首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The inheritance of mitochondria and plastids in angiosperms has been categorized into three modes: maternal, biparental and paternal. Many mechanisms have been proposed for maternal inheritance, including: (1) physical exclusion of the organelle itself during pollen mitosis I (PMI); (2) elimination of the organelle by formation of enucleated cytoplasmic bodies (ECB); (3) autophagic degradation of organelles during male gametophyte development; (4) digestion of the organelle after fertilization; and (5)—the most likely possibility—digestion of organellar DNA in generative cells just after PMI. In detailed cytological observations, the presence or absence of mitochondrial and plastid DNA in generative cells corresponds to biparental/paternal inheritance or maternal inheritance of the respective organelle examined genetically. These improved cytological observations demonstrate that the replication or digestion of organellar DNA in young generative cells just after PMI is a critical point determining the mode of cytoplasmic inheritance. This review describes the independent control mechanisms in mitochondria and plastids that lead to differences in cytoplasmic inheritance in angiosperms.  相似文献   

2.
被子植物质体遗传的细胞学研究   总被引:12,自引:2,他引:10  
植物细胞质遗传涉及细胞质中含DNA的两种细胞器——质体和线粒体从亲代至子代的传递。相对来说线粒体遗传的研究远不及质体的多,这可能是线粒体这种细胞器缺乏合适的表型突变体之故。高等植物质体遗传的研究历史可追溯到本世纪初在杂交试验中对叶色遗传的非孟德尔定律的发现,Baur在马蹄纹天竺葵(Pelargonium zonale)中从叶色突变体(白化体)的杂交遗传分析,发现了双亲质体遗传;而Correns在紫茉莉(Mirabilis jalapa)中则发现了单亲母本质体遗传(见Kuroiwa)。此后,对质体基因组突变性状遗传分析的研究,大量的资料说明了在被子植物中存在双亲质体遗传和单亲母系质体遗传两种类型,而后一种占大多数,仅少数是比较有规律的为双亲质体遗传或偶尔是双亲质体遗传。几十年来应用遗传分析的方法对被子植物质体遗传的研究,着重于揭示不同植物种质体的遗传是单亲母系或是双亲质体传递,以及探索杂种核基因对质体传递方式的影响。  相似文献   

3.
Electron microscopic and DNA fluorescence microscopic observations of the plastids, mitochondria and their DNA in the developing pollen of Phaseolus vulgaris L. have demonstrated that the male plastids were excluded during microspore mitosis. The formed generative cell was free of plastids because of regional localization of plastids in early developing microspore and the extremely unequal distribution during division. The fluorescence observations of DNA showed that cytoplasmic (plastid and mitochondria) nucleoids degenerated and disappeared during the development of microspore/pollen, and were never presented in the generative cell at different development stages. These results provided precise cytological evidence of maternal plastid inheritance in Phaseolus vulgaris, which was not in accord with the biparental plastid inheritance identified from early genetic analysis. Based on authors' previous observations in a variety of common bean that the organelle DNA of male gamete was completely degenerated, the early genetic finding of the biparental plastid inheritance was unlikely to be effected by genotypic difference. Thus those biparental plastid inheritance might be caused by occational male plastid transmission, and plastid uniparental maternal inheritance was the species character of Phaseolus vulgaris.  相似文献   

4.
应用电镜和DNA的DAPI荧光检测技术研究了菜豆(Phaseolus vulgaris L.)小孢子/花粉发育中质体和线粒体及其DNA存在的状况。观察表明:在小孢子分裂时质体全部分配到营养细胞中,初形成的生殖细胞已不含质体。线粒体和质体的DNA在花粉发育中也先后降解,生殖细胞从刚形成时发育至成熟花粉时期这两种细胞器DNA均不存在。研究结果为菜豆质体母系遗传提供了确切的细胞学证据。遗传分析的研究曾确定菜豆质体为双亲遗传,对与本研究结论不同的原因进行了讨论。  相似文献   

