首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Evolutionary interactions among insect herbivores and plant chemical defenses have generated systems where plant compounds have opposing fitness consequences for host plants, depending on attack by various insect herbivores. This interplay complicates understanding of fitness costs and benefits of plant chemical defenses. We are studying the role of the glucosinolate-myrosinase chemical defense system in protecting Arabidopsis thaliana from specialist and generalist insect herbivory. We used two Arabidopsis recombinant inbred populations in which we had previously mapped QTL controlling variation in the glucosinolate-myrosinase system. In this study we mapped QTL controlling resistance to specialist (Plutella xylostella) and generalist (Trichoplusia ni) herbivores. We identified a number of QTL that are specific to one herbivore or the other, as well as a single QTL that controls resistance to both insects. Comparison of QTL for herbivory, glucosinolates, and myrosinase showed that T. ni herbivory is strongly deterred by higher glucosinolate levels, faster breakdown rates, and specific chemical structures. In contrast, P. xylostella herbivory is uncorrelated with variation in the glucosinolate-myrosinase system. This agrees with evolutionary theory stating that specialist insects may overcome host plant chemical defenses, whereas generalists will be sensitive to these same defenses.  相似文献   

2.
Host ranges are commonly quantified to classify herbivores and plant pathogens as either generalists or specialists. Here, we summarize patterns and mechanisms in the interactions of plants with these enemies along different axes of specificity. We highlight the many dimensions within which plant enemies can specify and consider the underlying ecological, evolutionary and molecular mechanisms. Host resistance traits and enemy effectors emerge as central players determining host utilization and thus host range. Finally, we review approaches to studying the causes and consequences of variation in the specificity of plant-enemy interactions. Knowledge of the molecular mechanisms that determine host range is required to understand host shifts, and evolutionary transitions among specialist and generalist strategies, and to predict potential host ranges of pathogens and herbivores.  相似文献   

3.
Anurag A. Agrawal 《Oikos》2000,89(3):493-500
Inducible plant resistance against herbivores is becoming a paradigm of plant–herbivore ecology. Fundamental to understanding induced resistance and its evolutionary ecology is specificity of "induction" and "effects". Specificity in the induction of resistance refers to whether plant damage by various herbivores causes the same response in plants. Specificity in the effects of induced resistance refers to whether induction has the same consequences (i.e., reduced preference or performance) for various herbivores. I examined both specificity of induction and effect employing four lepidopteran herbivores and wild radish plants, a system for which fitness benefits and costs of induction have been documented for the plant. Variation in the specificity of induction and effects of induced plant resistance was found; however, this variation was not associated with diet specialization in the herbivores (i.e., specialists vs generalists). Induction caused by Plutella (specialist) and Spodoptera (generalist) resulted in general resistance to all of the herbivores, induction caused by Pieris (specialist) induced resistance only to Spodoptera (generalist) and Pieris , and plant damage by Trichoplusia (generalist) failed to induce resistance and reduce the performance of any of the herbivores. To the contrary, plants damaged by Trichoplusia supported enhanced growth of subsequently feeding Trichoplusia compared to uninduced controls. These results add a novel level of complexity to interactions between plants and leaf chewing caterpillars. Within the same guild of feeders, some herbivores cause strong induced resistance, no induced resistance, or induced susceptibility. Similarly, caterpillar species were variable in the level to which induced resistance affected their performance. Such interactions limit the possibility of pairwise coevolution between plants and herbivores, and suggest that coevolution can only be diffuse.  相似文献   

4.
Qi L  Yan J  Li Y  Jiang H  Sun J  Chen Q  Li H  Chu J  Yan C  Sun X  Yu Y  Li C  Li C 《The New phytologist》2012,195(4):872-882
? Although the role of auxin in biotrophic pathogenesis has been extensively studied, relatively little is known about its role in plant resistance to necrotrophs. ? Arabidopsis thaliana mutants defective in different aspects of the auxin pathway are generally more susceptible than wild-type plants to the necrotrophic pathogen Alternaria brassicicola. We show that A.?brassicicola infection up-regulates auxin biosynthesis and down-regulates the auxin transport capacities of infected plants, these effects being partially dependent on JA signaling. We also show that these effects of A.?brassicicola infection together lead to an enhanced auxin response in host plants. ? Application of IAA and MeJA together synergistically induces the expression of defense marker genes PDF1.2 (PLANT DEFENSIN 1.2) and HEL (HEVEIN-LIKE), suggesting that enhancement of JA-dependent defense signaling may be part of the auxin-mediated defense mechanism involved in resistance to necrotrophic pathogens. ? Our results provide molecular evidence supporting the hypothesis that JA and auxin interact positively in regulating plant resistance to necrotrophic pathogens and that activation of auxin signaling by JA may contribute to plant resistance to necrotrophic pathogens.  相似文献   

