首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An analog of sheep insulin which differs from the parent molecule in that the C-terminal amino acid residue of the A chain, asparagine, is replaced by arginine, has been synthesized and isolated in highly purified form. The [Arg21] A chain of sheep insulin was synthesized by the fragment condensation approach and isolated as the S-sulfonated derivative. Conversion of the latter into the sulfhydryl form and interaction with the S-sulfonated B chain of bovine (sheep) insulin yielded [Arg21-A] sheep insulin, which was purified by chromatography on a carboxymethylcellulose column with an exponential sodium chloride gradient. The [Arg21-A] sheep insulin shows potencies of 10.5--12.5 IU/mg when assayed by the mouse convulsion method and 8.6 IU/mg by the radioimmunoassay method (cf. 23--25 IU/mg for the natural hormone). It has been suggested that in the insulin molecule the A21 asparagine participates in salt bridge- and hydrogen bond-forming interactions which are critical in the biological activity of the hormone. Although the [Arg21-A] analog still retains these interactions, it is only ca. 50% as active as the natural hormone. It is speculated that other factors than the above mentioned interactions come into play, which involve the side chain of the A21 amino acid residue and affect the biological activity of the hormone.  相似文献   

2.
The C-terminal region of the A chain of insulin has been shown to play a significant role in the expression of the biological activity of the hormone. To further delineate the contribution of this segment, we have synthesized [21-desasparagine,20-cysteinamide-A]insulin and [21-desasparagine,20-cysteine isopropylamide-A]insulin, in which the C-terminal amino acid residue of the A chain of insulin, asparagine, has been removed and the resulting free carboxyl group of the A20 cysteine residue has been converted to an amide and an isopropylamide, respectively. Both insulin analogues display biological activity, 14-15% for the unsubstituted amide analogue and 20-22% for the isopropylamide analogue, both relative to bovine insulin. In contrast, a [21-desasparagine-A]insulin analogue has been reported to display less than 4% of the activity of the natural hormone [Carpenter, F. (1966) Am. J. Med. 40, 750-758]. The implications of these findings are discussed, and we conclude that the A20-A21 amide bond plays a significant role in the expression of the biological activity of insulin.  相似文献   

3.
We have synthesized [21-asparagine diethylamide-A]insulin, which differs from the parent molecule in that the free carboxyl group of the C-terminal amino acid residue, asparagine, of the A chain moiety has been converted to a diethylamide group. The analogue displays equivalent potency in receptor binding and biological activity, 48% and 56%, respectively, relative to bovine insulin. In contrast, we have reported previously [Burke, G. T., Chanley, J. D., Okada, Y., Cosmatos, A., Ferderigos, N., & Katsoyannis, P. G. (1980) Biochemistry 19, 4547-4556] that [21-asparaginamide-A]insulin exhibits a divergence in these properties, ca. 60% in receptor binding and ca. 13% in biological activity. The disparity in the biological behavior of these analogues is discussed, and we ascribe the modulation of biological activity independent of receptor binding activity observed between these analogues to the difference in the negativity of the carbonyl oxygen of the A chain moiety C-terminal amino acid residue.  相似文献   

4.
Molecular dynamics (MD) simulations (5-10ns in length) and normal mode analyses were performed for the monomer and dimer of native porcine insulin in aqueous solution; both starting structures were obtained from an insulin hexamer. Several simulations were done to confirm that the results obtained are meaningful. The insulin dimer is very stable during the simulation and remains very close to the starting X-ray structure; the RMS fluctuations calculated from the MD simulation agree with the experimental B-factors. Correlated motions were found within each of the two monomers; they can be explained by persistent non-bonded interactions and disulfide bridges. The correlated motions between residues B24 and B26 of the two monomers are due to non-bonded interactions between the side-chains and backbone atoms. For the isolated monomer in solution, the A chain and the helix of the B chain are found to be stable during 5ns and 10ns MD simulations. However, the N-terminal and the C-terminal parts of the B chain are very flexible. The C-terminal part of the B chain moves away from the X-ray conformation after 0.5-2.5ns and exposes the N-terminal residues of the A chain that are thought to be important for the binding of insulin to its receptor. Our results thus support the hypothesis that, when monomeric insulin is released from the hexamer (or the dimer in our study), the C-terminal end of the monomer (residues B25-B30) is rearranged to allow binding to the insulin receptor. The greater flexibility of the C-terminal part of the beta chain in the B24 (Phe-->Gly) mutant is in accord with the NMR results. The details of the backbone and side-chain motions are presented. The transition between the starting conformation and the more dynamic structure of the monomers is characterized by displacements of the backbone of Phe B25 and Tyr B26; of these, Phe B25 has been implicated in insulin activation.  相似文献   