5.
Summary The behaviour of plastids and mitochondria during the formation and development of the male gametophyte of Chlorophytum comosum has been investigated using electron microscopy. During first pollen mitosis an intracellular polarization of plastids occurs in that the plastids are clustered in the centre of the microspore. The originating generative cell normally lacks plastids. Only in a small number of microspores have plastids been observed near the dividing nucleus of the microspore and later on in the generative cell. These observations agree with the genetic investigations of Collins (1922) on the mode of plastid inheritance which demonstrated a small amount of biparental plastid inheritance in Chlorophytum. The cytological mechanisms underlying plastid polarization during the first pollen mitosis are discussed.  相似文献   

6.
Liu Y  Cui H  Zhang Q  Sodmergen 《Plant physiology》2004,136(1):2762-2770
Epifluorescence microscopic detection of organelle DNA in the mature generative cell is a rapid method for determining the potential for the mode of cytoplasmic inheritance. We used this method to examine 19 of the known 22 to 27 species in the genus Syringa. Organelle DNA was undetectable in seven species, all in the subgenus Syringa, but was detected in the 12 species examined of the subgenera Syringa and Ligustrina. Therefore, species within the genus Syringa display differences in the potential cytoplasmic inheritance. Closer examination revealed that the mature generative cells of the species in which organelle DNA was detected contained both mitochondria and plastids, but cells of the species lacking detectable organelle DNA contained only mitochondria, and the epifluorescent organelle DNA signals from the mature generative cells corresponded to plastid DNA. In addition, semiquantitative analysis was used to demonstrate that, during pollen development, the amount of mitochondrial DNA decreased greatly in the generative cells of the species examined, but the amount of plastid DNA increased remarkably in the species containing plastids in the generative cell. The results suggest that all Syringa species exhibit potential maternal mitochondrial inheritance, and a number of the species exhibit potential biparental plastid inheritance. The difference between the modes of potential plastid inheritance among the species suggests different phylogenies for the species; it also supports recent conclusions of molecular, systematic studies of the Syringa. In addition, the results provide new evidence for the mechanisms of maternal mitochondrial inheritance in angiosperms.  相似文献   

7.
It is widely held that organelles inherit from the maternal lineage. However, the plastid genome in quite a few angiosperms appears to be biparentally transmitted. It is unclear how and why biparental inheritance of the genome became activated. Here, we detected widespread occurrence of plastids in the sperm cells (a cellular prerequisite for biparental inheritance) of traditional Caprifoliaceae. Of the 12 genera sampled, the sperm cells of Abelia, Dipelta, Heptacodium, Kolkwitzia, Leycesteria, Linnaea, Lonicera, Symphoricarpos, Triosteum and Weigela possessed inheritable plastids. The other genera, Sambucus and Viburnum, lacked plastids in sperm cells. Interestingly, such exclusion of plastids in the sperm cells of some Caprifoliaceae appeared to be associated with the divergence of Dipsacales phylogeny. Closer examination of Weigela florida revealed that both plastids and plastid DNA were highly duplicated in the generative cells. This implies that the appearance of plastids in sperm cells involved cellular mechanisms. Because such mechanisms must enhance the strength of plastid transmission through the paternal lineage and appear ubiquitous in species exhibiting biparental or potential biparental plastid inheritance, we presume that biparental plastid genetics may be a derived trait in angiosperms. This is consistent with our extended phylogenetic analysis using species with recently discovered modes of potential plastid inheritance. The results show that basal and early angiosperms have maternal plastid transmission, whereas all potential biparental transmission occurs at terminal branches of the tree. Thus, unlike previous studies, we suggest that biparental plastid inheritance in angiosperms was unilaterally converted from the maternal transmission mode during late angiosperm evolution.  相似文献   

