首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Iron chelation therapy using iron (III) specific chelators such as desferrioxamine (DFO, Desferal), deferasirox (Exjade or ICL-670), and deferiprone (Ferriprox or L1) are the current standard of care for the treatment of iron overload. Although each chelator is capable of promoting some degree of iron excretion, these chelators are also associated with a wide range of well documented toxicities. However, there is currently very limited data available on their effects in developing embryos. In this study, we took advantage of the rapid development and transparency of the zebrafish embryo, Danio rerio to assess and compare the toxicity of iron chelators. All three iron chelators described above were delivered to zebrafish embryos by direct soaking and their effects on mortality, hatching and developmental morphology were monitored for 96 hpf. To determine whether toxicity was specific to embryos, we examined the effects of chelator exposure via intra peritoneal injection on the cardiac function and gene expression in adult zebrafish. Chelators varied significantly in their effects on embryo mortality, hatching and morphology. While none of the embryos or adults exposed to DFO were negatively affected, ICL -treated embryos and adults differed significantly from controls, and L1 exerted toxic effects in embryos alone. ICL-670 significantly increased the mortality of embryos treated with doses of 0.25 mM or higher and also affected embryo morphology, causing curvature of larvae treated with concentrations above 0.5 mM. ICL-670 exposure (10 µL of 0.1 mM injection) also significantly increased the heart rate and cardiac output of adult zebrafish. While L1 exposure did not cause toxicity in adults, it did cause morphological defects in embryos at 0.5 mM. This study provides first evidence on iron chelator toxicity in early development and will help to guide our approach on better understanding the mechanism of iron chelator toxicity.  相似文献   

2.
Using transgenic zebrafish (fli1:egfp) that stably express enhanced green fluorescent protein (eGFP) within vascular endothelial cells, we recently developed and optimized a 384-well high-content screening (HCS) assay that enables us to screen and identify chemicals affecting cardiovascular development and function at non-teratogenic concentrations. Within this assay, automated image acquisition procedures and custom image analysis protocols are used to quantify body length, heart rate, circulation, pericardial area, and intersegmental vessel area within individual live embryos exposed from 5 to 72 hours post-fertilization. After ranking developmental toxicity data generated from the U.S. Environmental Protection Agency''s (EPA''s) zebrafish teratogenesis assay, we screened 26 of the most acutely toxic chemicals within EPA''s ToxCast Phase-I library in concentration-response format (0.05–50 µM) using this HCS assay. Based on this screen, we identified butafenacil as a potent inducer of anemia, as exposure from 0.39 to 3.125 µM butafenacil completely abolished arterial circulation in the absence of effects on all other endpoints evaluated. Butafenacil is an herbicide that inhibits protoporphyrinogen oxidase (PPO) – an enzyme necessary for heme production in vertebrates. Using o-dianisidine staining, we then revealed that severe butafenacil-induced anemia in zebrafish was due to a complete loss of hemoglobin following exposure during early development. Therefore, six additional PPO inhibitors within the ToxCast Phase-I library were screened to determine whether anemia represents a common adverse outcome for these herbicides. Embryonic exposure to only one of these PPO inhibitors – flumioxazin – resulted in a similar phenotype as butafenacil, albeit not as severe as butafenacil. Overall, this study highlights the potential utility of this assay for (1) screening chemicals for cardiovascular toxicity and (2) prioritizing chemicals for future hypothesis-driven and mechanism-focused investigations within zebrafish and mammalian models.  相似文献   