5.
The solution conformation of des-(B26-B30)-insulin (DPI) has been investigated by 1H-NMR spectroscopy. A set of 250 approximate interproton distance restraints, derived from two-dimensional nuclear Overhauser enhancement spectra, were used as the basis of a structure determination using distance geometry (DG) and distance-bound driven dynamics (DDD). Sixteen DG structures were optimized using energy minimization (EM) and submitted to short 5-ps restrained molecular dynamics (RMD) simulations. A further refinement of the DDD structure with the lowest distance errors was done by energy minimization, a prolonged RMD simulation in vacuo and a time-averaged RMD simulation. An average structure was obtained from a trajectory generated during 20-ps RMD. The final structure was compared with the des-(B26-B30)-insulin crystal structure refined by molecular dynamics and the 2-Zn crystal structure of porcine insulin. This comparison shows that the overall structure of des-(B26-B30)-insulin is retained in solution with respect to the crystal structures with a high flexibility at the N-terminal part of the A chain and at the N-terminal and C-terminal parts of the B chain. In the RMD run a high mobility of Gly A1, Asn A21 and of the side chain of Phe B25 is noticed. One of the conformations adopted by des-(B26-B30)-insulin in solution is similar to that of molecule 1 (Chinese nomenclature) in the crystal structure of porcine insulin.  相似文献   

6.
We have synthesized [21-desasparagine,20-cysteine ethylamide-A]insulin and [21-desasparagine,20-cysteine 2,2,2-trifluoroethylamide-A]insulin, which differ from natural insulin in that the C-terminal amino residue of the A chain, asparagine, has been removed and the resulting free carboxyl group of the A20 cysteine residue has been converted to an ethylamide and a trifluoroethylamide group, respectively. [21-Desasparagine,20-cysteine ethylamide-A]insulin displayed equivalent potency in receptor binding and biological activity, ca. 12% and ca. 14%, respectively, relative to bovine insulin. In contrast, [21-desasparagine,20-cysteine 2,2,2-trifluoroethylamide-A]insulin displayed a divergence in these properties, ca. 13% in receptor binding and ca. 6% in biological activity. This disparity is ascribed to a difference in the electronic state of the A20-A21 amide bond in these two analogues. A model is proposed to account for the observation of divergence between receptor binding and biological activity in a number of synthetic insulin analogues and naturally occurring insulins. In this model, changes in the electronic state and/or the orientation of the A20-A21 amide bond can modulate biological activity independently of receptor binding affinity. The A20-A21 amide bond is thus considered as an important element in the "message region" of insulin.  相似文献   