5.
The diversity of surrounding vegetation is thought to modify the interactions between a focal plant and its herbivores, disrupting (associational resistance) or enhancing (associational susceptibility) host plant location and colonisation. We compared the effects of host plant concentration on herbivory by generalist and specialist insects feeding on oak seedlings by increasing local concentration of seedlings. We also assessed the effects of the composition and structure of surrounding vegetation, both at stand and local levels. The damage caused by generalist leaf-feeding insects depended on the structure of plant communities at stand level, and increased with tree cover. By contrast, infestation by specialist leaf miners was affected by local understorey vegetation surrounding oak seedlings, and decreased with increasing shrub cover and stratification diversity. Leaf mine abundance was higher at higher oak seedling density, giving support to the host concentration hypothesis. However, the abundance of these specialist herbivores was also negatively correlated with damage caused by the generalist external leaf-feeders, suggesting competitive interactions.  相似文献   

6.
The evolution of land plants approximately 470 million years ago created a new adaptive zone for natural enemies (attackers) of plants. In response to attack, plants evolved highly effective, inducible defense systems. Two plant hormones modulating inducible defenses are salicylic acid (SA) and jasmonic acid (JA). Current thinking is that SA induces resistance against biotrophic pathogens and some phloem feeding insects and JA induces resistance against necrotrophic pathogens, some phloem feeding insects and chewing herbivores. Signaling crosstalk between SA and JA commonly manifests as a reciprocal antagonism and may be adaptive, but this remains speculative. We examine evidence for and against adaptive explanations for antagonistic crosstalk, trace its phylogenetic origins and provide a hypothesis-testing framework for future research on the adaptive significance of SA-JA crosstalk.  相似文献   

7.
Escape from enemies in the native range is often assumed to contribute to the successful invasion of exotic species. Following optimal defence theory, which assumes a trade‐off between herbivore resistance and plant growth, some have predicted that the success of invasive species could be the result of the evolution of lower resistance to herbivores and increased allocation of resources to growth and reproduction. Lack of evidence for ubiquitous costs of producing plant toxins, and the recognition that invasive species may escape specialist, but not generalist enemies, has led to a new prediction: invasive species may escape ecological trade‐offs associated with specialist herbivores, and evolve increased, rather than decreased, production of defensive compounds that are effective at deterring generalist herbivores in the introduced range. We tested the performance of two generalist lepidopteran herbivores, Trichoplusia ni and Orgyia vetusta, when raised on diets of native and invasive populations of the California poppy, Eschscholzia californica. Pupae of T. ni were significantly larger when reared on native populations. Similarly, caterpillars of O. vetusta performed significantly better when raised on native populations, indicating that invasive populations of the California poppy are more resistant to herbivores than native populations. The chance of successful establishment of some non‐indigenous plant species may be increased by retaining resistance to generalist herbivores, and in some cases, invasive species may be able to escape ecological trade‐offs in their new range and evolve, as we observed, even greater resistance to generalist herbivores than native plants.  相似文献   

8.
Disentangling the effects of plant diversity on the control of herbivores is important for understanding agricultural sustainability. Recent studies have investigated the relationships between plant diversity and arthropod communities at the landscape scale, but few have done so at the local scale. We conducted a meta‐analysis of 32 papers containing 175 independent measures of the relationship between plant diversity and arthropod communities. We found that generalist predators had a strong positive response to plant diversity, that is, their abundance increased as plant diversity increased. Herbivores, in contrast, had an overall weak and negative response to plant diversity. However, specialist and generalist herbivores differed in their response to plant diversity, that is, the response was negative for specialists and not significant for generalists. While the effects of scale remain unclear, the response to plant diversity tended to increase for specialist herbivores, but decrease for generalist herbivores as the scale increased. There was no clear effect of scale on the response of generalist predators to plant diversity. Our results suggest that the response of herbivores to plant diversity at the local scale is a balance between habitat and trophic effects that vary according to arthropod specialization and habitat type. Synthesis and applications. Positive effects of plant diversity on generalist predators confirm that, at the local scale, plant diversification of agroecosystems is a credible and promising option for increasing pest regulation. Results from our meta‐analysis suggest that natural control in plant‐diversified systems is more likely to occur for specialist than for generalist herbivores. In terms of pest management, our results indicate that small‐scale plant diversification (via the planting of cover crops or intercrops and reduced weed management) is likely to increase the control of specialist herbivores by generalist predators.  相似文献   

