals generated from GLA peroxidation.  相似文献   

20.
The previously reported combination of an on-line high-performance liquid chromatography (LC)/electron spin resonance (ESR) system with mass spectrometric analysis (MS) created a unique technique to identify a variety of lipid-derived radicals ((.)L(d)) formed from in vitro lipid peroxidation (Iwahashi et al. [20]). To improve the sensitivity, resolution, and reliability of this method for in vitro and in vivo studies, we have investigated the effects of mobile phase pH, modifiers, and columns on the chromatographic separation of linoleic acid-derived radical adducts. Using tetrahydrofuran (THF) and 0.1% glacial acetic acid (HOAc) in an H(2)O/acetonitrile (ACN) mobile phase greatly increased the resolution and retention reproducibility of lipid radical adducts in LC/ESR. In addition, these modifications allowed the elimination of an ESR tuning problem and the synchronization of UV and ESR detection of radical adducts in on-line LC/ESR, neither of which had been possible previously. Analyte purity was therefore increased, thus increasing the reliability of radical detection via on-line LC/ESR as well as radical identification via MS analysis. For the first time, POBN adducts of linoleic carbon-centered pentadienyl radicals (L(.)) were detected and identified. The optimization of chromatography in the LC/ESR and MS combination provided a reliable and sensitive way for the detection and identification of expected radical adducts in vitro and in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号