3.
Zebrafish as a model for developmental neurotoxicity testing   总被引:6,自引:0,他引:6  
BACKGROUND: To establish zebrafish as a developmental toxicity model, we used 7 well-characterized compounds to examine several parameters of neurotoxicity during development. METHODS: Embryos were exposed by semistatic immersion from 6 hrs postfertilization (hpf). Teratogenicity was assessed using a modified method previously developed by Phylonix. Dying cells in the brain were assessed by acridine orange staining (these cells are likely to be apoptotic). Motor neurons were assessed by antiacetylated tubulin staining and catecholaminergic neurons were visualized by antityrosine hydroxylase staining. RESULTS: Atrazine, dichlorodiphenyltrichloroethane (DDT), and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) were primarily teratogenic and not specifically neurotoxic. 2,4-dichlorophenoxyacetic acid (2,4-D), dieldrin, and nonylphenol showed specific neurotoxicity; dieldrin and nonylphenol were specifically toxic to catecholaminergic neurons. Malathion, although not teratogenic, showed some nonspecific toxicity. CONCLUSIONS: Teratogenicity measured in 96-hpf zebrafish is predictive of mammalian teratogenicity and is useful in determining whether a compound causes specific neurotoxicity or general developmental toxicity. Induction of apoptosis or necrosis is an indicator of neurotoxicity. An effect on motor neurons in the caudal third of the embryo correlates with expected defects in motility. Overall, our results showed a strong correlation with mammalian data and suggest that zebrafish is a predictive animal model for neurotoxicity screening.  相似文献   

4.
5.

Background

The exposure of the human embryo to ethanol results in a spectrum of disorders involving multiple organ systems, including the impairment of the development of the central nervous system (CNS). In spite of the importance for human health, the molecular basis of prenatal ethanol exposure remains poorly understood, mainly to the difficulty of sample collection. Zebrafish is now emerging as a powerful organism for the modeling and the study of human diseases. In this work, we have assessed the sensitivity of specific subsets of neurons to ethanol exposure during embryogenesis and we have visualized the sensitive embryonic developmental periods for specific neuronal groups by the use of different transgenic zebrafish lines.

Methodology/Principal Findings

In order to evaluate the teratogenic effects of acute ethanol exposure, we exposed zebrafish embryos to ethanol in a given time window and analyzed the effects in neurogenesis, neuronal differentiation and brain patterning. Zebrafish larvae exposed to ethanol displayed small eyes and/or a reduction of the body length, phenotypical features similar to the observed in children with prenatal exposure to ethanol. When neuronal populations were analyzed, we observed a clear reduction in the number of differentiated neurons in the spinal cord upon ethanol exposure. There was a decrease in the population of sensory neurons mainly due to a decrease in cell proliferation and subsequent apoptosis during neuronal differentiation, with no effect in motoneuron specification.

Conclusion

Our investigation highlights that transient exposure to ethanol during early embryonic development affects neuronal differentiation although does not result in defects in early neurogenesis. These results establish the use of zebrafish embryos as an alternative research model to elucidate the molecular mechanism(s) of ethanol-induced developmental toxicity at very early stages of embryonic development.  相似文献   

6.
Heat shock proteins (HSPs) indicate exposure to cellular stress and adverse cellular effects, thus serving as biomarkers of these effects. The highly conserved Hsp70 proteins are expressed under proteotoxic conditions, whereas small HSPs are expressed in response to stressors acting on the cytoskeleton and cell signaling pathways. Poeciliopsis lucida hepatocellular carcinoma line 1 (PLHC-1) cells have been used extensively for studying effects of cytotoxicity. A number of assays have been developed to examine DNA levels, protein levels, growth rate, morphological changes, and viability. The boundary between sub-lethal and lethal effects of particular stressors has been determined. The methodology and analytical framework for these techniques along with sample assays using cadmium stressed PLHC-1 cells are described. A range of methodologies have been developed in the past decade that allow the analysis and interpretation of gene expression and function in vivo in zebrafish embryos, and many of these are now being applied to the development of embryotoxicity assays. Here we provide the theoretical background and methodology for utilizing Hsp70 expression as an indicator of toxicity in the zebrafish embryo. Hsp70 expression is activated in a tissue-specific manner in zebrafish larvae following exposure to a number of different toxicants, including cadmium. This has allowed the development of an hsp70/eGFP reporter gene system in stable transgenic zebrafish that serves as a reliable yet extremely quick indicator of cell-specific toxicity in the context of the multicellular, living embryo.  相似文献   

