首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
T W Stone 《Life sciences》1991,48(8):765-772
Neurones in rat hippocampal slices were excited by microiontophoretic applications of N-methyl-D-aspartate (NMDA) and kainate. Responses to NMDA were potentiated by glycine 300 microM or 1 mM in the perfusing medium. A small potentiation of kainate was not observed in the presence of the NMDA antagonist 2-amino-5-phosphonopentanoic acid (2AP5). The potentiation of NMDA responses by glycine was not prevented by strychnine 5 or 30 microM and was also shown by D-serine and L-kynurenine but not L-leucine. If sensitivity to NMDA was reduced by kynurenic acid, glycine and L-kynurenine produced a greater enhancement of NMDA. The requirement of NMDA receptor activation for the occupation of strychnine-resistant glycine sites can thus be demonstrated in complex systems such as brain slices. It is possible that L-kynurenine may also be an endogenous ligand capable of modulating NMDA sensitivity.  相似文献   

2.
Single unit extracellular recordings from dorsal horn neurons were performed with glass micropipettes in pentobarbital-anesthetized rats. A total of 60 wide dynamic range (WDR) neurons were obtained from 34 rats. In normal rats (20/34), spinally administered D-serine (10 nmol), a putative endogenous agonist of glycine site of NMDA receptors, significantly enhanced the C- but not Abeta-, and Adelta-fiber responses of WDR neurons in the spinal dorsal horn. When 1 nmol of the glycine site antagonist 7-chlorokynurenic acid (7-CK) was co-administered with 10 nmol D-serine, the facilitation of D-serine on C-fiber response was completely blocked. 7-CK (1 nmol) alone failed to influence Abeta-, Adelta-, and C-fiber responses of WDR neurons. In contrast, in carrageenan-injected rats (14/34), 10 nmol D-serine had no effect on C-fiber response, while 1 nmol 7-CK per se markedly depressed C-fiber response of WDR neurons. These findings suggest that under physiological conditions, glycine sites in the spinal cord were available but became saturated following peripheral inflammation. Thus, increased endogenous d-serine or glycine may be involved in nociceptive transmission by modulating NMDA receptor activities. The glycine site of NMDA receptors may become a target for the prevention of inflammatory pain.  相似文献   

3.
A partial agonist of the N-methyl-D-aspartate (NMDA) receptor, D-cycloserine, acting at its glycine modulatory site, ameliorates the neuropsychiatric symptoms that are mimicked by NMDA antagonists and include cognitive disturbances, antipsychotic-resistant schizophrenic symptoms and cerebellar ataxia. To obtain a further insight into the mechanisms of the therapeutic efficacies of D-cycloserine, we investigated the effects of the systemic administration of D-cycloserine on the extracellular contents of an endogenous NMDA co-agonist, D-serine, in the medial frontal cortex of the rat using an in vivo dialysis technique. An acute intraperitoneal injection of D-cycloserine (50 and 100 mg/kg) caused an increase in extracellular concentrations of D-serine without significant effects on those of L-serine, glycine, L-glutamate, L-aspartate, L-glutamine, L-asparagine, L-alanine, L-threonine and taurine in the medial frontal cortex. The selective increase in the extracellular D-serine contents may, at least partially, be associated with the facilitating effects of D-cycloserine on the NMDA receptor functions in addition to its direct stimulation of the NMDA receptor glycine site.  相似文献   

4.
Rat hippocampal glutamatergic terminals possess NMDA autoreceptors whose activation by low micromolar NMDA elicits glutamate exocytosis in the presence of physiological Mg(2+) (1.2 mM), the release of glutamate being significantly reduced when compared to that in Mg(2+)-free condition. Both glutamate and glycine were required to evoke glutamate exocytosis in 1.2 mM Mg(2+), while dizocilpine, cis-4-[phosphomethyl]-piperidine-2-carboxylic acid and 7-Cl-kynurenic acid prevented it, indicating that occupation of both agonist sites is needed for receptor activation. D-serine mimicked glycine but also inhibited the NMDA/glycine-induced release of [(3H]D-aspartate, thus behaving as a partial agonist. The NMDA/glycine-induced release in 1.2 mM Mg(2+) strictly depended on glycine uptake through the glycine transporter type 1 (GlyT1), because the GlyT1 blocker N-[3-(4'-fluorophenyl)-3-(4'-phenylphenoxy)propyl])sarcosine hydrochloride, but not the GlyT2 blocker Org 25534, prevented it. Accordingly, [(3)H]glycine was taken up during superfusion, while lowering the external concentration of Na(+), the monovalent cation co-transported with glycine by GlyT1, abrogated the NMDA-induced effect. Western blot analysis of subsynaptic fractions confirms that GlyT1 and NMDA autoreceptors co-localize at the pre-synaptic level, where GluN3A subunits immunoreactivity was also recovered. It is proposed that GlyT1s coexist with NMDA autoreceptors on rat hippocampal glutamatergic terminals and that glycine taken up by GlyT1 may permit physiological activation of NMDA pre-synaptic autoreceptors.  相似文献   

