首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Heme oxygenase-1 (HO-1, HSP32) is an early gene that is responsive to an array of pathological conditions including, but not limited to, hypoxia and cerebral ischemia. HO-1 cleaves the heme molecule and produces carbon monoxide (CO) and biliverdin (an antioxidant) and is essential for iron homeostasis. The purpose of this study was to investigate, using transgenic (Tg) mice, whether overexpression of HO-1 in the brain augments or attenuates cellular injury caused by ischemic stroke. Homozygous HO-1 Tg mice that overexpress HO-1 under the control of the neuron-specific enolase promoter (characterized previously) were used. Under halothane anesthesia and normothermic conditions, wild-type nontransgenic (nTg; n = 22) and HO-1 Tg (n = 24) mice were subjected to middle cerebral artery occlusion (MCAo). Six hours after induction of ischemia, Tg and nTg mice developed infarcts that were 39 +/- 6 and 63 +/- 9 mm3, respectively (p < 0.01). No significant difference between the two strains was observed in the values of brain edema (11.3 +/- 4% in Tg vs. 14.6 +/- 5% in nTg; p < 0.1). At 24 h after MCAo, Tg mice exhibited significant neuroprotection as determined by the stroke volumes (41 +/- 2 mm3 in Tg vs. 74 +/- 5 mm3 in nTg; p < 0.01) and values of ischemic cerebral edema (21 +/- 6% in Tg vs. 35 +/- 11% in nTg; p < 0.01). Data suggest that neuroprotection in Tg mice was, at least in part, related to the following findings: (a) constitutively up-regulated cyclic GMP and bcl-2 levels in neurons; (b) inhibition of nuclear localization of p53 protein; and (c) antioxidant action of HO-1, as detected by postischemic neuronal expression of ferritin, and decreases in iron staining and tissue lipid peroxidation. We suggest that pharmacological stimulation of HO-1 activity may constitute a novel therapeutic approach in the amelioration of ischemic injury during the acute period of stroke.  相似文献   

2.
STAT4(-/-) mice have impaired type 1 T cell differentiation, whereas STAT6(-/-) mice fail to generate type 2 responses. The role of type 1 and type 2 T cell differentiation in acute cardiac allograft rejection and in the induction of tolerance was examined in wild-type, STAT4(-/-), and STAT6(-/-) recipients. All recipients rejected the grafts promptly. Analysis of in situ cytokine gene expression in the allografts confirmed decreased levels of IFN-gamma in STAT4(-/-) recipients and undetectable levels of IL-4 and IL-5 in STAT6(-/-) mice. Blockade of the CD28/B7 costimulatory pathway prolonged cardiac graft survival for >100 days in 100% of wild-type and STAT4(-/-) mice. However, 14% of CTLA4-Ig-treated STAT6(-/-) mice rejected their grafts between 20 and 100 days. Moreover, of those animals followed past 100 days, 60% of the STAT6(-/-) mice rejected their grafts. Splenocytes harvested on day 145 posttransplant from CTLA4-Ig-treated rejecting STAT6(-/-) recipients were transfused into syngeneic SCID mice transplanted with donor or third party cardiac allografts. Both donor and third party grafts were rejected, indicating that the initial graft loss may be due to an immunological rejection. In contrast, when splenocytes from CTLA4-Ig-treated wild-type or nonrejecting STAT6(-/-) mice were transferred into SCID recipients, donor allografts were accepted, but third party hearts were rejected. Thus, long-term prolongation of cardiac allograft survival by CTLA4-Ig is STAT4-independent but, at least in part, STAT6-dependent. These data suggest that the balance of type 1 and type 2 T lymphocyte differentiation is not critical for acute rejection but influences the robust tolerance induced by CD28/B7 blockade in this model.  相似文献   

