共查询到20条相似文献,搜索用时 0 毫秒
1.
NMR study of a synthetic DNA hairpin 总被引:11,自引:0,他引:11
The secondary structure of the synthetic oligodeoxyribonucleotide d(CGCGCGTTTTCGCGCG) (I) has been demonstrated to be a unimolecular hairpin structure (hairpin I) over a wide range of oligonucleotide concentrations (2 X 10(-5) to 1.6 X 10(-3) M) and temperature (0-87 degrees C). The assignments of the resonances to specific protons were carried out by use of two-dimensional nuclear Overhauser effect and COSY spectra and by comparison with the spectra of the duplex formed by d(CG)3. Comparison of hairpin I and the hairpin of d(ATCCTATTTTTAGGAT) (II) reveals that the exchange of imino protons in stem base pairs with solvent is much slower in I than in II. However, the exchange of thymine imino protons in the loop region is much faster in I than in II even though both hairpins contain four unpaired thymine residues. The secondary structure of hairpin I contains only six G X C base pairs, yet it is more stable than the d(CG)8 duplex containing 16 G X C base pairs at all concentrations of duplex lower than 10(-3) M. These observations suggest that intramolecular hairpin formation may effectively compete with bimolecular duplex formations when the appropriate intramolecular base pairs can form. 相似文献
2.
C El Amri O Mauffret F Santamariar G Tevanian S Rayner S Fermandjian 《Journal of biomolecular structure & dynamics》2001,19(3):459-470
We carried out a structural study of the DNA heterochiral strand d (AGCTTATCAT(L)CGATAAGCT), -AT(L)C-, where T(L) (L thymine ) replaces T (natural D-thymine). -AT(L)C- is a structural analog of -ATC- that belongs to a strong topoisomerase II DNA cleavage site and which has been shown to resolve into a hairpin structure with a stem formed by eight Waston-Crick base-pairs and a single residue loop closed by an A.C sheared base-pair. Although - AT(L)C-, like its parent -ATC-, folds into a hairpin structure at low and high DNA concentrations it displays a lower stability (Tm of 56 degrees C versus 58.5 degrees C). Several NMR features in -AT(L)C- account for the disruption of the A.C pairing in the loop and a weakening of the C.G base-pair stability at the stem-loop junction. For instance, the exchange of the loop imino protons with solvent is accelerated compared with the natural oligonucleotide -ATC-. The higher flexibility of the heterochiral loop is confirmed by the results of NMR restrained molecular dynamics. In the calculated final structures of -AT(L)C-, the T10(L) residue moves the A9 and C11 residues away, thus preventing the loop closure through a C.A sheared base-pair and the achievement of a good base-base or sugar-base stacking. Actually, most of the stabilizing interactions present in -ATC- are lost in the heterochiral - AT(L)C- explaining its weaker stability. 相似文献
3.
A self-assembly monolayer (SAM) of hairpin DNA can be formed on a gold substrate in order to make special biosensors. Labeling the hairpin loop probes with electroactive compositions rather than a fluorophore illustrates interesting profiles of redox current versus temperature. For a biosensor interacting with perfectly complementary targets, the profile shows a characteristic plateau, which disappears when the targets have a single base variation. The plateau is split into multiple steps by tuning the hybridization temperature. We propose that the phenomena are due to hairpin loop compartmentalization. The novel characteristics lead to a thermal gradient detection method that permits perfect discrimination of a target sequence from single nucleotide mismatches. 相似文献
4.
Conformational dynamics of a 5S rRNA hairpin domain containing loop D and a single nucleotide bulge 总被引:3,自引:0,他引:3
下载免费PDF全文

Molecular modeling and molecular dynamics have been employed to study the conformation and flexibility of a 15-nucleotide fragment of the plant 5S rRNA containing loop D and a single uridine bulge. Two different model built initial structures were used: one with the bulge localized inside the helical stem and another with the bulge pointing out from the helix. Several independent 700-ps-long trajectories in aqueous solution with Na(+) conterions were produced for each starting structure. The bulge nucleotide inside the helix stayed in two main conformations, both of which affected the geometry of the stem part opposite the bulge. When the bulge nucleotide was located outside the helix, we found high base mobility and local backbone flexibility. The dynamics of the hydrogen bond network and conformational changes from a direct to a water mediated hydrogen bond in the sheared G-A basepair in the tetraloop was described. Our results correlate with lead ion induced cleavage patterns in 5S rRNA. Sites resistant to nonspecific lead cleavage appeared in all our simulations as the most rigid fragments independent of the localization of the bulge nucleotide. 相似文献
5.