7.
Crotamine is defensin‐like cationic peptide from rattlesnake venom that possesses anticancer, antimicrobial, and antifungal properties. Despite these promising biological activities, toxicity is a major concern associated with the development of venom‐derived peptides as therapeutic agents. In the present study, we used zebrafish as a system model to evaluate the toxicity of rhodamine B‐conjugated (RhoB) crotamine derivative. The lethal toxic concentration of RhoB‐crotamine was as low as 4 μM, which effectively kill zebrafish larvae in less than 10 min. With non‐lethal concentrations (<1 μM), crotamine caused malformation in zebrafish embryos, delayed or completely halted hatching, adversely affected embryonic developmental programming, decreased the cardiac functions, and attenuated the swimming distance of zebrafish. The RhoB‐crotamine translocated across vitelline membrane and accumulated in zebrafish yolk sac. These results demonstrate the sensitive responsivity of zebrafish to trial crotamine analogues for the development of novel therapeutic peptides with improved safety, bioavailability, and efficacy profiles.  相似文献   

8.
Activation of the Ah receptor (AhR) by halogenated aromatic hydrocarbons (HAHs), such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD, dioxin), can produce a wide variety of toxic and biological effects. While recent studies have shown that the AhR can bind and be activated by structurally diverse chemicals, how widespread of these AhR agonists are in environmental, biological and synthetic materials remains to be determined. Using AhR-based assays, we demonstrate the presence of potent AhR agonists in a variety of common commercial and consumer items. Solvent extracts of paper, rubber and plastic products contain chemicals that can bind to and stimulate AhR DNA binding and/or AhR-dependent gene expression in hepatic cytosol, cultured cell lines, human epidermis and zebrafish embryos. In contrast to TCDD and other persistent dioxin-like HAHs, activation of AhR-dependent gene expression by these extracts was transient, suggesting that the agonists are metabolically labile. Solvent extracts of rubber products produce AhR-dependent developmental toxicity in zebrafish in vivo, and inhibition of expression of the metabolic enzyme CYP1A, significantly increased their toxic potency. Although the identity of the responsible AhR-active chemicals and their toxicological impact remain to be determined, our data demonstrate that AhR active chemicals are widely distributed in everyday products.  相似文献   

9.
10.
Recent investigations have elucidated some of the diverse roles played by reactive oxygen and nitrogen species in events that lead to oxygen toxicity and defend against it. The focus of this review is on toxic and protective mechanisms in hyperoxia that have been investigated in our laboratories, with an emphasis on interactions of nitric oxide (NO) with other endogenous chemical species and with different physiological systems. It is now emerging from these studies that the anatomical localization of NO release, which depends, in part, on whether the oxygen exposure is normobaric or hyperbaric, strongly influences whether toxicity emerges and what form it takes, for example, acute lung injury, central nervous system excitation, or both. Spatial effects also contribute to differences in the susceptibility of different cells in organs at risk from hyperoxia, especially in the brain and lungs. As additional nodes are identified in this interactive network of toxic and protective responses, future advances may open up the possibility of novel pharmacological interventions to extend both the time and partial pressures of oxygen exposures that can be safely tolerated. The implications of a better understanding of the mechanisms by which NO contributes to central nervous system oxygen toxicity may include new insights into the pathogenesis of seizures of diverse etiologies. Likewise, improved knowledge of NO-based mechanisms of pulmonary oxygen toxicity may enhance our understanding of other types of lung injury associated with oxidative or nitrosative stress.  相似文献   

11.
The toxicity by 2,3,7,8 tetrachlorodibenzo-p-dioxin (TCDD) is thought to be caused by activation of the aryl hydrocarbon receptor (AHR). However, our understanding of how AHR activation by TCDD leads to toxic effects is poor. Ideally we would like to manipulate AHR activity in specific tissues and at specific times. One route to this is expressing dominant negative AHRs (dnAHRs). This work describes the construction and characterization of dominant negative forms of the zebrafish Ahr2 in which the C-terminal transactivation domain was either removed, or replaced with the inhibitory domain from the Drosophila engrailed repressor protein. One of these dnAhr2s was selected for expression from the ubiquitously active e2fα promoter in transgenic zebrafish. We found that these transgenic zebrafish expressing dnAhr2 had reduced TCDD induction of the Ahr2 target gene cyp1a, as measured by 7-ethoxyresorufin-O-deethylase activity. Furthermore, the cardiotoxicity produced by TCDD, pericardial edema, heart malformation, and reduced blood flow, were all mitigated in the zebrafish expressing the dnAhr2. These results provide in vivo proof-of-principle results demonstrating the effectiveness of dnAHRs in manipulating AHR activity in vivo, and demonstrating that this approach can be a means for blocking TCDD toxicity.  相似文献   