8.
The model plant Medicago truncatula exhibits biparental plastid inheritance   总被引:1,自引:0,他引:1  
The plastid, which originated from the endosymbiosis of a cyanobacterium, contains its own plastid DNA (ptDNA) that exhibits a unique mode of inheritance. Approximately 80% of angiosperms show maternal inheritance, whereas the remainder exhibit biparental inheritance of ptDNA. Here we studied ptDNA inheritance in the model legume, Medicago truncatula. Cytological analysis of mature pollen with DNA-specific fluorescent dyes suggested that M. truncatula is one of the few model plants potentially showing biparental inheritance of ptDNA. We further examined pollen by electron microscopy and revealed that the generative cell (a mother of sperm cells) indeed has many DNA-containing plastids. To confirm biparental inheritance genetically, we crossed two ecotypes (Jemalong A17 and A20), and the transmission mode of ptDNA was investigated by a PCR-assisted polymorphism. Consistent with the cytological observations, the majority of F(1) plants possessed ptDNAs from both parents. Interestingly, cotyledons of F(1) plants tended to retain a biparental ptDNA population, while later emergent leaves tended to be uniparental with either one of the parental plastid genotypes. Biparental transmission was obvious in the F(2) population, in which all plants showed homoplasmy with either a paternal or a maternal plastid genotype. Collectively, these data demonstrated that M. truncatula is biparental for ptDNA transmission and thus can be an excellent model to study plastid genetics in angiosperms.  相似文献   

9.
M. -B. Schröder 《Protoplasma》1985,124(1-2):123-129
Summary This paper describes the development of pollen grains ofGasteria verrucosa from the late microspore to the mature two-cellular pollen grain. Ultrastructural changes and the distribution of plastids as a result of the first pollen mitosis have been investigated using light and electron microscopy. The microspores as well as the generative and the vegetative cell contain mitochondria and other cytoplasmic organelles during all of the observed developmental stages. In contrast, the generative cell and the vegetative cell show a different plastid content. Plastids are randomly distributed within the microspores before pollen mitosis. During the prophase of the first pollen mitosis the plastids become clustered at the proximal pole of the microspore. The dividing nucleus of the microspore is located at the distal pole of the microspore. Therefore, the plastids are not equally distributed into both the generative and the vegetative cell. The possible reasons for the polarization of plastids within the microspore are briefly discussed. The lack of plastids in the generative cell causes a maternal inheritance of plastids inGasteria verrucosa.  相似文献   

10.
Anemarrhena asphodeloides is a monotypic genus of Liliaceae, endemic to China and Korea. This genus is characterized by possessing three stamens. From development of male gametophyte, three features of the species are noteworthy. (1) During meiosis of the micros- pore mother cells, the Golgi vesicles are immediately incorporated into the formation of the material of callose wall; The latter lying at the outer tangential is about 4 gm in thickness dining formation of the tetrad. In the outer tangential callose wall there are certain cytoplasmic canals, which are about 0.6 to 1 μm in diameter. During the development of pollen grains, there are a number of other vesicles dispersing in the cytoplasm of the microspores. The activity of these vesicles seems to be involved in accumulation and formation of lipid bodies. But the above vesicles, which were derivxed from Golgi or endoplasmic reticulum, have not been known in this genus. (2) By two-celled stage of pollen grains, the unequal distribution of lipid bodies is very prominent, and they are singular in being placed on the boundary between the plasmalemma of vegetative and generative cells. While the generative cell is delached from the intine of pollen grain, the generative cell is surrounded by the lipid bodies which had been called the corona of them. By the observation of TEM, these lipid bodies come from the cytoplasm of vegetative cell and did not remain a constant surrounding layer. Towards the stage of pollen maturation, the lipid bodies lying oppositely to the nucleus of vegetative cell were gradually dispersed in the cytoplasm. Their function is unknown but the observation shows that some of them move to the plasmalemma of the pollen grain. (3) An important feature of the mature pollen grain in Anemarrhena is that the generative cell does not contain plastids during polle development. On the basis of cytological mechanisms of the plastid inheritance, Hagemann (1983) has classified the angiosperms into four groups of species, of which the Lycopersicum type, Solanum type, and Triticum type belong to the mode of a uniparental maternal inheritance of plastids; while the Pelargonium type represents the mode of biparental inheritance of plastids. Our studies have confirmed that the mode of plastid inheritance in Anemarrhena asphodeloides is similar to Gasteria verrucosa, both show the same mode of plastid inheritance of Lycopersicum type.  相似文献   