5.
R. Liljequist 《Amino acids》1996,10(4):345-358
Summary Pretraining i.p. administration of N-methyl-D-aspartic acid (NMDA) at doses of 10 and 20mg/kg dose-dependently facilitated performance in a water T-maze learning task in rats. The effect of NMDA was inhibited by the competitive NMDA receptor antagonist CGP37849 [(DL)-E(E)-2-amino-4-methyl-5-phosphono-3-pentenoic acid] (CGP) at a dose of 6mg/kg, and by the NMDA receptor complex glycine site antagonist 1-hydroxy-3-amino-2-pyrrolidone (HA-966) at a dose of 10mg/kg. The NMDA site antagonist, when given alone, did not impair learning. The glycine precursor milacemide (2-N-pentylaminoacetamide HCl), at doses of 5 and 10mg/kg accelearted learning acquisition and its effect was antagonized by HA-966. The learning rate was impaired following the administration of NMDA 10mg/kg together with milacemide 5mg/kg when compared with the effect of 10mg/kg NMDA alone.The administration of 5mg/kg NMDA was associated with an elevated tissue concentration of aspartate in the hippocampus, an effect which was antagonized by 6mg/kg of CGP. NMDA at doses of 10 and 20mg/kg elevated the concentration of glycine but decreased the concentration of aspartate, glutamate and glutamine in the cortex and aspartate in the hippocampus. The cortical effects of NMDA 10mg/kg were antagonized by 6mg/kg of CGP. Milacemide at the dose of 10mg/kg elevated glycine, aspartate, glutamate and taurine concentrations. The coadministration of 5 mg/kg NMDA with 5mg/kg milacemide elevated the concentrations of glycine, glutamate and glutamine in the cortex and taurine in the hippocampus. These amino acid levels were higher than after administration of 5mg/kg either agent alone. The results demonstrate a dose-dependent facilitation effect on learning performance by NMDA and glycine receptor agonists. Antagonists at the NMDA and glycine sites counteracted the learning improvement of NMDA, and the glycine site antagonist the effect of milacemide.  相似文献   

6.
Kynurenic acid (KYNA) was quantified in the extracellular spaces of the rat hippocampus using microdialysis and HPLC (fluorimetric detection) to study the possible role of this tryptophan metabolite in the modulation of the function of the N-methyl-D-aspartate (NMDA) receptor. Addition of probenecid (1 mM), which is an inhibitor of the organic acid transport system, to the Ringer's solution perfusing the dialysis probe increased the KYNA concentration in the dialysate from 10.4 +/- 0.9 to 48 +/- 6 nM. Addition of 2 mM aminooxyacetic acid, a nonspecific inhibitor of KYNA synthesis, reduced this concentration by 50%. These data suggest that KYNA is continuously synthesized in the rat hippocampus. Nicotinylalanine (NAL), 200-400 mg/kg i.p., an analogue of kynurenine that is able to direct the flow of tryptophan metabolites toward the synthesis of KYNA, significantly increased the KYNA concentration in the hippocampal dialysate and significantly potentiated the effect of tryptophan on the accumulation of KYNA in the brain and other organs. This increase resulted in pharmacological actions compatible with an antagonism of the NMDA receptors. In fact, NAL antagonized sound-induced seizures and prevented death in DBA/2 mice. Pretreatment of the mice with D-serine (100 micrograms intracerebroventricularly), a glycine agonist and a competitive antagonist of KYNA, completely prevented the anticonvulsive action of NAL. These data suggest that changes in the extracellular concentration of KYNA in the brain are associated with a modulation of NMDA receptor function.  相似文献   

