首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Experimental data obtained in previous works have led to postulate that enhancers increase the frequency of action of a linked promoter in a given cell and may have some insulating effects. The multimerized rabbit alpha s1-casein gene enhancer, the 6i multimer, was added upstream of the rabbit whey acidic protein gene (WAP) promoter (-6,300; +28 bp) fused to the firefly luciferase (luc) gene (6i WAP-luc construct). The 6i multimer increased reporter gene expression in mouse mammary HC11 cells. In transgenic mice, a very weak but significant increase was also observed. More noticeable, no silent lines were found when the 6i multimer was associated to the WAP-luc construct. This reflects the fact that the 6i multimer tends to prevent the silencing of the WAP-luc construct. After addition of the 5'HS4 insulator region from the chicken beta-globin locus upstream of the 6i multimer, similar luciferase levels were measured in 6i WAP-luc and 5'HS4 WAP-luc transgenic mice. Our present data and previous ones, which show that the 6i multimer has no insulating activity on a TK gene promoter construct indicate that the insulating activity of the 6i multimer is construct-dependent and not amplified by the 5'HS4 insulator.  相似文献   

2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
Serine protease inhibitor SerpinE2 is known as a cytokine-inducible gene. Here, we investigated whether tumor necrosis factor alpha-(TNF-alpha)-induced expression of SerpinE2 is mediated by the nuclear factor-kappaB (NF-kappaB) p65 subunit. Both steady state and TNF-alpha-induced expression of SerpinE2 mRNA were abrogated in p65-/- murine embryonic fibroblasts (MEFs). Reconstitution with wild-type p65 rescued SerpinE2 mRNA expression in an IkappaB kinase beta-dependent manner. Electrophoresis mobility shift assay and ChIP assay demonstrated that p65 bound to the kappaB-like DNA sequence located at approximately -9 kbp in the SerpinE2 promoter. In addition, TNF-alpha stimulated luciferase gene expression driven by the kappaB-like element in the reconstituted MEFs, but not in p65-/- MEFs. These results indicated that activation of NF-kappaB p65 plays an important role in TNF-alpha-induced expression of SerpinE2.  相似文献   

12.
13.
Ten evolutionary conservative sequences with high identity level to homological sequences in other mammal species were revealed in 5'-flanking region of casein's genes cluster. Five novel SNPs located inside of the evolutionary conservative regions were identified. The binding sites were revealed to be present in one allelic variant of four detected SNPs. So these SNPs were considered as rSNPs. Significant differences of allelic frequencies were revealed between beef cow's group and dairy cow's group in two rSNPs (NCE4, NCE7, p<0.001). Different alleles of those two rSNPs were shown to be associated with some milk performance traits in Black-and-White Holstein dairy cows. Significant difference of protein percentage has been found between cows with G/G and A/A genotypes (P<0.05) and A/G and A/A genotypes (P<0.05) for NCE4 polymorphism. The groups of animals with genotypes G/G and A/G for NCE7 polymorphism were significantly different in milk yield at the first lactation (kg) (P<0.01), milk fat yield (kg) (P<0.05) and milk protein yield (kg) (P<0.01). For the last trait the difference was significant also between cows with genotypes G/G and A/A for rSNP NCE7 (P<0.05).  相似文献   

14.
15.
16.
Inguinal hernia is a common disease, most cases of which are indirect inguinal hernia (IIH). Genetic factors play an important role for inguinal hernia. Increased incidences of inguinal hernia have been reported in patients with 22q11.2 microdeletion syndrome, which is mainly caused by TBX1 gene mutations. Thus, we hypothesized that altered TBX1 gene expression may contribute to IIH development. In this study, the human TBX1 gene promoter was genetically analyzed in children with IIH (n = 100) and ethnic-matched controls (n = 167). Functions of DNA sequence variants (DSVs) within the TBX1 gene promoter were examined in cultured human fibroblast cells. The results showed that two heterozygous DSVs were found, both of which were single nucleotide polymorphisms. One DSV, g.4248 C>T (rs41298629), was identified in a 2-year-old boy with right-sided IIH, but not in all controls, which significantly decreased TBX1 gene promoter activity. Another DSV, g.4199 C>T (rs41260844), was found in both IIH patients and controls with similar frequencies (P > 0.05), which did not affect TBX1 gene promoter activity. Collectively, our data suggested that the DSV within the TBX1 gene promoter may change TBX1 level, contributing to IIH development as a rare risk factor. Underlying molecular mechanisms need to be established.  相似文献   

17.
18.
19.
20.
In this study, ten glutenin gene promoters were isolated from model wheat (Triticum aestivum L. cv. Chinese Spring) using a genomic PCR strategy with gene-specific primers. Six belonged to high-molecular-weight glutenin subunit (HMW-GS) gene promoters, and four to low-molecular-weight glutenin subunit (LMW-GS). Sequence lengths varied from 1361 to 2554 bp. We show that the glutenin gene promoter motifs are conserved in diverse sequences in this study, with HMW-GS and LMW-GS gene promoters characterized by distinct conserved motif combinations. Our findings show that HMW-GS promoters contain more functional motifs in the distal region of the glutenin gene promoter (> − 700 bp) compared with LMW-GS. The y-type HMW-GS gene promoters possess unique motifs including RY repeat and as-2 box compared to the x-type. We also identified important motifs in the distal region of HMW-GS gene promoters including the 5′-UTR Py-rich stretch motif and the as-2 box motif. We found that cis-acting elements in the distal region of promoter 1Bx7 enhanced the expression of HMW-GS gene 1Bx7. Taken together, these data support efforts in designing molecular breeding strategies aiming to improve wheat quality. Our results offer insight into the regulatory mechanisms of glutenin gene expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号