11.
Biparental inheritance of plastids has been documented in numerous angiosperm species. The adaptive significance of the mode of plastid inheritance (unior biparental) is poorly understood. In plants exhibiting paternal inheritance of plastids, DNA-containing plastids in the microgametophyte may affect survival or growth of the gametophyte or the embryo. In this study the number of plastids containing DNA (nucleoids) in generative cells and generative cell and pollen volumes were evaluated in a range of genotypes of Medicago sativa (alfalfa). M. sativa exhibits biparental inheritance of plastids with strong paternal bias. The M. sativa genotypes used were crossed as male parents to a common genotype and the relationships between the gametophytic traits measured and male reproductive success were assessed. Generative cell plastid number and pollen grain size exhibited opposing associations with male fertility. Path analysis showed that generative cell plastid number was negatively associated with male fertility. This study provides evidence that there may be a competitive advantage at fertilization afforded sperm that have minimized their organelle content. The apparent lack of strong selection for reduced plastid number in generative cells of M. sativa may be a reflection of the diminished importance of reproductive success due to its perenniality or its long use in cultivation.  相似文献   

12.
玉竹(Polygonatum simizui Kitag)小孢子在分裂前,质体极性分布导致分裂后形成的生殖细胞不含质体,而营养细胞包含了小孢子中全部的质体。生殖细胞发育至成熟花粉时期,及在花粉管中分裂形成的两个精细胞中始终不含质体。虽然生殖细胞和精细胞中都存在线粒体,但细胞质中无DNA类核。玉竹雄性质体的遗传为单亲母本型。在雄配子体发育过程中,营养细胞中的质体发生明显的变化。在早期的营养细胞质中,造粉质体增殖和活跃地合成淀粉。后期,脂体增加而造粉质体消失。接近成熟时花粉富含油滴。对百合科的不同属植物质体被排除的机理及花粉中贮藏的淀粉与脂体的转变进行了讨论。  相似文献   

13.
We have developed a diagnostic method to screen rapidly for plant species potentially capable of biparental inheritance of plastid DNA using the DNA fluorochrome 4′,6-diamidino-2-phenylindole (DAPI) in conjunction with epifluorescence microscopy. Pollen shed from 235 plant species (including about 50 of agronomic importance) representing 80 families were screened. Putative plastid DNA was detected in the generative and/or sperm cells of pollen from 26 genera (43 species) representing 15 families. Plastid DNA was not detected in the generative or sperm cells of pollen from 192 plant species, thereby strongly suggesting that these species have only maternal inheritance. Our cytological diagnosis corroborated the known genetic evidence in 42 plant species and conflicted with the genetic reports in five species, which are discussed. The data suggest that biparental inheritance of plastids is rare; overall, it may occur in about 14% of flowering plant genera, examples of which are scattered among 19% of the families examined. This methodology also readily reveals whether pollen is bi- or trinucleate.  相似文献   

14.
We examined pollen cells of Wisteria sinensis and Robinia pseudoacacia (Leguminosae) to determine a possible mode for cytoplasmic inheritance in these species. Epifluorescence microscopy revealed distinct mature generative cells. Mature generative cells of W. sinensis were associated with large numbers of punctuated fluorescent signals corresponding to cytoplasmic DNA aggregates, but no fluorescent signals were observed in the generative cells of R. pseudoacacia. Closer examination showed that the punctate fluorescent signals corresponded to plastid but not mitochondrial DNA. These results suggest a strong potential for paternal transmission of the plastid genome in W. sinensis. Electron microscopy confirmed the presence of plastids in the generative cells of W. sinensis and the absence of plastids in R. pseudoacacia cells due to an unequal distribution of plastids during the first pollen mitosis. Mitochondria were present and intact in the mature generative cells of both species. The lack of fluoresced mitochondrial DNA suggests a very low level of mitochondrial DNA in the cells. Immunoelectron microscopy demonstrated that the labeling of mitochondrial DNA in these cells was reduced by nearly 90% during pollen development. Such a dramatic reduction suggests an active degradation of paternal mitochondrial DNA, which may contribute greatly to the maternal inheritance of mitochondria. In short, we found that W. sinensis exhibits a strong potential for paternal transmission of plastids and that both W. sinensis and R. pseudoacacia appear to share the same mechanism for maternal mitochondrial inheritance.  相似文献   