7.
It was previously demonstrated that insulins to which positive charge has been added by substituting B13 glutamic acid with a glutamine residue, B27 threonine with an arginine or lysine residue, and by blocking the C-terminal carboxyl group of the B-chain by amidation, featured a prolonged absorption from the subcutis of rabbits and pigs after injection in solution at acidic pH. The phenomenon is ascribed to a low solubility combined with the readiness by which these analogs crystallize as the injectant is being neutralized in the tissue. However, acid solutions of insulin are chemically unstable as A21 asparagine both deamidates to aspartic acid and takes part in formation of covalent dimers via alpha-amino groups of other molecules. In order to circumvent the instability, substitutions were introduced in position A21, in addition to those in B13, B27 and B30, challenging the fact that A21 asparagine has been conserved in this position throughout the evolution. Biological potency was retained when glycine, serine, threonine, aspartic acid, histidine and arginine were introduced in this position, although to a varying degree. In the crystal structure of insulin a hydrogen bond bridges the alpha-nitrogen of A21 with the backbone carbonyl of B23 glycine. In order to investigate the importance of this hydrogen bond for biological activity a gene for the single-chain precursor B-chain(1-29)-Ala-Ala-Lys-A-chain(1-21) featuring an A21 proline was synthesized. However, this single-chain precursor failed to be properly produced by yeast, pointing to the formation of this hydrogen bond as an essential step in the folding process. The stability of the A21-substituted analogs in acid solutions (pH 3-4) with respect to deamidation and formation of dimers was approximately 5-10 times higher than that of human insulin in neutral solution. The rate of absorption of most insulins is decreased by increasing the Zn2+ concentration of the preparation. However, one analog with A21 glycine showed first-order absorption kinetics in pigs with a half-life of approximately 25 h, independent of the Zn2+ concentration. The day-to-day variation of the absorption of this analog was significantly lower than that of the conventional insulin suspensions, a property that might render such an insulin useful in the attempts to improve glucose control in diabetics by a more predictable delivery of basal insulin.  相似文献   

8.
As a further contribution to the synthesis of an insulin analogue with a stable A7-B7 interchain bond, the synthesis of A(8-21) by solution methods, and of B(9-25) as well as [7-(2,7-diaminosuberic acid)]B(1-8) by solid phase methods is described. In the latter compound, the amino group of the diaminosuberic acid residue was acylated with A(1-6), and the resulting "U-peptide" sequentially elongated with the C-terminal A- and finally B-chain sequences. The conversion of the product into the disulfide moiety gave a mixture which could not be resolved by currently available methods. However, the low biological activity of the crude product indicates that the A7-B7 disulfide bond is not crucially important for the activity of insulin.  相似文献   

9.
The initial events in protein aggregation involve fluctuations that populate monomer conformations, which lead to oligomerization and fibril assembly. The highly populated structures, driven by a balance between hydrophobic and electrostatic interactions in the protease-resistant wild-type Aβ21-30 peptide and mutants E22Q (Dutch), D23N (Iowa), and K28N, are analyzed using molecular dynamics simulations. Intrapeptide electrostatic interactions were connected to calculated pKa values that compare well with the experimental estimates. The pKa values of the titratable residues show that E22 and D23 side chains form salt bridges only infrequently with the K28 side chain. Contacts between E22-K28 are more probable in “dried” salt bridges, whereas D23-K28 contacts are more probable in solvated salt bridges. The strength of the intrapeptide hydrophobic interactions increases as D23N < WT < E22Q < K28A. Free-energy profiles and disconnectivity representation of the energy landscapes show that the monomer structures partition into four distinct basins. The hydrophobic interactions cluster the Aβ21-30 peptide into two basins, differentiated by the relative position of the DVG(23-25) and GSN(25-27) fragments about the G25 residue. The E22Q mutation increases the population with intact VGSN turn compared to the wild-type (WT) peptide. The increase in the population of the structures in the aggregation-prone Basin I in E22Q, which occurs solely due to the difference in charge states between the Dutch mutant and the WT, gives a structural explanation of the somewhat larger aggregation rate in the mutant. The D23N mutation dramatically reduces the intrapeptide interactions. The K28A mutation increases the intrapeptide hydrophobic interactions that promote population of structures in Basin I and Basin II whose structures are characterized by hydrophobic interaction between V24 and K28 side chains but with well-separated ends of the backbone atoms in the VGSN turn. The intrapeptide electrostatic interactions in the WT and E22Q peptides roughen the free-energy surface compared to the K28A peptide. The D23N mutation has a flat free-energy surface, corresponding to an increased population of random coil-like structures with weak hydrophobic and electrostatic interactions. We propose that mutations or sequences that enhance the probability of occupying Basin I would promote aggregation of Aβ peptides.  相似文献   