7.
Previous studies have demonstrated that microinjection of the putative group III metabotropic glutamate receptor (mGluR) agonist, l(+)-2-amino-4-phosphonobutyric acid (L-AP4), into the nucleus tractus solitarius (NTS) produces depressor and sympathoinhibitory responses. These responses are significantly attenuated by a group III mGluR antagonist and may involve ionotropic glutamatergic transmission. Alternatively, a previous report in vitro suggests that preparations of L-AP4 may nonspecifically activate NMDA channels due to glycine contamination (Contractor A, Gereau RW, Green T, and Heinemann SF. Proc Natl Acad Sci USA 95: 8969-8974, 1998). Therefore, the present study tested whether responses to L-AP4 specifically require the N-methyl-D-aspartate (NMDA) receptor and whether they are due to actions at the glycine site on the NMDA channel. To test these possibilities in vivo, we performed unilateral microinjections of L-AP4, glycine, and selective antagonists into the NTS of urethane-anesthetized rats. L-AP4 (10 mM, 30 nl) produced sympathoinhibitory responses that were abolished by the NMDA receptor antagonist 2-amino-5-phosphonovaleric acid (AP-5, 10 mM) but were unaffected by the non-NMDA antagonist 6-nitro-7-sulfamobenzoquinoxaline-2,3-dione (NBQX, 2 mM). Microinjection of glycine (0.02-20 mM) failed to mimic sympathoinhibitory responses to L-AP4, even in the presence of the inhibitory glycine antagonist, strychnine (3 mM). Strychnine blocked pressor and sympathoexcitatory actions of glycine (20 mM) but failed to reveal a sympathoinhibitory component due to presumed activation of NMDA receptors. The results of these experiments suggest that responses to L-AP4 require NMDA receptors and are independent of non-NMDA receptors. Furthermore, although it is possible that glycine contamination or other nonspecific actions are responsible for the sympathoinhibitory actions of L-AP4, our data and data in the literature argue against this possibility. Thus we conclude that responses to L-AP4 in the NTS are mediated by an interaction between group III mGluRs and NMDA receptors. Finally, we also caution that nonselective actions of L-AP4 should be considered in future studies.  相似文献   

8.
Furukawa H  Gouaux E 《The EMBO journal》2003,22(12):2873-2885
Excitatory neurotransmission mediated by the N-methyl-D-aspartate subtype of ionotropic glutamate receptors is fundamental to the development and function of the mammalian central nervous system. NMDA receptors require both glycine and glutamate for activation with NR1 and NR2 forming glycine and glutamate sites, respectively. Mechanisms to describe agonist and antagonist binding, and activation and desensitization of NMDA receptors have been hampered by the lack of high-resolution structures. Here, we describe the cocrystal structures of the NR1 S1S2 ligand-binding core with the agonists glycine and D-serine (DS), the partial agonist D-cycloserine (DCS) and the antagonist 5,7-dichlorokynurenic acid (DCKA). The cleft of the S1S2 'clamshell' is open in the presence of the antagonist DCKA and closed in the glycine, DS and DCS complexes. In addition, the NR1 S1S2 structure reveals the fold and interactions of loop 1, a cysteine-rich region implicated in intersubunit allostery.  相似文献   

9.
Summary The present study has been carried out to determine if glycine, an allosteric modulator of NMDA receptor, is involved in the vascular effect induced by the activation of the CNS NMDA receptors.Icv NMDA (from 0.01 to 1µg/rat in the 3rd ventricle) determined a significant increase in arterial blood pressure in conscious freely moving rats. Moreover, the hypertension was associated with behavioural modifications (jumping, rearing, teething and running). Glycine pretreatment (1 and 10µg/raticv), significantly increased the NMDA hypertension. Alone glycine did not cause any arterial blood pressure modification while it induced a slight sedation. HA-966 (an antagonist of the glycine site on NMDA receptor) administration (1–10µg/raticv 5 min before glycine) significantly antagonized the glycine effects on NMDA hypertension.Alone HA-966 neither modified arterial blood pressure nor antagonized NMDA hypertension. In conclusion, our investigations confirm NMDA receptor involvement in cardiovascular function and they demonstrate that in vivo glycine positively modulates NMDA receptor.  相似文献   