15.
Summary A number of maternally inherited characters are now known to be associated with mitochondria or chloroplasts, which contain small genomes segregating separately from that of the nucleus. The reason often given for maternal inheritance of plastid-associated characters in plants is the absence of plastids in the generative cell of pollen following an unequal mitosis (Vaughn, 1980). However, fine ultrastructural studies have not established “exclusion” as the sole mechanism for maternal inheritance; in many cases, other mechanisms may be operating. Three lines of evidence concerning the mechanism of maternal inheritance will be discussed: First, while it is true that thorough fine ultrastructural studies have failed to find plastids in generative cells of many seed plants (Cass and Karas, 1975), similar studies in some seed plants have found plastids or structures taken to be plastids in generative cells, and a few studies using serial section electron microscopy to re-examine some plants in the first group have found plastids in generative cells and even in the sperm. Also, the exclusion model fails to account at all for maternal inheritance of mitochondria, which are found nearly universally in the generative cells and sperm which have been studied ultrastructurally. Second, maternal inheritance of plastid characters is seen in many lower plants and algae, despite the presence of plastids and mitochondria in the male gametes and their reported deposition in the zygote. Third, there is evidence for an alternative or additional mechanism which may occur in many plants: mitochondria and plastids in male gametes may be altered during development or syngamy so that, although not excluded, they are genetically and perhaps functionally debilitated, which would result in maternal inheritance. This evidence derives both from ultrastructural studies of pollen and fertilization, and from genetic and developmental analysis of algal zygotes and of embryos derived from pollen tissue culture. This mechanism is logically attractive in that it allows for the observed continuum of variation from strict uniparental inheritance in a number of plants, which cannot be explained by the “all-or-nothing” exclusion hypothesis. Indeed, it may be appropriate to think of both mechanisms as part of a continuum ranging from destruction within the zygote, to exclusion during syngamy, to pre-fertilization debilitation, to absence from male gametes and generative cells (Russell and Cass, 1981).  相似文献   

16.
ULTRASTRUCTURE OF PLASTID INHERITANCE: GREEN ALGAE TO ANGIOSPERMS   总被引:2,自引:0,他引:2  
1. Plastid inheritance in most green algae and land plants is uniparental. In oogamous species, plastids are usually derived from the maternal parent; even when inheritance is biparental, maternal plastids usually predominate. Only a few species of conifer are known to have essentially paternal plastid inheritance. In spite of the overall strong maternal bias, there exists a spectrum of species in which plastid inheritance ranges from purely maternal to predominantly paternal. 2. Factors that influence the pattern of plastid inheritance operate both before (often long before) and after fertilization. For example, several different mechanisms for exclusion of plastids from particular cells, none of which is completely effective on its own, may operate sequentially during both gametogenesis and embryo-genesis. There appears to exist a general trend such that the more highly evolved the organism, the more numerous the mechanisms employed and the earlier they first come into operation. The pattern of plastid inheritance shown by a species represents the efficiency or lack of efficiency of these combined mechanisms. 3. In the newly-formed zygote of many unicellular algae, the plastids from both gametes are present and there is direct competition between them. Often the plastid from one mating type (usually the ‘invading’ male gamete, where this can be identified) quickly degenerates. Species such as Chlamydomonas are unusual in that the plastids from the two gametes fuse. In spite of this, inheritance of plastid DNA is normally uniparental. How this is accomplished remains unclear. In oogamous algae, the paternal plastids which enter the egg cell are frequently fewer in number and smaller in size than those contributed by the female gamete. The reduced contribution of paternal plastids can result from asymmetrical cell division or from differential timing of cell and plastid division during spermatogenesis. 4. In species ranging from unicellular algae to angiosperms, plastids may be partially or completely debarred from particular cells at critical stages during the reproductive cycle. An important factor in this form of plastid elimination is their postioning with respect to the nucleus prior to a cell division. When plastids closely encircle the nucleus, they are usually incorporated equally into the two daughter cells; when the plastids are concentrated at some distance from the nucleus, they are frequently excluded from one daughter cell. 5. Elimination of plastids from a gamete prior to plasmogamy prevents direct competition between the two types of plastid in the zygote or embryo. Perhaps the most effective method of excluding paternal plastids from the egg cell has been achieved by some lower land plants; the plastids migrate to the posterior part of the spermatozoid, and are discarded from there in a discrete vesicle before the egg is reached. 6. Plastid inheritance in conifers appears to be unique. In those species in which the derivation of plastids in the pro-embryo can be determined, it has been found that they come only from the male gamete. Maternal plastids are positively excluded from the pro-embryo and later degenerate. 7. In most angiosperm species plastid inheritance is maternal; in only a few species is it regularly biparental. The first step towards exclusion of paternal plastids often takes place in the uninucleate pollen grain where the plastids may be concentrated at the pole of the cell farthest from the site of the future generative cell. Any plastids that succeed in entering the generative cell may degenerate before the gametes are released from the pollen tube. Even if paternal plastids reach the egg, they are at a disadvantage because they are (a) entering an environment that is essentially alien, and (b) normally present in much smaller numbers than maternal plastids. Later, when the zygote divides, the few paternal plastids may fail to become incorporated in the small terminal cell which gives rise to the embryo proper. 8. There appears to be no consistent evolutionary progression in the use of more efficient mechanisms to influence plastid inheritance; most of the mechanisms associated with exclusion of paternal plastids in angiosperms, for example, can also be found in one or other species of green alga. The primary factors that influence plastid inheritance appear to be (I) direct competition in the zygote between plastids of the two parental types – the principal mechanism operating in isogamous algae, but also operating in some angiosperms; and (2) the divergent evolution of the two types of gamete - on the one hand a small male gamete with a minimum of cytoplasm which is capable of moving (spermatozoid) or being moved (pollen) efficiently, and, on the other hand, a large egg cell with numerous organelles, which is well able to act as ‘host’ for the future zygote. Many of the additional mechanisms that influence the pattern of plastid inheritance seem to be the more or less ‘accidental’ result of other evolutionary events.  相似文献   