10.
To gain an understanding of the causes of decreased biological activity in insulins bearing amino acid substitutions at position B25 and the importance of the PheB25 side chain in directing hormone-receptor interactions, we have prepared a variety of insulin analogs and have studied both their interactions with isolated canine hepatocytes and their abilities to stimulate glucose oxidation by isolated rat adipocytes. The semisynthetic analogs fall into three structural classes: (a) analogs in which the COOH-terminal 5, 6, or 7 residues of the insulin B-chain have been deleted, but in which the COOH-terminal residue of the B-chain has been derivatized by alpha-carboxamidation; (b) analogs in which PheB25 has been replaced by unnatural aromatic or natural L-amino acids; and (c) analogs in which the COOH-terminal 5 residues of the insulin B-chain have been deleted and in which residue B25 has been replaced by selected alpha-carboxamidated amino acids. Our results showed that (a) insulin residues B26-B30 can be deleted without decrease in biological potency, whereas deletion of residues B25-B30 and B24-B30 causes a marked and cumulative decrease in potency; (b) replacement of PheB25 in insulin by Leu or Ser results in analogs with biological potency even less than that observed when residues B25-B30 are deleted; (c) the side chain bulk of naphthyl(1)-alanine or naphthyl(2)-alanine at position B25 is well tolerated during insulin interactions with receptor, whereas that of homophenylalanine is not; and (d) the decreased biological potency attending substitution of insulin PheB25 by Ala, Ser, Leu, or homophenylalanine is reversed, in part or in total, by deletion of COOH-terminal residues B26-B30. Additional experiments showed that the rate of dissociation of receptor-bound 125I-labeled insulin from isolated hepatocytes is enhanced by incubating cells with insulin or [naphthyl(2)-alanineB25]insulin, but not with analogs in which PheB25 is replaced by serine, leucine, or homophenylalanine; deletion of residues B26-B30, however, results in analogs that enhance the rate of dissociation of receptor-bound insulin in all cases studied. We conclude that (a) steric hindrance involving the COOH-terminal domain of the B chain plays a major role in directing the interaction of insulin with its receptor; (b) the initial negative effect of this domain is reversed upon the filling of a site reflecting interaction of the receptor and the beta-aromatic ring of the PheB25 side chain.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
The origins of differentiation of insulin from insulin-like growth factor I (IGF-I) are still unknown. To address the problem of a structural and biological switch from the mostly metabolic hormonal activity of insulin to the predominant growth factor activities of IGF-I, an insulin analogue with IGF-I-like structural features has been synthesized. Insulin residues Phe(B25) and Tyr(B26) have been swapped with the IGF-I-like Tyr(24) and Phe(25) sequence with a simultaneous methylation of the peptide nitrogen of residue Phe(B26). These modifications were expected to introduce a substantial kink in the main chain, as observed at residue Phe(25) in the IGF-I crystal structure. These alterations should provide insight into the structural origins of insulin-IGF-I structural and functional divergence. The [Tyr(B25)NMePhe(B26)] mutant has been characterized, and its crystal structure has been determined. Surprisingly, all of these changes are well accommodated within an insulin R6 hexamer. Only one molecule of each dimer in the hexamer responds to the structural alterations, the other remaining very similar to wild-type insulin. All alterations, modest in their scale, cumulate in the C-terminal part of the B-chain (residues B23-B30), which moves toward the core of the insulin molecule and is associated with a significant shift of the A1 helix toward the C-terminus of the B-chain. These changes do not produce the expected bend of the main chain, but the fold of the mutant does reflect some structural characteristics of IGF-1, and in addition establishes the CO(A19)-NH(B25) hydrogen bond, which is normally characteristic of T-state insulin.  相似文献   

