首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Tertiary cultures of chick embryo fibroblasts infected and transformed by the wild-type Rous sarcoma virus, when actively growing at 35 degrees C, had higher putrescine levels than the respective uninfected cells. Transformed cells also had much higher specific activity of ornithine decarboxylase (EC 4.1.1.17) than the normal fibroblasts. At 41 degrees C the difference in putrescine levels between the normal and the transformed cells was less marked, and both cell types showed a relative accumulation of spermine. Cultures infected with the NY68 mutant virus, which is temperature-sensitive for transformation, showed at 41 degrees C normal cell morphology and intermediate polyamine patterns, while at 35 degrees C a transformed phenotype was found in both aspects. In shift-down experiments a change towards the permissive temperature pattern of polyamine metabolism was evident within 2-3 h. Difluoromethylornithine, a specific and irreversible inhibitor of ornithine decarboxylase efficiently reduced the enzyme activity as well as the levels of both putrescine and spermidine in all culture types and temperatures. Incubation of Rous sarcoma virus-transformed cells with 3 mM difluoromethylornithine for 36 h did not affect the maintenance of the transformed state. Likewise, when NY68-infected cultures were exposed to difluoromethylornithine at 41 degrees C for 12 h and then shifted down to 35 degrees C, the appearance of the transformed morphology took place concomitantly with that of the control cultures without respective changes in the polyamine levels. This suggests that the transformation-associated pattern of polyamines in chick embryo fibroblasts is not a prerequisite for morphological transformation of these cells.  相似文献   

3.
Skin fibrosis is a debilitating feature of several systemic and dermatologic diseases. While current treatment options carry significant risk of side effects and recurrence, high-fluence light emitting diode-generated red light (LED-RL) is an alternative therapeutic that is safe, non-invasive, and accessible. We previously demonstrated LED-RL decreases fibroblast proliferation, a key pathogenic component of fibrosis. However, the cellular mechanism by which high fluence LED-RL modulates fibroblast proliferation is unclear. Herein, we explored the effects of high fluence LED-RL on human dermal fibroblast cell cycle progression. We demonstrate that LED-RL at 640 J/cm2 induced significant arrest of cells in G0/G1 compared to temperature-matched control. This was accompanied by a corresponding increase in expression of checkpoint regulator p53 in irradiated cells. These data demonstrate high fluence LED-RL may exert its anti-proliferative effect on fibroblasts by inducing G0/G1 arrest. Further, this study provides insight into the molecular mechanism underlying LED-RL as an anti-fibrotic therapeutic.  相似文献   

4.
Summary Proliferating cell nuclear antigen mRNA levels were determined in human diploid fibroblasts as they progressed through the cell cycle. PCNA message levels were low at G0, gradually increased following entrance into G1, peaked at G1/S, and declined during S phase. PCNA mRNA was determined to have a half life of 12 hours when cells were blocked at the G1/S interface. PCNA protein levels increased two- to three-fold as cells moved from G0 to S phase.  相似文献   

5.
Epigenetic modifications of cytosine residues in the DNA play a critical role for cellular differentiation and potentially also for aging. In mesenchymal stromal cells (MSC) from human bone marrow we have previously demonstrated age-associated methylation changes at specific CpG-sites of developmental genes. In continuation of this work, we have now isolated human dermal fibroblasts from young (<23 years) and elderly donors (>60 years) for comparison of their DNA methylation profiles using the Infinium HumanMethylation27 assay. In contrast to MSC, fibroblasts could not be induced towards adipogenic, osteogenic and chondrogenic lineage and this is reflected by highly significant differences between the two cell types: 766 CpG sites were hyper-methylated and 752 CpG sites were hypo-methylated in fibroblasts in comparison to MSC. Strikingly, global DNA methylation profiles of fibroblasts from the same dermal region clustered closely together indicating that fibroblasts maintain positional memory even after in vitro culture. 75 CpG sites were more than 15% differentially methylated in fibroblasts upon aging. Very high hyper-methylation was observed in the aged group within the INK4A/ARF/INK4b locus and this was validated by pyrosequencing. Age-associated DNA methylation changes were related in fibroblasts and MSC but they were often regulated in opposite directions between the two cell types. In contrast, long-term culture associated changes were very consistent in fibroblasts and MSC. Epigenetic modifications at specific CpG sites support the notion that aging represents a coordinated developmental mechanism that seems to be regulated in a cell type specific manner.  相似文献   