17.
Organellar DNA in mature pollen grains of eight angiosperm species (Actinidia deliciosa Lindl., Antirrhinum majus L., Arabidopsis thaliana (L.) Heynh., Medicago sativa L., Musa acuminata Colla, Pelargonium zonale (L.) L'Hér, Petunia hybrida Vilm. and Rhododendron mucronatum (Blume) G. Don, in which the modes of organellar inheritance have been determined genetically, was observed by fluorescence microscopy using Technovit 7100 resin sections double-stained with 4′,6-diamidino-2-phenylindole (DAPI) and 3,3′-dihexyloxacarbocyanine iodide (DiOC6). The eight species were classified into four types, based on the presence or absence of organellar DNA in mature generative cells: namely (1) type “m+p+”, which has both mitochondrial and plastid DNA (P. zonale), (2) type “m+p–”, which only has mitochondrial DNA (M. acuminata), (3) type “m−p+”, which only has plastid DNA (A. deliciosa, M. sativa, R. mucronatum), and (4) type “m−p−”, which has neither mitochondrial nor plastid DNA (A. majus, A. thaliana, P. hybrida). This classification corresponded to the mode of organellar inheritance determined by genetic analysis. The presence or absence of mitochondrial and plastid DNA corresponded to paternal/biparental inheritance or maternal inheritance of the respective organelle, respectively. When organellar DNA was present in mature generative cells (m+ or p+), the DNA content of the organelles in the generative cells started to increase immediately after pollen mitosis one (PMI). In contrast, the DNA content of organelles in generative cells decreased rapidly after PMI when organellar DNA was absent from mature generative cells (m− or p−). These results indicate that the modes of inheritance (paternal/biparental inheritance or maternal inheritance) of mitochondria and plastids are determined independently of each other in young generative cells just after PMI. Received: 22 December 1998 / Accepted: 8 February 1999  相似文献   