Three-dimensional structure of a DNA hairpin in solution: two-dimensional NMR studies and distance geometry calculations on d(CGCGTTTTCGCG) 总被引:18,自引:0,他引:18
The three-dimensional structure of d(CGCGTTTTCGCG) in solution has been determined from proton NMR data by using distance geometry methods. The rate of dipolar cross-relaxation between protons close together in space is used to calculate distances between proton pairs within 5 A of each other; these distances are used as input to a distance geometry algorithm that embeds this distance matrix in three-dimensional space. The resulting refined structures that best agree with the input distances are all very similar to each other and show that the DNA sequence forms a hairpin in solution; the bases of the loop region are stacked, and the stem region forms a right-handed helix. The advantages and limitations of the technique, as well as the computer requirements of the algorithm, are discussed. 相似文献
6.
A DNA hairpin with a single residue loop closed by a strongly distorted Watson-Crick G x C base-pair
El Amri C Mauffret O Monnot M Tevanian G Lescot E Porumb H Fermandjian S 《Journal of molecular biology》1999,294(2):427-442
Our previous NMR and modeling studies have shown that the single-stranded 19mer oligonucleotides d(AGCTTATC-ATC-GATAA GCT) -ATC- and d(AGCTTATC-GAT-GATAAGCT) -GAT- encompassing the strongest topoisomerase II cleavage site in pBR322 DNA could form stable hairpin structures. A new sheared base-pair, the pyrimidine-purine C x A, was found to close the single base -ATC- loop, while -GAT- displayed a flexible loop of three/five residues with no stabilizing interactions. Now we report a structural study on -GAC-, an analog of -GAT-, derived through the substitution of the loop residue T by C. The results obtained from NMR, non-denaturing PAGE, UV-melting, circular dichroism experiments and restrained molecular dynamics indicate that -GAC- adopts a hairpin structure folded through a single residue loop. In the -GAC- hairpin the direction of the G9 sugar is reversed relative to the C8 sugar, thus pushing the backbone of the loop into the major groove. The G9 x C11 base-pair closing the loop is thus neither a sheared base-pair nor a regular Watson-Crick one. Although G9 and C11 are paired through hydrogen bonds of Watson-Crick type, the base-pair is not planar but rather adopts a wedge-shaped geometry with the two bases stacked on top of each other in the minor groove. The distortion decreases the sugar C1'-C1' distance between the paired G9 and C11, to 8 A versus 11 A in the standard B-DNA. The A10 residue at the center of the loop interacts with the G9 x C11 base-pair, and seems to contribute to the extra thermal stability displayed by -GAC- compared to -GAT-. Test calculations allowed us to identify the experimental NOEs critical for inducing the distorted G.C Watson-Crick base-pair. The preference of -GAC- for a hairpin structure rather than a duplex is confirmed by the diffusion constant values obtained from pulse-field gradient NMR experiments. All together, the results illustrate the high degree of plasticity of single-stranded DNAs which can accommodate a variety of turn-loops to fold up on themselves. 相似文献
7.