10.
Summary The anticataleptic effects of non-competitive and competitive NMDA antagonists as well as those of an agonist at the allosteric glycine binding site of the NMDA receptor were tested in the catalepsy model. Some of these drugs were further tested in a reaction time task demanding rapid locomotor initiation. The results show that the non-competitive NMDA antagonists dizocilpine and memantine as well as the competitive antagonists CGP 39551, CGP 37849 and CPPene antagonized dopamine D2 receptor mediated catalepsy induced by haloperidol. D-cycloserine, a partial glycine agonist per se had no effects, but it enhanced the anticataleptic effects of dizocilpine when coadministered. However, the effects of CGP 37849 were abolished. Dopamine D1 receptor mediated catalepsy induced by SCH 23390 was antagonized by dizocilpine, memantine, CPPene, but not by CGP 37849. In the reaction time task dizocilpine, memantine and CGP 37849 were tested for their anti-akinetic and anti-bradykinetic potencies. All these compounds improved haloperidolinduced slowing of reaction time. However, they acted differentially on haloperidol-induced slowing of movement execution and decreased initial acceleration. Thus, antagonists at the NMDA receptor may have a therapeutic potential in the treatment of Parkinson's disease. Their potency can be manipulated specifically at the glycine binding site.  相似文献   

11.
Summary The present study has been carried out to determine if glycine, an allosteric modulator of NMDA receptor, is involved in the vascular effect induced by the activation of the CNS NMDA receptors.Icv NMDA (from 0.01 to 1µg/rat in the 3rd ventricle) caused a significant increase in arterial blood pressure in conscious freely moving rats. Moreover, the hypertension was associated with behavioural modifications (jumping, rearing, teething and running). Glycine pretreatment (1 and 10µg/raticv), significantly increased the NMDA hypertension. Glycine alone did not cause any arterial blood pressure modification while it induced a slight sedation. HA-966 (an antagonist of the glycine site on NMDA receptor) administration (1–10µg/raticv 5 min before glycine) significantly antagonized the glycine effects on NMDA hypertension.Alone HA-966 neither modified arterial blood pressure nor antagonized NMDA hypertension. In conclusion, our investigations confirm NMDA receptor involvement in cardiovascular function and they demonstrate thatin vivo glycine positively modulates NMDA receptors.  相似文献   

12.
Abstract: D,L-(E)-2-Amino-4-propyl-5-phosphono-3-pen-tenoic acid (CGP 39653). a new, high-affinity, selective NMDA receptor antagonist, interacts with rat cortical membranes in a saturable way and apparently to a single binding site, with a KD of 10.7 nM and a receptor density of 2.6 pmol/mg of protein. Displacement analysis of [3H]CGP 39653 binding shows a pharmacological profile similar to that reported for another NMDA antagonist, 3-[(±)-2-carboxypiperazin-4-yI]propyl-1-phosphonic acid (CPP). Glycine, however, is able to discriminate between the two ligands; in fact, it does not affect [3H]CPP binding but inhibits [3H]CGP 39653 binding in a biphasic way. D-Serine, another agonist at the strychnine-insensitive glycine binding site of the NMDA receptor complex, inhibits [3H]CGP 39653 binding in the same way as glycine, with a potency that correlates with its binding affinity at the glycine site. In addition, 7-chlorokynurenic acid, an antagonist at the glycine site, is able to reverse the displacement of [3H]CGP 39653 by glycine in a dose-dependent manner. Furthermore, the dissociation rate constant of [3H]CGP 39653 is enhanced in the presence of glycine, whereas the presence of NMDA receptor ligands does not modify the rate of dissociation of [3H]CGP 39653 from the receptor. These results indicate that part of the binding of the NMDA antagonist CGP 39653 can be potently modified by glycine through an allosteric mechanism, and suggest the existence of two antagonist preferring NMDA receptor subtypes that are differentially modulated through the glycine binding site.  相似文献   