6.
7.
A brief exposure of quiescent (Go) WI-38 human fibroblasts to the tumor promoter TPA results in an increase in the mRNA levels of c-fos protooncogene. The same effect is produced by exposing to TPA human diploid fibroblasts WI38 synchronized in S phase by treatment with 2.5 mM hydroxyurea. Induction of c-fos mRNA in response to TPA occurs also during the progression of synchronized WI38 throughout the second and third cell cycle, but it is not associated with measurable changes in the cell cycle progression of these cells. These findings suggest that TPA induction of c-fos mRNA levels in proliferating cells is a stimulus specific rather than a function specific event.  相似文献   

8.
The amount of protein elongation factor EF-2 that can be inactivated by diphtheria toxin-mediated ADP-ribosylation, a measure of its active content, decreases by 45% and 66% in G1-arrested normal human fibroblasts and in HeLa cells respectively. On restimulation of cells with fresh serum, the amounts of ADP-ribosylatable EF-2 begin to increase within 4 h. Whereas the level of active EF-2 returns to normal (exponential phase of growth) in 20 h in the case of fibroblasts, only 47% recovery was observed for HeLa cells during this period. The apparent long half-lives of EF-2 mRNA and protein indicate possibilities of posttranslational ADP-ribosylation and de-ADP-ribosylation as the regulators of the amounts of active EF-2 during human cell cycle.  相似文献   

9.
10.
11.

Background  

We have previously obtained a clonal population of cells from human foreskin that is able to differentiate into mesodermal, ectodermal and endodermal progenies. It is of great interest to know whether these cells could be further differentiated into functional insulin-producing cells.  相似文献   

12.
To examine the effects of sex-hormones on lipids, lipoproteins and coagulation in the normal menstrual cycle 37 women had blood samples taken early in the follicular phase (low estrogen) at the midcycle (high estrogen) and late in the luteal phase (high estrogen and high progesterone) under the best possible uniform and basal conditions. No significant changes (P greater than 0.05) in lipids and lipoproteins (including the HDL subfractions and apolipoproteins) were found throughout the menstrual cycle. In the coagulation system antithrombin III and factor VII did not change (P greater than 0.05). Fibrinogen, however, showed a significant (P less than 0.05) increase in the luteal phase compared to the follicular phase and midcycle. Fibrinogen showed a significant positive correlation (r = 0.2766; P less than 0.01) with progesterone, so the rise in fibrinogen in the luteal phase could be a progesterone effect. This longitudinal study performed on a large number of women under basal conditions showed that it seems of minor importance to define exact days of the cycle for analysing lipids and lipoproteins e.g. as controls in a study of lipid metabolism in women taking sex-hormones. For coagulation studies the cycle days may, however, be of importance.  相似文献   

13.
Recent studies show that apoptosis affects surrounding tissue, playing a role in diseases such as fibrosis, a significant global disease burden. Elucidating the mechanisms by which the different apoptotic cells present during fibrotic wound healing affect their environment would enable development of new therapies. We describe here a simple, rapid, and cost-effective method for inducing apoptosis of primary normal human dermal fibroblasts without affecting the overall cell viability of the population. Such population could be used for in vitro models of fibrotic wound healing in co-culture with other cells involved in this process to study events such as apoptosis-induced proliferation.  相似文献   

14.
15.
Considerable progress has recently been made in elucidating the biochemical mechanisms regulating changes in chromatin structure during all stages of the cell cycle. Although anticipated, the apparently ubiquitous role played by phosphorylation/dephosphorylation reactions in modulating these changes is, nonetheless, remarkable.  相似文献   