Peter M. Vallone Teodoro M. Paner Jovencio Hilario Michael J. Lane Brian D. Faldasz Albert S. Benight 《Biopolymers》1999,50(4):425-442
Spectroscopic and calorimetric melting studies of 28 DNA hairpins were performed. These hairpins form by intramolecular folding of 16 base self‐complementary DNA oligomer sequences. Sequence design dictated that the hairpin structures have a six base pair duplex linked by a four base loop and that the first five base pairs in the stem are the same in every molecule. Only loop sequence and identity of the duplex base pair closing the loop vary for the set of hairpins. For these DNA samples, melting studies were carried out to investigate effects of the variables on hairpin stability. Stability of the 28 oligomers was ascertained from their temperature‐induced melting transitions in buffered 115 mM Na+ solvent, monitored by ultraviolet absorbance and differential scanning calorimetry (DSC). Experiments revealed the melting temperatures of these molecules range from 32.4 to 60.5°C and are concentration independent over strand concentrations of 0.5 to 260 μM; thus, as expected for hairpins, the melting transitions are apparently unimolecular. Model independent thermodynamic transition parameters, ΔHcal, ΔScal, and ΔGcal, were determined from DSC measurements. Model dependent transition parameters, ΔHvH, ΔSvH, and ΔGvH were estimated from a van't Hoff (two‐state) analysis of optical melting transitions. Results of these studies reveal a significant sequence dependence to DNA hairpin stability. Thermodynamic parameters evaluated by either procedure reveal the transition enthalpy, ΔHcal (ΔHvH) can differ by as much as 20 kcal/mol depending on sequence. Similarly, values of the transition entropy ΔScal (ΔSvH) can differ by as much as 60 cal/Kmol (eu) for different molecules. Differences in free energies ΔGcal (ΔGvH) are as large as 4 kcal/mol for hairpins with different sequences. Comparisons between the model independent calorimetric values and the thermodynamic parameters evaluated assuming a two‐state model reveal that 10 of the 28 hairpins display non‐two‐state melting behavior. The database of sequence‐dependent melting free energies obtained for the hairpins was employed to extract a set of n‐n (nearest‐neighbor) sequence dependent loop parameters that were able to reproduce the input data within error (with only two exceptions). Surprisingly, this suggests that the thermodynamic stability of the DNA hairpins can in large part be reasonably represented in terms of sums of appropriate nearest‐neighbor loop sequence parameters. © 1999 John Wiley & Sons, Inc. Biopoly 50: 425–442, 1999 相似文献
8.
The three-dimensional structure of a DNA hairpin in solution two-dimensional NMR studies and structural analysis of d(ATCCTATTTATAGGAT) 总被引:11,自引:0,他引:11
M J Blommers F J van de Ven G A van der Marel J H van Boom C W Hilbers 《European journal of biochemistry》1991,201(1):33-51
The hairpin formed by d(ATCCTATTTATAGGAT) was studied by means of two-dimensional NMR spectroscopy and conformational analysis. Almost all 1H resonances of the stem region could be assigned, while the 1H and 31P spectra of the loop region were interpreted completely; this includes the stereospecific assignment of the H5' and H5" resonances. The derivation of the detailed loop structure was carried out in a stepwise fashion including some improved and new methods for structure determination from NMR data. In the first step, the mononucleotide structures were examined. The conformational space available to the mononucleotide was scanned systematically by varying the glycosidic torsion angle and pseudorotational parameters. Each generated conformer was tested against the experimental J coupling constants and NOE parameters. In the following stage, the structures of dinucleotides and longer fragments were derived. Inter-residue distances between protons were calculated by means of a procedure in which the simulated NOEs, obtained via a relaxation-matrix approach, were fitted to the experimental NOEs without the introduction of a molecular model. In addition, the backbone torsion angles beta, gamma and epsilon were deduced from homocoupling and heterocoupling constants. These data served as constraints in the next step, in which the loop sequence was subjected to a multi-conformer generation procedure. The resulting structures were tested against the mentioned constraints and disregarded if these constraints were violated. This yielded a family of structures for the loop region, confined to a relatively narrow conformational space. A representative conformation was subsequently docked on a B-type stem which fulfilled the structural constraints (derived from the NMR experiments for the stem region) to yield the hairpin structure. Results obtained from subsequent restrained-molecular-mechanics as well as free-molecular-mechanics calculations are in accordance with those obtained by means of the analysis described above. The structure of the hairpin loop is a compactly folded conformation and the first base of the central TTTA region forms a Hoogsteen T-A pair with the fourth base. This Hoogsteen base pair is stacked upon the sixth base pair of the B-type double-helical stem. The second base of the loop is folded into the minor groove, whereas the third base of the loop is partly stacked on the first and fourth bases. The phosphate backbone exhibits a sharp turn between the third and fourth nucleotides of the loop. The peculiar structure of this hairpin loop is discussed in relation to loop folding in DNA and RNA hairpins and in relation to a general model for loop folding. 相似文献
9.