12.
13.
The PSD-95 family of membrane- associated guanylate kinases (MAGUKs) are thought to act as molecular scaffolds that regulate the assembly and function of the multiprotein signaling complex found at the postsynaptic density of excitatory synapses. Genetic analysis of PSD-95 family members in the mammalian nervous system has so far been difficult, but the zebrafish is emerging as an ideal vertebrate system for studying the role of particular genes in the developing and mature nervous system. Here we describe the cloning of the zebrafish orthologs of PSD-95, PSD-93, and two isoforms of SAP-97. Using in situ hybridization analysis we show that these zebrafish MAGUKs have overlapping but distinct patterns of expression in the developing nervous system and craniofacial skeleton. Using a pan-MAGUK antibody we show that MAGUK proteins localize to neurons within the developing hindbrain, cerebellum, visual and olfactory systems, and to skin epithelial cells. In the olfactory and visual systems MAGUK proteins are expressed strongly in synaptic regions, and the onset of expression in these areas coincides with periods of synapse formation. These data are consistent with the idea that PSD-95 family members are involved in synapse assembly and function, and provide a platform for future functional studies in vivo in a highly tractable model organism.  相似文献   

14.
Bisphenol A(BPA)is a chemical estrogen-like sub-stance with properties that are of environmental concern.It is widely used in the chemical industry to manufactureepoxy-and polyester-styrene resins.It has been reportedthat BPA ranges between0and33μg in each plasticcup[1].After atwo-weekexposureto0.5%bisphenol Aithas beenreportedthat disattachments betweensertoli cellsand spermatogonia were observed while spermatogoniawere arrangedin disorder and displacement of spermatogo-nia away fromthe basement membrance ...  相似文献   

15.
Triclocarban (TCC), which is used as an antimicrobial agent in personal care products, has been widely detected in aquatic ecosystems. However, the consequence of TCC exposure on embryo development is still elusive. Here, by using zebrafish embryos, we aimed to understand the developmental defects caused by TCC exposure. After exposure to 0.3, 30, and 300 μg/L TCC from 4‐hour postfertilization (hpf) to 120 hpf, we observed that TCC exposure significantly increased the mortality and malformation, delayed hatching, and reduced body length. Exposure to TCC also affected the heart rate and expressions of cardiac development–related genes in zebrafish embryos. In addition, TCC exposure altered the expressions of the genes involved in hormonal pathways, indicating its endocrine disrupting effects. In sum, our data highlight the impact of TCC on embryo development and its interference with the hormone system of zebrafish.  相似文献   

16.
Pharmaceutical safety testing requires a cheap, fast and highly efficient platform for real-time evaluation of drug toxicity and secondary effects. In this study, we have developed a microfluidic system for phenotype-based evaluation of toxic and teratogenic effects of drugs using zebrafish (Danio rerio) embryos and larvae as the model organism. The microfluidic chip is composed of two independent functional units, enabling the assessment of zebrafish embryos and larvae. Each unit consists of a fluidic concentration gradient generator and a row of seven culture chambers to accommodate zebrafish. To test the accuracy of this new chip platform, we examined the toxicity and teratogenicity of an anti-asthmatic agent-aminophylline (Apl) on 210 embryos and 210 larvae (10 individuals per chamber). The effect of Apl on zebrafish embryonic development was quantitatively assessed by recording a series of physiological indicators such as heart rate, survival rate, body length and hatch rate. Most importantly, a new index called clonic convulsion rate, combined with mortality was used to evaluate the toxicities of Apl on zebrafish larvae. We found that Apl can induce deformity and cardiovascular toxicity in both zebrafish embryos and larvae. This microdevice is a multiplexed testing apparatus that allows for the examination of indexes beyond toxicity and teratogenicity at the sub-organ and cellular levels and provides a potentially cost-effective and rapid pharmaceutical safety assessment tool.  相似文献   