9.
This review will focus on the molecular and genetic mechanisms underlying defense responses of roots to fungal pathogens. Soil-borne pathogens, including Phytophthora, Pythium, Fusarium, and Bipolaris, represent major sources of biotic stress in the rhizosphere and roots of plants. Molecular recognition and signaling leading to effective resistance has been demonstrated to occur between host and Phytophthora, or Pythium. The hypersensitive response and apoptotic cell death, two oxidative processes that limit biotrophic pathogens, generally act to exacerbate disease symptoms induced by necrotrophic organisms. Although pathogenesis-related proteins can be expressed in roots during pathogen challenge, salicylic acid has not been implicated in root-mediated interactions. Jasmonic acid and ethylene have been found to mediate parallel as well as synergistic pathways that confer partial tolerance to necrotrophic pathogens, as well as induced systemic resistance to root and foliar pathogens. Genomics approaches are revealing new networks of defense-signaling pathways, and have the potential of elucidating those pathways that are important in root-defense responses.  相似文献   

10.
Pyrrolizidine alkaloids (PAs) are the major defense compounds of plants in the Senecio genus. Here I will review the effects of PAs in Senecio on the preference and performance of specialist and generalist insect herbivores. Specialist herbivores have evolved adaptation to PAs in their host plant. They can use the alkaloids as cue to find their host plant and often they sequester PAs for their own defense against predators. Generalists, on the other hand, can be deterred by PAs. PAs can also affect survival of generalist herbivores. Usually generalist insects avoid feeding on young Senecio leaves, which contain a high concentration of alkaloids. Structurally related PAs can differ in their effects on insect herbivores, some are more toxic than others. The differences in effects of PAs on specialist and generalists could lead to opposing selection on PAs, which may maintain the genetic diversity in PA concentration and composition in Senecio species.  相似文献   

11.
The Green Revolution dwarfing genes, Rht-B1b and Rht-D1b, encode mutant forms of DELLA proteins and are present in most modern wheat varieties. DELLA proteins have been implicated in the response to biotic stress in the model plant, Arabidopsis thaliana. Using defined wheat Rht near-isogenic lines and barley Sln1 gain of function (GoF) and loss of function (LoF) lines, the role of DELLA in response to biotic stress was investigated in pathosystems representing contrasting trophic styles (biotrophic, hemibiotrophic, and necrotrophic). GoF mutant alleles in wheat and barley confer a resistance trade-off with increased susceptibility to biotrophic pathogens and increased resistance to necrotrophic pathogens whilst the converse was conferred by a LoF mutant allele. The polyploid nature of the wheat genome buffered the effect of single Rht GoF mutations relative to barley (diploid), particularly in respect of increased susceptibility to biotrophic pathogens. A role for DELLA in controlling cell death responses is proposed. Similar to Arabidopsis, a resistance trade-off to pathogens with contrasting pathogenic lifestyles has been identified in monocotyledonous cereal species. Appreciation of the pleiotropic role of DELLA in biotic stress responses in cereals has implications for plant breeding.  相似文献   

12.
13.
Rowe HC  Kliebenstein DJ 《Genetics》2008,180(4):2237-2250
The genetic architecture of plant defense against microbial pathogens may be influenced by pathogen lifestyle. While plant interactions with biotrophic pathogens are frequently controlled by the action of large-effect resistance genes that follow classic Mendelian inheritance, our study suggests that plant defense against the necrotrophic pathogen Botrytis cinerea is primarily quantitative and genetically complex. Few studies of quantitative resistance to necrotrophic pathogens have used large plant mapping populations to dissect the genetic structure of resistance. Using a large structured mapping population of Arabidopsis thaliana, we identified quantitative trait loci influencing plant response to B. cinerea, measured as expansion of necrotic lesions on leaves and accumulation of the antimicrobial compound camalexin. Testing multiple B. cinerea isolates, we identified 23 separate QTL in this population, ranging in isolate-specificity from being identified with a single isolate to controlling resistance against all isolates tested. We identified a set of QTL controlling accumulation of camalexin in response to pathogen infection that largely colocalized with lesion QTL. The identified resistance QTL appear to function in epistatic networks involving three or more loci. Detection of multilocus connections suggests that natural variation in specific signaling or response networks may control A. thaliana-B. cinerea interaction in this population.  相似文献   