Thermodynamic parameters for loop formation in RNA and DNA hairpin tetraloops. 总被引:8,自引:0,他引:8
下载免费PDF全文

We determined the melting temperatures (Tm) and thermodynamic parameters of 15 RNA and 19 DNA hairpins at 1 M NaCl, 0.01 M sodium phosphate, 0.1 mM EDTA, at pH 7. All these hairpins have loops of four bases, the most common loop size in 16S and 23S ribosomal RNAs. The RNA hairpins varied in loop sequence, loop-closing base pair (A.U, C.G, or G.C), base sequence of the stem, and stem size (four or five base pairs). The DNA hairpins varied in loop sequence, loop-closing base pair (C.G, or G.C), and base sequence of the four base-pair stem. Thermodynamic properties of a hairpin may be represented by nearest-neighbor interactions of the stem plus contributions from the loop. Thus, we obtained thermodynamic parameters for the formation of RNA and DNA tetraloops. For the tetraloops we studied, a free energy of loop formation (at 37 degrees C) of about +3 kcal/mol is most common for either RNA or DNA. There are extra stable loops with delta G degrees 37 near +1 kcal/mol, but the sequences are not necessarily the same for RNA and DNA. The closing base pair is also important; changing from C.G to G.C lowered the stability of several tetraloops in both RNA and DNA. These values will be useful in predicting RNA and DNA secondary structures. 相似文献
10.
Structural characterisation of a uracil containing hairpin DNA by NMR and molecular dynamics.
下载免费PDF全文

Three-dimensional (3D) structure of a hairpin DNA d-CTAGAGGATCCTTTUGGATCCT (22mer; abbreviated as U4-hairpin), which has a uracil nucleotide unit at the fourth position from the 5' end of the tetra-loop has been solved by NMR spectroscopy. The(1)H resonances of this hairpin have been assigned almost completely. NMR restrained molecular dynamics and energy minimisation procedures have been used to describe the 3D structure of the U4 hairpin. This study establishes that the stem of the hairpin adopts a right handed B-DNA conformation while the T(12)and U(15)nucleotide stack upon 3' and 5' ends of the stem, respectively. Further, T(14)stacks upon both T(12)and U(15)while T(13)partially stacks upon T(14). Very weak stacking interaction is observed between T(13)and T(12). All the individual nucleotide bases adopt ' anti ' conformation with respect to their sugar moiety. The turning phosphate in the loop is located between T(13)and T(14). The stereochemistry of U(15)mimics the situation where uracil would stack in a B-DNA conformation. This could be the reason as to why the U4-hairpin is found to be the best substrate for its interaction with uracil DNA glycosylase (UDG) compared to the other substrates in which the uracil is at the first, second and third positions of the tetra-loop from its 5' end, as reported previously. 相似文献
11.
Synthesis of a thymidine phosphoramidite labelled with 13C at C6: relaxation studies of the loop region in a 13C labelled DNA hairpin.
下载免费PDF全文

A thymidine phosphoramidite labelled at C6 with 13C has been synthesized, and incorporated into a synthetic oligonucleotide, d(CGCGT*T*GT*T*CGCG), which adopts a hairpin conformation. NMR relaxation measurements indicate that internal motion may be present in the loop region of the oligonucleotide. The relaxation behavior of a the C6 carbon in a model compound, N,N-1,3 dimethylthymine is examined in detail as a function of magnetic field strength to determine relative contributions of various mechanisms to the relaxation. The relaxation behaviour of the labelled carbons in the oligonucleotide is discussed in relation to these measurements. 相似文献
12.