12.
Wan ZL  Huang K  Xu B  Hu SQ  Wang S  Chu YC  Katsoyannis PG  Weiss MA 《Biochemistry》2005,44(13):5000-5016
Naturally occurring mutations in insulin associated with diabetes mellitus identify critical determinants of its biological activity. Here, we describe the crystal structure of insulin Wakayama, a clinical variant in which a conserved valine in the A chain (residue A3) is substituted by leucine. The substitution occurs within a crevice adjoining the classical receptor-binding surface and impairs receptor binding by 500-fold, an unusually severe decrement among mutant insulins. To resolve whether such decreased activity is directly or indirectly mediated by the variant side chain, we have determined the crystal structure of Leu(A3)-insulin and investigated the photo-cross-linking properties of an A3 analogue containing p-azidophenylalanine. The structure, characterized in a novel crystal form as an R(6) zinc hexamer at 2.3 A resolution, is essentially identical to that of the wild-type R(6) hexamer. The variant side chain remains buried in a nativelike crevice with small adjustments in surrounding side chains. The corresponding photoactivatable analogue, although of low affinity, exhibits efficient cross-linking to the insulin receptor. The site of photo-cross-linking lies within a 14 kDa C-terminal domain of the alpha-subunit. This domain, unrelated in sequence to the major insulin-binding region in the N-terminal L1 beta-helix, is also contacted by photoactivatable probes at positions A8 and B25. Packing of Val(A3) at this interface may require a conformational change in the B chain to expose the A3-related crevice. The structure of insulin Wakayama thus evokes the reasoning of Sherlock Holmes in "the curious incident of the dog in the night": the apparent absence of structural perturbations (like the dog that did not bark) provides a critical clue to the function of a hidden receptor-binding surface.  相似文献   

13.
Inactive conformation of an insulin despite its wild-type sequence.   总被引:3,自引:2,他引:1       下载免费PDF全文
The peptide group between residues B24 and B25 of insulin was replaced by an ester bond. This modification only in the backbone was meant to eliminate a structurally important H-bond between the amide proton of B25 and the carbonyl oxygen of A19, and consequently to enhance detachment of the C-terminal B-chain from the body of the molecule, exposing the underlying A-chain. According to a model derived from the effects of side-chain substitutions, main-chain shortening, and crosslinking, this conformational change is prerequisite for receptor binding. Contrary to the expectation that increased flexibility would increase receptor binding and activity, depsi-insulin ([B24-B25 CO-O]insulin) has turned out be only 3-4% potent. In search of an explanation for this observation, the solution structure of depsi-insulin was determined by two-dimensional 1H-NMR spectroscopy. It was found that the loss of the B25-A19 H-bond does not entail detachment of the C-terminal B-chain. On the contrary, it is overcompensated by a gain in hydrophobic interaction achieved by insertion of the Phe B25 side chain into the molecule's core. This is possible because of increased rotational freedom in the backbone owing to the ester bond. Distortion of the B20-B23 turn and an altered direction of the distal B-chain are consequences that also affect self-association. The exceptional position of the B25 side chain is thus the key feature of the depsi-insulin structure. Being buried in the interior, it is not available for guiding the interaction with the receptor, a crucial role attributed to it by the model. This seems to be the main reason why the structure of depsi-insulin represents an inactive conformation.  相似文献   