3.
OBJECTIVES: Human interleukin 10 (hIL-10) may reduce acute rejection after organ transplantation. Our previous data shows that electroporation-mediated transfer of plasmid DNA to peripheral muscle enhances gene transduction dramatically. This study was designed to investigate the effect of electroporation-mediated overexpression of hIL-10 on acute rejection of cardiac allografts in the rat. METHODS: The study was designed to evaluate the effect of hIL-10 gene transfer on (a) early rejection pattern and (b) graft survival. Gene transfer was achieved by intramuscular (i.m.) injection into the tibialis anterior muscle of Fischer (F344) male recipients followed by electroporation 24 h prior to transplantation. Heterotopic cardiac transplantation was performed from male Brown Norway rat to F344. Four groups were studied (n = 6). Treated animals in groups B1 and B2 received 2.5 microg of pCIK hIL-10 and control animals in groups A1 and A2 distilled water. Graft function was assessed by daily palpation. Animals from group A1 were sacrificed at the cessation of the heart beat of the graft and those in group B1 were sacrificed at day 7; blood was taken for ELISA measurement of hIL-10 and tissue for myeloperoxidase (MPO) measurement and histological assessment. To evaluate graft survival, groups A2 and B2 were sacrificed at cessation of the heart beat of the graft. RESULTS: Histological examination revealed severe rejection (IIIB-IV) in group A1 in contrast to low to moderate rejection (IA-IIIA) in group B1 (p = 0.02). MPO activity was significantly lower in group B1 compared to group A1 (18 +/- 7 vs. 32 +/- 14 mU/mg protein, p = 0.05). Serum hIL-10 levels were 46 +/- 13 pg/ml in group B1 vs. 0 pg/ml in group A1. At day 7 all heart allografts in the treated groups B1 and B2 were beating, whereas they stopped beating at 5 +/- 2 days in groups A1 and A2 vs. 14 +/- 2 days in group B2 (p = 0.0012). CONCLUSIONS: Electroporation-mediated intramuscular overexpression of hIL-10 reduces acute rejection and improves survival of heterotopic heart allografts in rats. This study demonstrates that peripheral overexpression of specific genes in skeletal muscle may reduce acute rejection after whole organ transplantation.  相似文献   

4.
CD4 T cell-dependent mechanisms promoting allograft rejection include expression of inflammatory functions within the graft and the provision of help for donor-reactive CD8 T cell and Ab responses. These studies tested CD4 T cell-mediated rejection of MHC-mismatched cardiac allografts in the absence of both CD8 T and B lymphocytes. Whereas wild-type C57BL/6 recipients depleted of CD8 T cells rejected A/J cardiac grafts within 10 days, allografts were not rejected in B cell-deficient B6.muMT(-/-) recipients depleted of CD8 T cells. Isolated wild-type C57BL/6 and B6.muMT(-/-) CD4 T cells had nearly equivalent in vivo alloreactive proliferative responses. CD4 T cell numbers in B6.muMT(-/-) spleens were 10% of that in wild-type mice but were only slightly decreased in peripheral lymph nodes. CD8 T cell depletion did not abrogate B6.muMT(-/-) mice rejection of A/J skin allografts and this rejection rendered these recipients able to reject A/J cardiac allografts. Redirection of the alloimmune response to the lymph nodes by splenectomy conferred the ability of B6.muMT(-/-) CD4 T cells to reject cardiac allografts. These results indicate that the low number of splenic CD4 T cells in B6.muMT(-/-) mice underlies the inability to reject cardiac allografts and this inability is overcome by diverting the CD4 T cell response to the peripheral lymph nodes.  相似文献   

5.
Acute rejection is mediated by T cell infiltration of allografts, but mechanisms mediating the delayed rejection of allografts in chemokine receptor-deficient recipients remain unclear. The rejection of vascularized, MHC-mismatched cardiac allografts by CCR5(-/-) recipients was investigated. Heart grafts from A/J (H-2(a)) donors were rejected by wild-type C57BL/6 (H-2(b)) recipients on day 8-10 posttransplant vs day 8-11 by CCR5(-/-) recipients. When compared with grafts from wild-type recipients, however, significant decreases in CD4(+) and CD8(+) T cells and macrophages were observed in rejecting allografts from CCR5-deficient recipients. These decreases were accompanied by significantly lower numbers of alloreactive T cells developing to IFN-gamma-, but not IL-4-producing cells in the CCR5(-/-) recipients, suggesting suboptimal priming of T cells in the knockout recipients. CCR5 was more prominently expressed on activated CD4(+) than CD8(+) T cells in the spleens of allograft wild-type recipients and on CD4(+) T cells infiltrating the cardiac allografts. Rejecting cardiac allografts from wild-type recipients had low level deposition of C3d that was restricted to the graft vessels. Rejecting allografts from CCR5(-/-) recipients had intense C3d deposition in the vessels as well as on capillaries throughout the graft parenchyma similar to that observed during rejection in donor-sensitized recipients. Titers of donor-reactive Abs in the serum of CCR5(-/-) recipients were almost 20-fold higher than those induced in wild-type recipients, and the high titers appeared as early as day 6 posttransplant. These results suggest dysregulation of alloreactive Ab responses and Ab-mediated cardiac allograft rejection in the absence of recipient CCR5.  相似文献   