17.
18.
All substances are toxic when the dose is large enough. In order to regulate the use of chemicals, we need to measure the level at which toxic effects are found. Epidemiological evidence suggests that present levels of chemical use do not lead to widespread harmful contamination of the human environment. For chemicals, most of the problems of toxicity are found in the workplace, while the population at large gets most of its toxic effects from voluntary exposure to substances such as tobacco smoke and ethanol. The prevention and control of toxic effects depends on a series of steps. This begins with measurement of toxicity in model systems, such as laboratory animals, and the estimation of the likely exposure of workers or consumers. Reliable extrapolation of information gathered from animals to the diverse and biochemically differing human population depends on understanding mechanisms of toxic effects. The toxic effect and mechanisms of action of substances such as carbon tetrachloride or paracetamol have been extensively investigated, and our ability to predict toxicity or develop antidotes to poisoning has had some success, but epidemiology is still an essential part of assessment of toxic effects of new chemicals. The example of phenobarbitone shows how animal experiments may well lead to conclusions which do not apply to man. After measurement of toxicity and assessment of likely hazards in use comes the final evaluation of the use of a chemical. This depends not only on its toxicity, but also on its usefulness. The direct effects on health may be small in comparison with the indirect advantageous effects which a useful substance such as vinyl chloride may bring. The assessment of risks and benefits of new chemicals can be partly removed from a political style of discourse, but the evaluation of the relative weight to be attached to these risks and benefits is inescapably political. The scientific contribution must be to allow the debate to take place in the light of maximum clarity of information about the consequences of use of chemicals.  相似文献   

19.
Undesirable toxicity is one of the main reasons for withdrawing drugs from the market or eliminating them as candidates in clinical trials. Although numerous studies have attempted to identify biomarkers capable of predicting pharmacotoxicity, few have attempted to discover robust biomarkers that are coherent across various species and experimental settings. To identify such biomarkers, we conducted meta-analyses of massive gene expression profiles for 6,567 in vivo rat samples and 453 compounds. After applying rigorous feature reduction procedures, our analyses identified 18 genes to be related with toxicity upon comparisons of untreated versus treated and innocuous versus toxic specimens of kidney, liver and heart tissue. We then independently validated these genes in human cell lines. In doing so, we found several of these genes to be coherently regulated in both in vivo rat specimens and in human cell lines. Specifically, mRNA expression of neuronal regeneration-related protein was robustly down-regulated in both liver and kidney cells, while mRNA expression of cathepsin D was commonly up-regulated in liver cells after exposure to toxic concentrations of chemical compounds. Use of these novel toxicity biomarkers may enhance the efficiency of screening for safe lead compounds in early-phase drug development prior to animal testing.  相似文献   

20.
Toxicological risk assessment for chemicals is still mainly based on highly standardised protocols for animal experimentation and exposure assessment. However, developments in our knowledge of general physiology, in chemicobiological interactions and in (computer-supported) modelling, have resulted in a tremendous change in our understanding of the molecular mechanisms underlying the toxicity of chemicals. This permits the development of biologically based models, in which the biokinetics as well as the toxicodynamics of compounds can be described. In this paper, the possibilities are discussed of developing systems in which the systemic (acute and chronic) toxicities of chemicals can be quantified without the heavy reliance on animal experiments. By integrating data derived from different sources, predictions of toxicity can be made. Key elements in this integrated approach are the evaluation of chemical functionalities representing structural alerts for toxic actions, the construction of biokinetic models on the basis of non-animal data (for example, tissue-blood partition coefficients, in vitro biotransformation parameters), tests or batteries of tests for determining basal cytotoxicity, and more-specific tests for evaluating tissue or organ toxicity. It is concluded that this approach is a useful tool for various steps in toxicological hazard and risk assessment, especially for those forms of toxicity for which validated in vitro and other non-animal tests have already been developed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号