14.
smg p21B, a member of the ras p21-like small GTP-binding protein superfamily, undergoes post-translational modifications, which are geranylgeranylation of the cysteine residue in the C-terminal region followed by removal of the three C-terminal amino acids (QLL) and the subsequent carboxyl methylation of the exposed prenylated cysteine residue. smg p21B has a polybasic region upstream of the prenylated cysteine residue. We have previously proposed that these C-terminal structures of smg p21B are essential for the action of its stimulatory GDP/GTP exchange protein, named GDP dissociation stimulator (GDS). We studied here which structure of the C-terminal region of smg p21B is important for its interaction with smg p21 GDS. For this purpose, we synthesized a peptide according to the C-terminal structure of smg p21B, which was PGKARKKSSC-geranylgeranyl-carboxyl methyl, and its variously modified peptides and examined their ability to interact with smg p21 GDS and to interfere with the smg p21 GDS action to stimulate the GDP/GTP exchange reaction of smg p21B. The results indicate that the phosphorylated form of PGKARKKSSC-geranylgeranyl stoichiometrically interacts with smg p21 GDS, that the presence of the geranylgeranyl moiety is essential for, but not sufficient for, the smg p21 GDS action, and that the presence of the methyl moiety, removal of the three C-terminal amino acids, and the presence of the polybasic amino acids also affect the smg p21 GDS action. It is likely that all the steps of the post-translational processing and presence of the polybasic region in the C-terminal region of smg p21B are related to its interaction with smg p21 GDS.  相似文献   

15.
A 21-kD protein isolated earlier from potato tubers (Solanum tuberosum L.) has two isoforms, with pI 6.3 and 5.2, which were separated by fast protein ion-exchange chromatography on a Mono Q column. The primary structures of the two forms consisted of 187 and 186 amino acid residues. Both isoforms are composed of two polypeptide chains, designated A and B, linked by a single disulfide bond between Cys-146 of the A chain and Cys-7 of the B chain. The amino acid sequences of the A chains of the two forms, consisting of 150 residues each, differ in a single amino acid residue at position 52 (Val --> Ile), while the B chains, containing 37 and 36 residues, respectively, have substitutions at nine positions (Leu-8 --> Ser-8, Lys-25--Asp-26 --> Asn-25--Glu-26, Ile-31--Ser-32 --> Val-31--Leu-32, Lys-34--Gln-35--Val-36--Gln-37 --> Gln-34--Glu-35--Val-36). Both isoforms form stable inhibiting complexes with human leukocyte elastase and are less effective against chymotrypsin and trypsin.  相似文献   

16.
Insulin is one of the most important hormonal regulators of metabolism. Since the diabetes patients increase dramatically, the chemical properties, biological and physiological effects of insulin had been extensively studied. In last decade the development of NMR technique allowed us to determine the solution structures of insulin and its variety mutants in various conditions, so that the knowledge of folding, binding and stability of insulin in solution have been largely increased. The solution structure of insulin monomers is essentially identical to those of insulin monomers within the dimer and bexamer as determined by X-ray diffraction. The studies of insulin mutants at the putative residues for receptor binding explored the possible conformational change and fitting between insulin and its receptor. The systematical studies of disulfide paring coupled insulin folding intermediates revealed that in spite of the conformational variety of the intermediates, one structural feature is always remained: a “native-like B chain super-secondary structure“, which consists of B9-B19 helix with adjoining B23-B26 segment folded back against the central segment of B chain, an internal cystine A20-B19 disulfide bridge and a short a-helix at C-terminal of A chain linked. The “super-secondary structure“ might be the “folding nucleus“ in insulin folding mechanism. Cystine A20-B19 is the most important one among three disulfides to stabilize the nascent polypeptide in early stage of the folding. The NMR structure of C. elegans insulin-like peptide resembles that of human insulin and the peptide interacts with human insulin receptor. Other members of insulin superfamily adopt the “insulin fold“ mostly. The structural study of insulin-insulin receptor complex, that of C elegans and other invertebrate insulin-like peptide, insulin fibril study and protein disulfide isomerase (PDI) assistant proinsulin folding study will be new topics in future to get insight into folding, binding, stability, evolution and fibrillation of insulin in detail.  相似文献   

17.
The flavoenzyme ferredoxin-NADP+ reductase (FNR) catalyzes the production of NADPH during photosynthesis. Whereas the structures of FNRs from spinach leaf and a cyanobacterium as well as many of their homologs have been solved, none of these studies has yielded a productive geometry of the flavin-nicotinamide interaction. Here, we show that this failure occurs because nicotinamide binding to wild type FNR involves the energetically unfavorable displacement of the C-terminal Tyr side chain. We used mutants of this residue (Tyr 308) of pea FNR to obtain the structures of productive NADP+ and NADPH complexes. These structures reveal a unique NADP+ binding mode in which the nicotinamide ring is not parallel to the flavin isoalloxazine ring, but lies against it at an angle of approximately 30 degrees, with the C4 atom 3 A from the flavin N5 atom.  相似文献   