A short overview of NMR spectroscopic applications for the study of metal ion complexes of DNA oligomers is presented. One typical example is given to illustrate the scope of the methods: the NMR structure of a trans-DDP interstrand cross-linked duplex, d(CTCCTG*TGTCTC) x d(GAGATA*AGGAG). The solution structure of this double-stranded DNA oligonucleotide, containing a trans-diammineplatinum(II) interstrand cross-link, was determined using two-dimensional nuclear magnetic resonance (2D NMR) and NOE-restrained molecular dynamics and energy minimization refinement. The duplex is a non-palindromic 12/11-mer with a missing central residue in the lower strand and in addition it contains a GT mismatched base pair. The analysis indicated that an interstrand cross-link is established between G6-N7 of the upper strand and A18-N1 of the lower strand. 相似文献
13.
Y Oda S Uesugi M Ikehara S Nishimura Y Kawase H Ishikawa H Inoue E Ohtsuka 《Nucleic acids research》1991,19(7):1407-1412
The effects of hydroxylation at the C8 of a deoxyguanosine residue in DNA were studied by NMR analysis of a self-complementary dodecanucleotide, d(C1-G2-C3-oh8G4-A5-A6-T7-T8-C9-G10-C11-G12), which has an 8-hydroxy-2'-deoxyguanosine (oh8dG) residue at the 4th position. NMR data indicate that the 8-hydroxyguanine (oh8G) base takes a 6,8-diketo tautomeric form and is base-paired to C with Watson-Crick type hydrogen bonds in a B-form structure. The thermal stability of the duplex is reduced, but the overall structure is much the same as that of the unmodified d(CGCGAATTCGCG) duplex. The structural changes caused by 8-hydroxylation of the deoxyguanosine, if any, are localized near the modification site. 相似文献
14.
NMR studies of chromomycin A3 interaction with DNA 总被引:3,自引:0,他引:3
The binding of chromomycin A3 to calf thymus DNA and poly(dG-dC) has been studied by 13C and 1H NMR with emphasis on the mode of binding, the role of Mg2+, and pH effects. The most prominent changes in the DNA base pair 13C NMR resonances upon complexation with chromomycin were observed for G and C bases, consistent with the G-C preference exhibited by this compound. Comparison of the 13C spectrum of DNA-bound chromomycin A3 with that of DNA-bound actinomycin D, a known intercalator, showed many similarities in the base pair resonances. This suggested the possibility that chromomycin A3 binds via an intercalative mechanism. 1H NMR studies in the imino proton, low-field region of the spectrum provided additional evidence in support of this binding mode. In the low-field spectrum of chromomycin A3 bound to calf thymus DNA, a small shoulder was observed on the upfield side of the G-C imino proton peak. Similarly, in the chromomycin A3 complex with poly(dG-dC), a well-resolved peak was found upfield from the G-C imino proton peak. These results are expected for ligands that bind by intercalation. Furthermore, in both the calf thymus and poly(dG-dC) drug complexes (in the presence of Mg2+) a broad peak was also present downfield (approximately 16 ppm from TSP) from the DNA imino protons. This was attributed to the C-9 phenolic hydroxyl proton on the chromomycin chromophore. Visible absorbance spectra at different pH values showed that the role of Mg2+ in the binding of chromomycin A3 to DNA is more than simple neutralization of the drug's anionic change. 相似文献
15.
Characterization of a parallel-stranded DNA hairpin 总被引:3,自引:0,他引:3
Recently we have shown that synthetic DNA containing homooligomeric A-T base pairs can form a parallel-stranded intramolecular hairpin structure [van de Sande et al. (1988) Science (Washington, D.C.) 241, 551-557]. In the present study, we have employed NMR and optical spectroscopy to investigate the structure of the parallel-stranded (PS) DNA hairpin 3'-d(T)8C4(A)8-3' and the related antiparallel (APS) hairpin 5'-d(T)8C4(A)8-3'. The parallel orientation of the strands in the PS oligonucleotide is achieved by introducing a 5'-5' phosphodiester linkage in the hairpin loop. Ultraviolet spectroscopic and fluorescence data of drug binding are consistent with the formation of PS and APS structures, respectively, in these two hairpins. Vacuum circular dichroism measurements in combination with theoretical CD calculations indicate that the PS structure forms a right-handed helix. 31P NMR measurements indicate that the conformation of the phosphodiester backbone of the PS structure is not drastically different from that of the APS control. The presence of slowly exchanging imino protons at 14 ppm and the observation of nuclear Overhauser enhancement between imino protons and the AH-2 protons demonstrate that similar base pairing and base stacking between T and A residues occur in both hairpins. However, the small chemical shift dispersion observed in proton NMR spectra of the PS hairpin suggests that the stem of this hairpin is more regular than that of the APS hairpin. On the basis of NOESY measurements, we find that the orientation of the bases is in the anti region and that the sugar puckering is in the 2'-endo range.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
16.