6.
The expression and function of ICAM-1 are critical components in the initiation and elicitation of many T cell-mediated responses. Whether ICAM-1 expression is required on the T cells or on the APC during T cell priming remains unclear. To address this issue in alloantigen-specific T cell activation, the priming and function of T cells in response to heart allografts from MHC-mismatched wild-type vs ICAM-1(-/-) donors were tested. Wild-type C57BL/6 (H-2(b)) heart allografts were rejected by A/J (H-2(a)) recipients on days 7-9, whereas B6.ICAM-1(-/-) allografts survived until days 18-23 post-transplant. On day 7 post-transplant, infiltrating macrophages and CD4(+) and CD8(+) T cells in the ICAM-1(-/-) allografts were 20-30% those observed in the wild-type allografts. ELISPOT analyses indicated that the number of alloantigen-specific T cells producing IFN-gamma from recipients of ICAM-1-deficient grafts was 60% lower than that from recipients of wild-type allografts. On day 16 post-transplant, these numbers did not markedly increase in ICAM-1-deficient allograft recipients. Consistent with the reduced priming of alloreactive T cells, isolated dendritic cells from ICAM-1(-/-) mice stimulated allogeneic T cell proliferation poorly compared with wild-type dendritic cells. When A/J mice were primed with wild-type dendritic cells and then received wild-type or ICAM-1-deficient heart allografts 3 days later, the primed recipients rejected the wild-type and ICAM-1(-/-) allografts on days 5-6 post-transplant. These results indicate that optimal priming of alloreactive T cells requires allograft expression of ICAM-1, but, once primed, recipient T cell infiltration into the allograft is independent of graft ICAM-1 expression.  相似文献   

7.
Composite-tissue (e.g., hand allograft) allotransplantation is currently limited by the need for immunosuppression to prevent graft rejection. Inducing a state of tolerance in the recipient could potentially eliminate the need for immunosuppression but requires reprogramming of the immunological repertoire of the recipient. Skin is the most antigenic tissue in the body and is consistently refractory to tolerance induction regimens using bone marrow transplantation alone. It was hypothesized that tolerance to skin allografts could be induced in rats by injecting epidermal cells with bone marrow cells during the first 24 hours of life of the recipients. Brown Norway rats (RT1n) served as donors for the epidermal cells, bone marrow cells, and skin grafts. Epidermal cells were injected intraperitoneally and bone marrow cells were injected intravenously into Lewis (RT1l) newborn recipient rats. In control groups, recipients received saline solution with no cells (group I, n = 12), bone marrow cells only (group II, n = 15), or epidermal cells only (group III, n = 15). In the experimental group (group IV, n = 18), recipients received epidermal and bone marrow cells simultaneously. Skin grafts were transplanted from Brown Norway (RT1n) rats to the Lewis (RT1l) rats 8 weeks after cell injections. Skin grafts survived an average of 8.5 days in group I (10 grafts), 9.2 days in group II (12 grafts), and 12 days in group III (14 grafts). Grafts survived 15.5 days (8 to 26 days) in group IV (15 grafts). The difference was statistically significant (p < 0.05). Hair growth was observed in some accepted grafts in group IV but never in the control groups. This is the first report of prolonged survival of skin allografts in a rat model after epidermal and bone marrow cell injections. Survival prolongation was achieved across a major immunological barrier, without irradiation, myeloablation, or immunosuppression. It is concluded that the presentation of skin-specific antigens generated a temporary state of tolerance to the skin in the recipients that could have delayed the rejection of skin allografts.  相似文献   