13.
In the mammalian brain, the (NMDA) subtype of glutamate receptor is coupled to a cation channel and a strychnine-insensitive glycine receptor. The present paper demonstrates the presence of NMDA receptor-coupled strychnine-insensitive glycine receptors in embryonic chick retina. Both glycine and 1-aminocyclopropanecarboxylic acid (ACPC) exhibited similar potencies (271 ± 39 vs 247 ± 39 nM, respectively) as inhibitors of strychnine-insensitive [3H]glycine binding to retinal membranes. Moreover, glycine and ACPC enhanced [3H]MK-801 binding to sites within the NMDA-coupled cation channel in retinal membranes with potencies comparable to those reported in rat brain. While the potency of ACPC was significantly higher than glycine (EC50 54±12 vs 256±57 nM, P < 0.02) in this measure, there were no significant differences in the maximum enhancement (efficacy) of [3H]MK-801 binding by these compounds. Since glycine appears to be required for the operation of NMDA-coupled cation channels, we examined the effects of glycine and ACPC on NMDA-induced acute excitotoxicity in the 14-day embryonic chick retina. Histological evaluation of retina revealed that either ACPC (10–100 μM) or glycine (200 μM) attenuated NMDA- induced (200 μM) retinal damage, and a combination of these agents produced an enhanced protection against acute NMDA toxicity. ACPC (100 μM), but not MK-801 (1 μM) also afforded a modest protection against kainate-induced (25 μM) retinal damage. These findings demonstrate that while strychnine-insensitive glycine receptors are present in embryonic chick retina, occupation of these sites does not augment the cytotoxic actions of NMDA. Moreover, the ability of ACPC and glycine to attenuate NMDA-induced cytotoxicity does not appear to be mediated through occupation of these sites.  相似文献   

14.
15.
16.
Neurochemical interactions of tiletamine, a potent phencyclidine (PCP) receptor ligand, with the N-methyl-D-aspartate (NMDA)-coupled and -uncoupled PCP recognition sites were examined. Tiletamine potently displaced the binding of [3H]1-(2-thienyl)cyclohexylpiperidine with an IC50 of 79 nM without affecting sigma-, glycine, glutamate, kainate, quisqualate, or dopamine (DA) receptors. Like other PCP ligands acting via the NMDA-coupled PCP recognition sites, tiletamine decreased basal, harmaline-, and D-serine-mediated increases in cyclic cGMP levels and induced stereotypy and ataxia. Tiletamine was nearly five times more potent than PCP at inhibiting the binding of 3-hydroxy[3H]PCP to its high-affinity NMDA-uncoupled PCP recognition sites. However, following parenteral administration, dizocilpine maleate (MK-801), ketamine, PCP, dexoxadrol, and 1-(2-thienyl)cyclohexylpiperidine HCl, but not tiletamine, increased rat pyriform cortical DA metabolism and/or release, a response modulated by the NMDA-uncoupled PCP recognition sites. Pretreatment with tiletamine did not attenuate the MK-801-induced increases in rat pyriform cortical DA metabolism, a result suggesting that tiletamine is not a partial agonist of the NMDA-uncoupled PCP recognition sites in this region. However, following intracerebroventricular administration (100-500 micrograms/rat), tiletamine increased pyriform cortical DA metabolism with a bell-shaped dose-response curve. These data indicate a differential interaction of tiletamine with the NMDA-coupled and -uncoupled PCP recognition sites. The paradoxical effects of tiletamine suggest that tiletamine might activate receptor(s) or neuronal pathways of unknown pharmacology.  相似文献   

17.
Abstract: The amino acid D-serine (D-Ser), previously recognized as a pharmacological tool for potentiating neuronal activity mediated by the N -methyl-D-aspartate (NMDA) receptor complex. in vitro and in vivo, has been observed in several brain regions of the rat and mouse, most prominently in cortex. In addition to reconfirming the presence and distribution of D-Ser in rat brain, we have observed, for the first time, endogenous, free D-Ser in temporal cortex of normal human brains at a level of 2.18 ± 0.12 nmol/mg of protein, representing 15 ± 2% of the free L-Ser pool. The D-and L-Ser specific content and the D/L-Ser ratio obtained from temporal cortex of Parkinson and Alzheimer brains did not differ significantly from those of controls. However, at the levels ob served here, and considering its specificity and affinity for the NMDA-associated glycine receptor, endogenous D-Ser is a plausible NMDA receptor glycine site agonist.  相似文献   