18.
Zhang Q  Sodmergen 《Protoplasma》2003,221(3-4):211-216
Summary.  Following 4′,6-diamidino-2-phenylindole staining of mature pollen grains of Chlorophytum comosum, fluorescence microscopy confirmed that cytoplasmic nucleoids (DNA aggregates) were present in the generative cells, which indicated the possibility of biparental cytoplasmic inheritance. Electron and immuno-electron microscopy showed that both plastids and mitochondria were present in the generative cells, and both organelles contained DNA. These results indicate that mitochondria and plastids of C. comosum have the potential for biparental inheritance. Similar results were obtained with mature pollen grains of C. chinense. Therefore, we conclude the coincident biparental inheritance for mitochondria and plastids in the members of the genus Chlorophytum. Received June 28, 2002; accepted September 26, 2002; published online April 2, 2003 RID="*" ID="*" Correspondence and reprints: College of Life Science, Peking University, Bejing 100871, People's Republic of China.  相似文献   

19.
Mature pollen grains of 295 angiosperm species were screened by epifluorescence microscopy for a marker that denotes the mode of cytoplasmic inheritance. We used the DNA fluorochrome DAPI (4',6-diamidino-2-phenylindole) for pollen cell staining. The presence or absence of fluorescence of cytoplasmic DNA in the generative cell or sperm cells was examined in each species. The species examined represented 254 genera and 98 families, and 40 of these families had not been previously studied in this regard. The cytoplasmic DNA of the generative cell or sperm cells did not fluoresce in 81% of the species examined, from 83% of the genera and 87% of the families examined, indicating the potential for maternal cytoplasmic inheritance in these species. In contrast, the male reproductive cells of 19% of the species, from 17% of the genera and 26% of the families examined, displayed fluorescence of the cytoplasmic DNA, indicating the potential for biparental cytoplasmic inheritance in these species. The results revealed the potential for biparental cytoplasmic inheritance in several species in which the inheritance mode was previously unknown, including plants in the Bignoniaceae, Cornaceae, Cruciferae (Brassicaceae), Cyperaceae, Dipsacaceae, Hydrocharitaceae, Papaveraceae, Portulacaceae, Tiliaceae, Valerianaceae, and Zingiberaceae. Electron microscopy revealed that the sperm cells of Portulaca grandiflora contain both plastid and mitochondrial DNA. However, in the generative cells of Musella lasiocarpa, the mitochondria contain DNA, but the plastids do not. These data provide a foundation for further studies of cytoplasmic inheritance in angiosperms.  相似文献   

20.
Summary In the present study, we studied changes in organellar DNA in the sperm cells of maturing pollen ofPelargonium zonale, a plant typical to exhibit biparental inheritance, by fluorescence microscopy after staining with 4,6-diamidino-2-phenylindole (DAPI) and by immunogold electron microscopy using anti-DNA antibody. Fluorescence intensities of DAPI-stained plastid nuclei in generative and sperm cells at various developmental stages were quantified with a video-intensified microscope photon counting system (VIMPCS). Results indicated that the amount of DNA per plastid in generative cells increased gradually during pollen development and reached a maximum value (about 70 T per plastid; 1 T represents the amount of DNA in a particle of T4 phage) in young sperm cells at 5 days before flowering. However, the DNA content of plastids was subsequently reduced to about 20% of the maximum value on the day of flowering. Moreover, the DNA content of the plastid further decreased to 4% of the maximum value when pollen grains were cultured for 6 h in germination medium. In contrast, the amount of DNA per mitochondrion did not decrease significantly around the flowering day. Similar results were also obtained by immunogold electron microscopy using anti-DNA antibody. The density of gold particles on plastids decreased during pollen maturation whereas labelling density on mitochondria remained relatively constant. The number of plastids and mitochondria per generative cell or per pair of sperm cells did not change significantly, indicating that the segregation of DNA by plastid division was not responsible for the decrease in the amount of DNA per plastid. These results indicate that the plastid DNA is preferentially degraded, but the mitochondrial DNA is preserved, in the sperm cells ofP. zonale. While the plastid DNA of the sperm cells decreased before fertilization, it was also suggested that the low DNA contents that remain in the plastids of the sperm cells are enough to account for the biparental inheritance of plastids inP. zonale.Abbreviations DAPI 4,6-diamidino-2-phenylindole - VIMPCS video-intensified microscope photon counting system  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号