The free solution electrophoretic mobilities and thermal stabilities of hairpins formed by two complementary 26-nucleotide oligomers have been measured by capillary electrophoresis. The oligomers are predicted to form molecular beacon-like hairpins with 5 bp stems and 16 nucleotides in the loop. One hairpin, called hairpin2 (hp2), migrates with a relatively fast free solution mobility and exhibits melting temperatures that are reasonably well predicted by the popular structure-prediction program Mfold. Its complement, called hairpin1 (hp1), migrates with a slower free solution mobility and forms a stable hairpin only in solutions containing ≥200 mM Na(+). The melting temperatures observed for hp1 are ~18 °C lower than those observed for hp2 and ~20 °C lower than those predicted by Mfold. The greater thermal stability of hp2 is due to the presence of tandem GA residues on opposite sides of the loop. If the corresponding TC residues in the hp1 loop are replaced by tandem GA residues, the melting temperatures of the modified hairpin are close to those observed for hp2. Eliminating the tandem GA residues in the hp2 loop significantly decreases the thermal stability of hp2. If the loops are replaced by a loop of 16 thymine residues, the free solution mobilities and thermal stabilities of the T-loop hairpin are equal to those observed for hp1. Hence, the loop of hp1 appears to be relatively unstructured, with few base-base stacking interactions. Interactions between tandem GA residues on opposite sides of the hp2 loop appear to compact the loop and increase hairpin stability. 相似文献
17.
Damage to DNA involving excision of the nucleobase at the N-glycosidic bond forms abasic sites. If a nucleotide becomes incorporated opposite an unrepaired abasic site during DNA synthesis, most B family polymerases obey the A-rule and preferentially incorporate dAMP without instruction from the template. In addition to being potentially mutagenic, abasic sites provide strong blocks to DNA synthesis. A previous crystal structure of an exonuclease deficient variant of the replicative B family DNA polymerase from bacteriophage RB69 (RB69 gp43 exo-) illustrated these properties, showing that the polymerase failed to translocate the DNA following insertion of dAMP opposite an abasic site. We examine four new structures depicting several steps of translesion DNA synthesis by RB69 gp43 exo-, employing a non-natural purine triphosphate analogue, 5-nitro-1-indolyl-2'-deoxyriboside-5'-triphosphate (5-NITP), that is incorporated more efficiently than dAMP opposite abasic sites. Our structures indicate that a dipole-induced dipole stacking interaction between the 5-nitro group and base 3' to the templating lesion explains the enhanced kinetics of 5-NITP. As with dAMP, the DNA fails to translocate following insertion of 5-NIMP, although distortions at the nascent primer terminus contribute less than previously thought in inducing the stall, given that 5-NIMP preserves relatively undistorted geometry at the insertion site following phosphoryl transfer. An open ternary configuration, novel in B family polymerases, reveals an initial template independent binding of 5-NITP adjacent to the active site of the open polymerase, suggesting that closure of the fingers domain shuttles the nucleotide to the active site while testing the substrate against the template. 相似文献
18.