8.
Blockade of the CD28/CTLA4/B7 costimulatory pathway using CTLA4-Ig has great therapeutic potential, and has been shown to prolong allograft survival in a variety of animal models. To gain further insight into the mechanism by which costimulatory blockade prevents allograft rejection, we studied cardiac allograft survival in the complete absence of B7 costimulation using mice lacking B7-1 and B7-2 (B7-1/B7-2-/- mice). To determine the role of B7 on donor vs recipient cells, we used B7-1/B7-2-/- mice as either donors or recipients of allografts. Wild-type (WT) recipients acutely reject fully allogeneic hearts from both WT and B7-1/B7-2-/- mice. In contrast, B7-1/B7-2-/- recipients allow long-term survival of grafts from both WT and B7-1/B7-2-/- mice, with minimal histologic evidence of either acute or chronic rejection in grafts harvested after 90 days. The B7-1/B7-2-/- mice acutely reject B7-1/B7-2-/- allografts if CD28 stimulation is restored by the administration of Ab to CD28 and can mount an alloresponse in mixed lymphocyte reactions. Therefore, B7-1/B7-2-/- mice are capable of generating alloresponses both in vivo and in vitro. Our results demonstrate that in the alloresponse to mouse heterotopic cardiac transplantation, B7 molecules on recipient cells rather than donor cells provide the critical costimulatory signals. The indefinite survival of allografts into B7-1/B7-2-/- recipients further shows that the absence of B7 costimulation alone is sufficient to prevent rejection.  相似文献   

9.
Rejected MHC-mismatched cardiac allografts in CCR5(-/-) recipients have low T cell infiltration, but intense deposition of C3d in the large vessels and capillaries of the graft, characteristics of Ab-mediated rejection. The roles of donor-specific Ab and CD4 and CD8 T cell responses in the rejection of complete MHC-mismatched heart grafts by CCR5(-/-) recipients were directly investigated. Wild-type C57BL/6 and B6.CCR5(-/-) (H-2(b)) recipients of A/J (H-2(a)) cardiac allografts had equivalent numbers of donor-reactive CD4 T cells producing IFN-gamma, whereas CD4 T cells producing IL-4 were increased in CCR5(-/-) recipients. Numbers of donor-reactive CD8 T cells producing IFN-gamma were reduced 60% in CCR5(-/-) recipients. Day 8 posttransplant serum titers of donor-specific Ab were 15- to 25-fold higher in CCR5(-/-) allograft recipients, and transfer of this serum provoked cardiac allograft rejection in RAG-1(-/-) recipients within 14 days, whereas transfer of either serum from wild-type recipients or immune serum from CCR5-deficient recipients diluted to titers observed in wild-type recipients did not mediate this rejection. Wild-type C57BL/6 and B6.CCR5(-/-) recipients rejected A/J cardiac grafts by day 11, whereas rejection was delayed (day 12-60, mean 21 days) in muMT(-/-)/CCR5(-/-) recipients. These results indicate that the donor-specific Ab produced in CCR5(-/-) heart allograft recipients is sufficient to directly mediate graft rejection, and the absence of recipient CCR5 expression has differential effects on the priming of alloreactive CD4 and CD8 T cells.  相似文献   

10.
Skin but not vascularized cardiac allografts from B6.H-2bm12 mice are acutely rejected by C57BL/6 recipients in response to the single class II MHC disparity. The underlying mechanisms preventing acute rejection of B6.H-2bm12 heart allografts by C57BL/6 recipients were investigated. B6.H-2bm12 heart allografts induced low levels of alloreactive effector T cell priming in C57BL/6 recipients, and this priming was accompanied by low-level cellular infiltration into the allograft that quickly resolved. Recipients with long-term-surviving heart allografts were unable to reject B6.H-2bm12 skin allografts, suggesting potential down-regulatory mechanisms induced by the cardiac allografts. Depletion of CD25+ cells from C57BL/6 recipients resulted in 15-fold increases in alloreactive T cell priming and in acute rejection of B6.H-2bm12 heart grafts. Similarly, reconstitution of B6.Rag(-/-) recipients with wild-type C57BL/6 splenocytes resulted in acute rejection of B6.H-2bm12 heart grafts only if CD25+ cells were depleted. These results indicate that acute rejection of single class II MHC-disparate B6.H-2bm12 heart allografts by C57BL/6 recipients is inhibited by the emergence of CD25+ regulatory cells that restrict the clonal expansion of alloreactive T cells.  相似文献   