16.
Putrescine, spermidine and spermine are low molecular polycations that play important roles in cell growth and cell cycle progression of normal and malignant cells. Agmatine (1-amino-4-guanidobutane), another polyamine formed through arginine decarboxylation, has been reported to act as an antiproliferative agent in several non-intestinal mammalian cell models. Using the human colon adenocarcinoma HT-29 Glc(-/+) cell line, we demonstrate that agmatine, which markedly accumulated inside the cells without being metabolised, exerted a strong cytostatic effect with an IC50 close to 2 mM. Agmatine decreased the rate of L-ornithine decarboxylation and induced a 70% down-regulation of ornithine decarboxylase (ODC) expression. Agmatine caused a marked decrease in putrescine and spermidine cell contents, an increase in the N1-acetylspermidine level without altering the spermine pool. We show that agmatine induced the accumulation of cells in the S and G2/M phases, reduced the rate of DNA synthesis and decreased cyclin A and B1 expression. We conclude that the anti-metabolic action of agmatine on HT-29 cells is mediated by a reduction in polyamine biosynthesis and induction in polyamine degradation. The decrease in intracellular polyamine contents, the reduced rate of DNA synthesis and the cell accumulation in the S phase are discussed from a causal perspective.  相似文献   

17.
The two human proteins ckshs1 and ckshs2 are each 79 amino acids in length and consist of a four-stranded beta-sheet capped at one end by two alpha-helices. They are members of the cks family of essential cell cycle regulatory proteins that can adopt two native states, a monomer and a domain-swapped dimer formed by exchange of a C-terminal beta-strand. ckshs1 and ckshs2 both have marginal thermodynamic stability (the free energies of unfolding at 25 degrees C are 3.0 and 2.5 kcal/mol, respectively) and low kinetic stability (the rates of unfolding in water are approximately 1 s(-1)). Refolding of their denatured states to the monomeric forms of the proteins is slowed by transient oligomerization that is likely to occur via domain swapping. The folding behavior of ckshs1 and ckshs2 is markedly different from that of suc1, the cks protein from Schizosaccharomyces pombe, but the domain swapping propensities are similar. The greater thermodynamic and kinetic stability of suc1 and the population of a folding intermediate are most likely a consequence of its larger size (113 residues). The similarity in the domain swapping propensities, despite the contrast in other biophysical properties, may be attributable to the common double-proline motif in the hinge loop that connects the swapped domain to the rest of the protein. The motif was shown previously for suc1 to control the equilibrium between the monomer and the domain-swapped dimer. Finally, according to our model, the kinetic barrier separating the monomer and the domain-swapped dimer arises because the protein must unfold for beta-strand exchange to occur. Consistent with this, interconversion between the two states is much faster in the human proteins than it is for suc1, reflecting the faster unfolding rates of the former.  相似文献   

18.
Keloids represent a dysregulated response to cutaneous wounding that results in disfiguring scars. Unique to humans, keloids are characterized by an accumulation of extracellular matrix components. The underlying molecular mechanisms of keloid pathogenesis, however, remain largely uncharacterized. Similarly, cellular signaling mechanisms, which may indicate inherent differences in the way keloid fibroblasts and normal human dermal fibroblasts interact with extracellular matrix or other cells, have not been investigated. As part of a fundamental assessment of cellular response to injury in keloid fibroblasts, phosphorylation studies were performed using three different keloid (n = 3) and normal human dermal (n = 3) fibroblast cell lines. These studies were undertaken to elucidate whether keloid and normal human dermal fibroblasts exhibit different tyrosine kinase activity. Initially, distinct tyrosine phosphorylation patterns of keloid and normal human dermal fibroblasts were demonstrated. Next, the phosphorylation patterns were correlated with known molecules that may be important to keloid pathogenesis. On the basis of molecular weight, it was hypothesized that the highly phosphorylated bands seen in keloid fibroblasts represented epidermal growth factor receptor (EGFR); discoidin domain receptor 1 (DDR1); and Shc, an adaptor protein known to bind many tyrosine kinases, including EGFR and DDR1. Individual immunoblotting using EGFR, DDR1, and Shc antibodies revealed greater expression in keloid fibroblasts compared with normal human dermal fibroblasts. These data substantiate for the first time the finding of greater phosphorylation by the above-mentioned molecules, which may be important in keloid pathogenesis.  相似文献   

19.
R O Hynes  J M Bye 《Cell》1974,3(2):113-120
The large, external, transformation-sensitive (LETS) glycoprotein of hamster fibroblasts, detected by lactoperoxidase-catalyzed iodination, is shown to vary in its accessibility at the cell surface, depending upon the growth state and position in the cell cycle. High levels correlate with arrest in early G1, and these fall after growth stimulation by serum. Very low levels are detectable on mitotic cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号