Komiya K Sakamoto K Kameda A Yamamoto M Ohuchi A Kiga D Yokoyama S Hagiya M 《Bio Systems》2006,83(1):18-25
Parallelism is one of the major advantages of molecular computation. A large number of data encoded in DNA molecules can be processed simultaneously by molecular biology techniques, although only a single set of instructions has been implemented in a solution. We have developed a computing machine, called the "whiplash" machine, which is made of DNA polymerase and a hairpin DNA. This machine simulates a finite state machine, executing its own instructions encoded in the DNA moiety, and would thus be applicable to multiple-instruction operation in a solution. In the present study, we explored the feasibility of this novel type of parallelism by applying the whiplash machine in a computation of the directed Hamiltonian path problem. The possible paths in a given graph were represented with different instruction sets, which were then implemented separately by whiplash machines in a test tube. After an autonomous operation of the machines, only the machine that implemented the instruction set corresponding to the Hamiltonian path was recovered from the tube. On the basis of the efficiency of machine operation, which was experimentally determined, 10(10) different instruction sets could be implemented simultaneously in a 1-ml solution. 相似文献
19.
We have determined the solution structure of a TCC-loop hairpin in the cruciform promoter for the bacteriophage N4 virion RNA polymerase (N4 vRNAP). This hairpin and its complementary GGA-loop hairpin are extruded at physiological superhelical density and are required for vRNAP recognition. Contrary to its complementary GGA-loop, the three pyrimidines in the TCC-loop are all unpaired. However, with the help of two juxtaposed stem Watson-Crick G.C base-pairs, each nucleotide in the loop employs a special method to stabilize the hairpin structure. The resulting structures display extensive loop base-stacking rearrangement yet minor backbone distortion, which is largely accomplished through some loop zeta and alpha torsional angle changes. Consistent with the structural studies, UV melting of the GAAGCTCCGCTTC hairpin revealed a higher melting temperature (66 degrees C) than that of the GAACGTCCCGTTC hairpin (58 degrees C) with reversed stem G.C base-pairs, indicating significant contribution from the extra three loop-stem H-bonds. Thermodynamic parameters DeltaG degrees 25of the GAAGCTCCGCTTC hairpin and its complementary GAAGCGGAGCTTC hairpin are -4.1 and -4. 3 kcal/mol respectively, indicating approximately equal contribution of each hairpin to the cruciform formation of the N4 virion RNA polymerase promoter. No significant loop dynamics in the microsecond to millisecond NMR time-scale was observed, and the abundant well-defined exchangeable and non-exchangeable proton NOEs allowed us to efficiently determine a well-converged family for the final structures of the TCC-loop hairpin. 相似文献
20.
Structure of a T4 hairpin loop on a Z-DNA stem and comparison with A-RNA and B-DNA loops 总被引:4,自引:0,他引:4
The synthetic DNA oligomer C-G-C-G-C-G-T-T-T-T-C-G-C-G-C-G crystallizes as a Z-DNA hexamer, capped at one end by a T4 loop. The crystals are monoclinic, space group C2, with a = 57.18 A, b = 21.63 A, c = 36.40 A, beta = 95.22 degrees, and one hairpin molecule per asymmetric unit. The structure of the z-hexamer stem was determined by molecular replacement, and the T4 loop was positioned by difference map methods. The final R factor at 2.1 A resolution for hairpin plus 70 water molecules is 20% for 2 sigma data, with a root-mean-square error of 0.26 A. The (C-G)3 stem resembles the free Z-DNA hexamer with minor crystal packing effects. The T4 loop differs from that observed on a B-DNA stem in solution, or in longer loops in tRNA, in that it shows intraloop and intermolecular interactions rather than base stacking on the final base-pair of the stem. Bases T7, T8 and T9 stack with one another and with the sugar of T7. Two T10 bases from different molecules stack between the C1-G12 terminal base-pairs of a third and fourth molecule, to simulate a T.T "base-pair". Distances between thymine N and O atoms suggest that the two thymine bases are hydrogen bonded, and a keto-enol tautomer pair is favored over disordered keto-keto wobble pairs. The hairpin molecules pack in the crystal in herringbone columns in a manner that accounts well for the observed relative crystal growth rates in a, b and c directions. Hydration seems to be most extensive around the phosphate groups, with lesser hydration within the grooves. 相似文献