18.
Wan Z  Xu B  Huang K  Chu YC  Li B  Nakagawa SH  Qu Y  Hu SQ  Katsoyannis PG  Weiss MA 《Biochemistry》2004,43(51):16119-16133
The receptor-binding surface of insulin is broadly conserved, reflecting its evolutionary optimization. Neighboring positions nevertheless offer an opportunity to enhance activity, through either transmitted structural changes or introduction of novel contacts. Nonconserved residue A8 is of particular interest as Thr(A8) --> His substitution (a species variant in birds and fish) augments the potency of human insulin. Diverse A8 substitutions are well tolerated, suggesting that the hormone-receptor interface is not tightly packed at this site. To resolve whether enhanced activity is directly or indirectly mediated by the variant A8 side chain, we have determined the crystal structure of His(A8)-insulin and investigated the photo-cross-linking properties of an A8 analogue containing p-azidophenylalanine. The structure, characterized as a T(3)R(3)(f) zinc hexamer at 1.8 A resolution, is essentially identical to that of native insulin. The photoactivatable analogue exhibits efficient cross-linking to the insulin receptor. The site of cross-linking lies within a 14 kDa C-terminal domain of the alpha-subunit. This contact, to our knowledge the first to be demonstrated from the A chain, is inconsistent with a recent model of the hormone-receptor complex derived from electron microscopy. Optimizing the binding interaction of a nonconserved side chain on the surface of insulin may thus enhance its activity.  相似文献   

19.
We investigated the role of W140 in the folding of Staphylococcal nuclease. For this purpose, we constructed the 19 possible substitution mutations at residue 140. Only three mutants, W140F, W140H, and W140Y, adopted native-like structures under physiological conditions and showed native-like enzymatic activities. In contrast, the other 16 mutants took on compact unfolded structures under physiological conditions and the enzymatic activities of these mutants were decreased to approximately 70% of wild-type levels. These 16 mutants maintained substrate-induced foldability. These results strongly indicate that the side-chain information encoded by residue 140 is essential to maintain a stable native structure, and that this residue must be an aromatic side chain. The order of thermal stability was wild type > W140H > W140F = W140Y. Therefore, the five-membered nitrogen-containing ring of the indole is thought to bear the essential information. In the crystal structure of staphylococcal nuclease, the five-membered ring is at the local center of the C-terminal cluster through hydrophobic interactions. This cluster plays a key role in the interaction connecting the C-terminal region and the N-terminal beta-core. Mutants other than W140H, W140F, and W140Y lost the ability to form the local core, which caused the loss of the long-range interactions between the C-terminal and N-terminal regions. Inhibitor or substrate binding to these mutants compensates for the lack of long-range interactions generated by W140.  相似文献   

20.
A crystal structure of a totally inactive insulin molecule has been determined. For this insulin molecule, the first without detectable activity to be characterized, the A and B-chains are linked by a peptide bond between A1 Gly and B29 Lys. The molecule has retained all its normal self-association properties and it can also accommodate the two different conformations designated T and R, as seen in 4Zn native pig insulin crystals. The hexamers of the crosslinked insulin molecule were crystallized using the 4Zn insulin recipe of Schlichtkrull. The structure has been crystallographically refined with data extending to 2 A using restrained least-square methods. Comparison of the B29-A1 peptide crosslink insulin and the 4Zn native insulin reveals close structural similarities with the native dimer. The analysis of the structure confirms the earlier hypothesis that insulin structures in crystals are not in an active conformation and that a separation of N-terminal A-chain and C-terminal B-chain is required for interaction with the insulin receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号