11.
Heme oxygenase-1 (HO-1) is a stress-responsive enzyme with potent anti-oxidant and anti-inflammatory activities. Previous studies have shown that systemic induction of HO-1 by chemical inducers reduces adiposity and improves insulin sensitivity. To dissect the specific function of HO-1 in adipose tissue, we generated transgenic mice with adipose HO-1 overexpression using the adipocyte-specific aP2 promoter. The transgenic (Tg) mice exhibit similar metabolic phenotype as wild type (WT) control under chow-fed condition. High fat diet (HFD) challenge significantly increased the body weights of WT and Tg mice to a similar extent. Likewise, HFD-induced glucose intolerance and insulin resistance were not much different between WT and Tg mice. Analysis of the adipose tissue gene expression revealed that the mRNA levels of adiponectin and interleukin-10 were significantly higher in chow diet-fed Tg mice as compared to WT counterparts, whereas HFD induced downregulation of adiponectin gene expression in both Tg and WT mice to a similar level. HFD-induced proinflammatory cytokine expression in adipose tissues were comparable between WT and transgenic mice. Nevertheless, immunohistochemistry and gene expression analysis showed that the number of infiltrating macrophages with preferential expression of M2 markers was significantly higher in the adipose tissue of obese Tg mice than WT mice. Further experiment demonstrated that myeloid cells from Tg mice expressed higher level of HO-1 and exhibited greater migration response toward chemoattractant in vitro. Collectively, these data indicate that HO-1 overexpression in adipocytes does not protect against HFD-induced obesity and the development of insulin resistance in mice.  相似文献   

12.
Transplantation of immature retinal tissues may offer a solution for restoring sight to individuals afflicted with degenerative retinal diseases. Promising results have recently demonstrated that neonatal retinal grafts placed in the eye can survive, differentiate into photoreceptor cells, and respond to evoked electrical stimuli. These transplants, however, were performed in immunologically immature recipients. Since it is important to know whether neonatal neuronal retina (NNR) tissue is immunogenic in immune-competent recipients, and whether this tissue displays inherent immune privilege, we have examined the fate of such grafts placed in a non-immune-privileged site of adult recipient mice. We found that typical, photoreceptor-dominated rosettes formed in differentiating NNR grafts, and that these allografts survived beyond 12 days, whereas genetically identical skin grafts were rejected earlier. Class II MHC-bearing cells of recipient origin were observed along the edge of NNR allografts as early as day 5. Donor-specific delayed hypersensitivity was not detected at 12 days, but did emerge on day 20, coincident with rejection of NNR allografts. Lymph nodes, but not spleens, of mice bearing NNR grafts at 12 days contained regulatory lymphoid cells that suppressed delayed hypersensitivity in naive recipients. We conclude that NNR grafts accommodate and even differentiate in the non-immune-privileged space beneath the kidney capsule. Survival beneath the kidney capsule of NNR allografts, but not skin allografts, at 12 days and beyond implies that NNR tissue possesses inherent immune privilege. The vulnerability of these grafts to rejection by 20 days reveals this privilege to be partial and temporary.  相似文献   

13.
Chemokines direct leukocyte recruitment into sites of tissue inflammation and may facilitate recruitment of leukocytes into allografts following transplantation. Although the expression of chemokines during rejection of MHC-disparate allografts has been examined, chemokine expression in MHC-matched/multiple minor histocompatibility Ag-disparate allografts has not been tested. The intraallograft RNA expression of several C-X-C and C-C chemokines was tested during rejection of full thickness skin grafts from B10. D2 donors on control Ig-, anti-CD4 mAb-, and anti-CD8 mAb-treated BALB/c recipients. In all recipients, two patterns of intragraft chemokine expression were observed during rejection of these grafts: 1) macrophage-inflammatory protein-1alpha, macrophage-inflammatory protein-1beta, GRO-alpha (KC), JE, and IFN-gamma-inducible protein (IP-10) were expressed at equivalent levels in allo- and isografts for 2-4 days posttransplant and then returned to low or undetectable levels; and 2) IP-10 and monokine induced by IFN-gamma (Mig) were expressed in the allografts 3 days before rejection was completed, suggesting a possible role in recruiting primed T cells into the allograft. Three days before completion of rejection, intraallograft IP-10 protein was restricted to the epidermis, whereas Mig was located in the lower dermis and associated with the intense infiltration of mononuclear cells. Treatment of B10.D2 recipients with rabbit antiserum to Mig, but not to IP-10, delayed rejection of the allografts 3-4 days. The results suggest that Mig mediates optimal recruitment of T cells into MHC-matched/multiple minor histocompatibility Ag-disparate allografts during rejection.  相似文献   