18.
Hippocampal metabotropic glutamate 5 receptors (mGlu5Rs) regulate both physiological and pathological responses to glutamate. Because mGlu5R activation enhances NMDA-mediated effects, and given the role played by NMDA receptors in synaptic plasticity and excitotoxicity, modulating mGlu5R may influence both the physiological and the pathological effects elicited by NMDA receptor stimulation. We evaluated whether adenosine A2A receptors (A(2A)Rs) modulated mGlu5R-dependent effects in the hippocampus, as they do in the striatum. Co-application of the A(2A)R agonist CGS 21680 with the mGlu5R agonist (RS)-2-chloro-s-hydroxyphenylglycine(CHPG) synergistically reduced field excitatory postsynaptic potentials in the CA1 area of rat hippocampal slices. Endogenous tone at A(2A)Rs seemed to be required to enable mGlu5R-mediated effects, as the ability of CHPG to potentiate NMDA effects was antagonized by the selective A(2A)R antagonist ZM 241385 in rat hippocampal slices and cultured hippocampal neurons, and abolished in the hippocampus of A(2A)R knockout mice. Evidence for the interaction between A(2A)Rs and mGlu5Rs was further strengthened by demonstrating their co-localization in hippocampal synapses. This is the first evidence showing that hippocampal A(2A)Rs and mGlu5Rs are co-located and act synergistically, and that A(2A)Rs play a permissive role in mGlu5R receptor-mediated potentiation of NMDA effects in the hippocampus.  相似文献   

19.
Functional activation of NMDA receptors requires co-activation of glutamate- and glycine-binding sites. D-serine is considered to be an endogenous ligand for the glycine site of NMDA receptors. Using a combination of a rat formalin-induced conditioned place avoidance (F-CPA) behavioral model and whole-cell patch-clamp recording in rostral anterior cingulate cortex (rACC) slices, we examined the effects of d-amino acid oxidase (DAAO), an endogenous D-serine-degrading enzyme, and 7-chlorokynurenate (7Cl-KYNA), an antagonist of the glycine site of NMDA receptors, on pain-related aversion. Degradation of endogenous D-serine with DAAO, or selective blockade of the glycine site of NMDA receptors by 7Cl-KYNA, effectively inhibited NMDA-evoked currents in rACC slices. Intra-rACC injection of DAAO (0.1 U) and 7Cl-KYNA (2 and 0.2 mM, 0.6 microL per side) 20 min before F-CPA conditioning greatly attenuated F-CPA scores, but did not affect formalin-induced acute nociceptive behaviors and electric foot shock-induced conditioned place avoidance. This study reveals for the first time that endogenous D-serine plays a critical role in pain-related aversion by activating the glycine site of NMDA receptors in the rACC. Furthermore, these results extend our hypothesis that activation of NMDA receptors in the rACC is necessary for the acquisition of specific pain-related negative emotion. Thus a new and promising strategy for the prevention of chronic pain-induced emotional disturbance might be raised.  相似文献   

20.
In synaptic plasma membranes from rat forebrain, the potencies of glycine recognition site agonists and antagonists for modulating [3H]1-[1-(2-thienyl)cyclohexyl]piperidine ([3H]TCP) binding and for displacing strychnine-insensitive [3H]glycine binding are altered in the presence of N-methyl-D-aspartate (NMDA) recognition site ligands. The NMDA competitive antagonist, cis-4-phosphonomethyl-2-piperidine carboxylate (CGS 19755), reduces [3H]glycine binding, and the reduction can be fully reversed by the NMDA recognition site agonist, L-glutamate. Scatchard analysis of [3H]glycine binding shows that in the presence of CGS 19755 there is no change in Bmax (8.81 vs. 8.79 pmol/mg of protein), but rather a decrease in the affinity of glycine (KD of 0.202 microM vs. 0.129 microM). Similar decreases in affinity are observed for the glycine site agonists, D-serine and 1-aminocyclopropane-1-carboxylate, in the presence of CGS 19755. In contrast, the affinity of glycine antagonists, 1-hydroxy-3-amino-2-pyrrolidone and 1-aminocyclobutane-1-carboxylate, at this [3H]glycine recognition site increases in the presence of CGS 19755. The functional consequence of this change in affinity was addressed using the modulation of [3H]TCP binding. In the presence of L-glutamate, the potency of glycine agonists for the stimulation of [3H]TCP binding increases, whereas the potency of glycine antagonists decreases. These data are consistent with NMDA recognition site ligands, through their interactions at the NMDA recognition site, modulating activity at the associated glycine recognition site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号