14.
The identification of early inflammatory events after transplant in solid tissue organ grafts that may direct T cell recruitment and promote acute allograft rejection remain largely unknown. To better understand temporal aspects of early inflammatory events in vascularized organ grafts, we tested the intragraft expression of four different chemokines in heterotopically transplanted A/J (H-2(a)) and syngeneic heart grafts in C57BL/6 (H-2(b)) recipient mice from 1.5 to 48 h after transplant. Similar temporal expression patterns and equivalent levels of chemokine expression were observed in both syngeneic and allogeneic cardiac allografts during this time period. Expression of the neutrophil chemoattractant growth-related oncogene alpha (KC) was observed first and reached peak levels by 6 h after transplant and was followed by the monocyte/macrophage chemoattractant protein-1 (JE) and then macrophage inflammatory proteins 1beta and 1alpha. Administration of rabbit KC antiserum to allograft recipients within 30 min of cardiac transplantation attenuated downstream events including intra-allograft expression of the T cell chemoattractants IFN-gamma-inducible protein-10 and monokine induced by IFN-gamma, cellular infiltration into the allograft, and graft rejection. Similarly, depletion of recipient neutrophils at the time of transplantation significantly extended allograft survival from day 8 to 10 in control-treated recipients up to day 21 after transplant. These results indicate the induction of highly organized cascades of neutrophil and macrophage chemoattractants in cardiac grafts and support the proposal that early inflammatory events are required for optimal recruitment of T cells into allografts during the progression of acute rejection of cardiac allografts.  相似文献   

15.
The lung is known to be particularly susceptible to complement-mediated injury. Both C5a and the membrane attack complex (MAC), which is formed by the terminal components of complement (C5b-C9), can cause acute pulmonary distress in nontransplanted lungs. We used C6-deficient rats to investigate whether MAC causes injury to lung allografts. PVG.R8 lungs were transplanted orthotopically to MHC class I-incompatible PVG.1U recipients. Allografts from C6-sufficient (C6(+)) donors to C6(+) recipients were rejected with an intense vascular infiltration and diffuse alveolar hemorrhage 7 days after transplantation (n = 5). Ab and complement (C3d) deposition was accompanied by extensive vascular endothelial injury and intravascular release of von Willebrand factor. In contrast, lung allografts from C6-deficient (C6(-)) donors to C6(-) recipients survived 13-17 days (n = 5). In the absence of C6, perivascular mononuclear infiltrates of ED1(+) macrophages and CD8(+) T lymphocytes were present 7 days after transplantation, but vascular endothelial cells were quiescent, with minimal von Willebrand factor release and no evidence of alveolar hemorrhage or edema. Lung allografts were performed from C6(-) donors to C6(+) recipients (n = 5) and from C6(+) donors to C6(-) recipients (n = 5) to separate the effects of systemic and local C6 production. Lungs transplanted from C6(+) donors to C6(-) recipients had increased alveolar macrophages and capillary injury. C6 production by lung allografts was demonstrated at the mRNA and protein levels. These results demonstrate that MAC causes vascular injury in lung allografts and that the location of injury is dependent on the source of C6.  相似文献   

16.
Our objective was to investigate the potential role of selective endothelial nitric oxide (NO) synthase (eNOS) overexpression in coronary blood vessels in the control of myocardial oxygen consumption (MVO2). Transgenic (Tg) eNOS-overexpressing mice (eNOS Tg) (n=22) and wild-type (WT) mice (n=24) were studied. Western blot analysis indicated greater than sixfold increase of eNOS in cardiac tissue. Echocardiography in awake mice indicated no difference in cardiac function between WT and eNOS Tg; however, systolic pressure in eNOS Tg mice decreased significantly (126 +/- 2.3 to 109 +/- 2.3 mmHg; P <0.05), whereas heart rate (HR) was not different. Total peripheral resistance (TPR) was also decreased (9.8 +/- 0.8 to 7.6 +/- 0.4 4 mmHg.ml(-1).min; P <0.05) in eNOS Tg. Furthermore, female eNOS Tg mice showed even lower TPR (7.2 +/- 0.4 mmHg.ml(-1).min) compared with male eNOS mice (8.6 +/- 0.5, mmHg.ml.min(-1); P <0.05). Left ventricular slices were isolated from WT and eNOS Tg mice. With the use of a Clark-type oxygen electrode in an airtight bath, MVO2 was determined as the percent decrease during increasing doses (10(-10) to 10(-4) mol/l) of bradykinin (BK), carbachol (CCh), forskolin (10(-12) to 10(-6) mol/l), or S-nitroso-N-acetyl penicillamine (SNAP; 10(-7) to 10(-4) mol/l). Baseline MVO2 was not different between WT (181 +/- 13 nmol.g(-1).min(-1)) and eNOS Tg (188 +/- 14 nmol.g(-1).min(-1)). BK decreased MVO2 (10(-4) mol/l) in WT by 17% +/- 1.1 and 33% +/- 2.7 in eNOS Tg (P < 0.05). CCh also decreased MVO2, 10(-4) mol/l, in WT by 20% +/- 1.7 and 31% +/- 2.0 in eNOS Tg (P <0.05). Forskolin (10(-6) mol/l) or SNAP (10(-4) mol/l) also decreased MVO2 in WT by 24% +/- 2.8 and 36% +/- 1.8 versus eNOS 31% +/- 1.8 and 37% +/- 3.5, respectively. N-nitro-L-arginine methyl ester (10(-3) mol/l) inhibited the MVO2 reduction to BK, CCh, and forskolin by a similar degree (P <0.05), but not to SNAP. Thus selective overexpression of eNOS in cardiac blood vessels in mice enhances the control of MVO2 by eNOS-derived NO.  相似文献   

17.
TNF-alpha and lymphotoxin (LT)alpha have been shown to be important mediators of allograft rejection. TNF-R1 is the principal receptor for both molecules. Mice with targeted genetic deletions of TNF-R1 demonstrate normal development of T and B lymphocytes but exhibit functional defects in immune responses. However, the role of TNF-R1-mediated signaling in solid organ transplant rejection has not been defined. To investigate this question, we performed vascularized heterotopic allogeneic cardiac transplants in TNF-R1-deficient (TNF-R1(-/-)) and wild-type mice. Because all allografts in our protocol expressed TNF-R1, direct antigraft effects of TNF-alpha and LTalpha were not prevented. However, immunoregulatory effects on recipient inflammatory cells by TNF-R1 engagement was eliminated in TNF-R1(-/-) recipients. In our study, cardiac allograft survival was significantly prolonged in TNF-R1(-/-) recipients. Despite this prolonged allograft survival, we detected increased levels of CD8 T cell markers in allografts from TNF-R1(-/-) recipients, suggesting that effector functions, but not T cell recruitment, were blocked. We also demonstrated the inhibition of multiple chemokines and cytokines in allografts from TNF-R1(-/-) recipients including RANTES, IFN-inducible protein-10, lymphotactin, and IL-1R antagonist, as well as altered levels of chemokine receptors. We correlated gene expression with the physiologic process of allograft rejection using self-organizing maps and identified distinct patterns of gene expression in allografts from TNF-R1(-/-) recipients. These findings indicate that in our experimental system TNF-alpha and LTalpha exert profound immunoregulatory effects through TNF-R1.  相似文献   

18.
IL-15 is a T cell growth factor that shares many functional similarities with IL-2 and has recently been shown to be present in tissue and organ allografts, leading to speculation that IL-15 may contribute to graft rejection. Here, we report on the in vivo use of an IL-15 antagonist, a soluble fragment of the murine IL-15R alpha-chain, to investigate the contribution of IL-15 to the rejection of fully vascularized cardiac allografts in a mouse experimental model. Administration of soluble fragment of the murine IL-15R alpha-chain (sIL-15Ralpha) to CBA/Ca (H-2k) recipients for 10 days completely prevented rejection of minor histocompatibility complex-mismatched B10.BR (H-2k) heart grafts (median survival time (MST) of >100 days vs MST of 10 days for control recipients) and led to a state of donor-specific immunologic tolerance. Treatment of CBA/Ca recipients with sIL-15Ralpha alone had only a modest effect on the survival of fully MHC-mismatched BALB/c (H-2d) heart grafts. However, administration of sIL-15Ralpha together with a single dose of a nondepleting anti-CD4 mAb (YTS 177.9) delayed mononuclear cell infiltration of the grafts and markedly prolonged graft survival (MST of 60 days vs MST of 20 days for treatment with anti-CD4 alone). Prolonged graft survival was accompanied in vitro by reduced proliferation and IFN-gamma production by spleen cells, whereas CTL and alloantibody levels were similar to those in animals given anti-CD4 mAb alone. These findings demonstrate that IL-15 plays an important role in the rejection of a vascularized organ allograft and that antagonists to IL-15 may be of therapeutic value in preventing allograft rejection.  相似文献   

19.
Allograft rejection in sensitized recipients remains the major problem in clinical organ transplantation. We have developed a donor-type skin-sensitized mouse cardiac allograft model (BALB/c-->C57BL/6) in which both rejection (<5 days) and alloreactive CD8 activation are resistant to CD154 blockade. First, we attempted to elucidate why CD154 blockade fails to protect cardiac grafts in sensitized recipients. The gene array analysis has revealed that treatment with anti-CD154 mAb (MR1) had distinctive impact on host immunity in naive vs sensitized animals. Unlike in naive counterparts, host sensitization mitigated the impact of CD154 blockade on critical immune signaling pathways. Indeed, we identified 3234 genes in cardiac grafts that were down-regulated by MR1 in naive (at least 5-fold), but remained unaffected in sensitized hosts. Moreover, MR1 treatment failed to prevent accumulation of CD4 T cells in cardiac allografts of sensitized recipients. Then, to determine the role of CD4 help in CD154 blockade-resistant immune response, we used CD4-depleting and CD4-blocking Ab, in conjunction with MR1 treatment. Our data revealed that CD154 blockade-resistant CD8 activation in sensitized mice was dependent on CD4 T cells. In the absence of CD4 help, CD154 blockade prevented differentiation of alloreactive CD8 T cells into CTL effector/memory cells and abrogated acute rejection (cardiac graft survival for >30 days), paralleled by selective target gene depression at the graft site. These results provide the rationale to probe potential synergy of adjunctive therapy targeting CD4 and CD154 to overcome graft rejection in sensitized recipients.  相似文献   

20.
Both wild-type (WT) and IFN-gamma-deficient (IFN-gamma(-/-)) C57BL/6 mice can rapidly reject BALB/c cardiac allografts. When depleted of CD8(+) cells, both WT and IFN-gamma(-/-) mice rejected their allografts, indicating that these mice share a common CD4-mediated, CD8-independent mechanism of rejection. However, when depleted of CD4(+) cells, WT mice accepted their allografts, while IFN-gamma(-/-) recipients rapidly rejected them. Hence, IFN-gamma(-/-), but not WT mice developed an unusual CD8-mediated, CD4-independent, mechanism of allograft rejection. Allograft rejection in IFN-gamma(-/-) mice was associated with intragraft accumulation of IL-4-producing cells, polymorphonuclear leukocytes, and eosinophils. Furthermore, this form of rejection was resistant to treatment with anti-CD40 ligand (CD40L) mAb, which markedly prolonged graft survival in WT mice. T cell depletion studies verified that anti-CD40L treatment failed to prevent CD8-mediated allograft rejection in IFN-gamma(-/-) mice. However, anti-CD40L treatment did prevent CD4-mediated rejection in IFN-gamma(-/-) mice, although grafts were eventually rejected when CD8(+) T cells repopulated the periphery. The IL-4 production and eosinophil influx into the graft that occurred during CD8-mediated rejection were apparently epiphenomenal, since treatment with anti-IL-4 mAb blocked intragraft accumulation of eosinophils, but did not interfere with allograft rejection. These studies demonstrate that a novel, CD8-mediated mechanism of allograft rejection, which is resistant to experimental immunosuppression, can develop when IFN-gamma is limiting. An understanding of this mechanism is confounded by its association with Th2-like immune events, which contribute unique histopathologic features to the graft but are apparently unnecessary for the process of allograft rejection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号