14.
Autophagy is a major intracellular process for the degradation of cytosolic macromolecules and organelles in the lysosomes or vacuoles for the purposes of regulating cellular homeostasis and protein and organelle quality control. In complex metazoan organisms, autophagy is highly engaged during the immune responses through interfaces either directly with intracellular pathogens or indirectly with immune signalling molecules. Studies over the last decade or so have also revealed a number of important ways in which autophagy shapes plant innate immune responses. First, autophagy promotes defence‐associated hypersensitive cell death induced by avirulent or related pathogens, but restricts unnecessary or disease‐associated spread of cell death. This elaborate regulation of plant host cell death by autophagy is critical during plant immune responses to the types of plant pathogens that induce cell death, which include avirulent biotrophic pathogens and necrotrophic pathogens. Second, autophagy modulates defence responses regulated by salicylic acid and jasmonic acid, thereby influencing plant basal resistance to both biotrophic and necrotrophic pathogens. Third, there is an emerging role of autophagy in virus‐induced RNA silencing, either as an antiviral collaborator for targeted degradation of viral RNA silencing suppressors or an accomplice of viral RNA silencing suppressors for targeted degradation of key components of plant cellular RNA silencing machinery. In this review, we summarize this important progress and discuss the potential significance of the perplexing role of autophagy in plant innate immunity.  相似文献   

15.
Plants often respond to attack by insect herbivores and necrotrophic pathogens with induction of jasmonate-dependent resistance traits, but respond to attack by biotrophic pathogens with induction of salicylate-dependent resistance traits. To assess the degree to which the jasmonate- and salicylate-dependent pathways interact, we compared pathogenesis-related protein activity and bacterial performance in four mutant Arabidopsis thaliana lines relative to their wild-type backgrounds. We found that two salicylate-dependent pathway mutants (cep1, nim1-1) exhibited strong effects on the growth of the generalist biotrophic pathogen, Pseudomonas syringae pv. tomato, whereas two jasmonate-dependent pathway mutants (fad3-2fad7-2fad8, jar1-1) did not. Leaf peroxidase and exochitinase activity were negatively correlated with bacterial growth, whereas leaf polyphenol oxidase activity and trypsin inhibitor concentration were not. Interestingly, leaf total glucosinolate concentration was positively correlated with bacterial growth. In the same experiment, we also found that application of jasmonic acid generally increased leaf peroxidase activity and trypsin inhibitor concentration in the mutant lines. However, the cep1 mutant, shown previously to overexpress salicylic acid, exhibited no detectable biological or chemical responses to jasmonic acid, suggesting that high levels of salicylic acid may have inhibited a plant response. In a second experiment, we compared the effect of jasmonic acid and/or salicylic acid on two ecotypes of A. thaliana. Application of salicylic acid to the Wassilewskija ecotype decreased bacterial growth. However, this effect was not observed when both salicylic acid and jasmonic acid were applied, suggesting that jasmonic acid negated the beneficial effect of salicylic acid. Collectively, our results confirm that the salicylate-dependent pathway is more important than the jasmonate-dependent pathway in determining growth of P. syringae pv. tomato in A. thaliana, and suggest important negative interactions between these two major defensive pathways in the Wassilewskija ecotype. In contrast, the Columbia ecotype exhibited little evidence of negative interactions between the two pathways, suggesting intraspecific variability in how these pathways interact in A. thaliana.  相似文献   

16.
17.
Mooney KA  Pratt RT  Singer MS 《PloS one》2012,7(4):e34403
Several influential hypotheses in plant-herbivore and herbivore-predator interactions consider the interactive effects of plant quality, herbivore diet breadth, and predation on herbivore performance. Yet individually and collectively, these hypotheses fail to address the simultaneous influence of all three factors. Here we review existing hypotheses, and propose the tri-trophic interactions (TTI) hypothesis to consolidate and integrate their predictions. The TTI hypothesis predicts that dietary specialist herbivores (as compared to generalists) should escape predators and be competitively dominant due to faster growth rates, and that such differences should be greater on low quality (as compared to high quality) host plants. To provide a preliminary test of these predictions, we conducted an empirical study comparing the effects of plant (Baccharis salicifolia) quality and predators between a specialist (Uroleucon macolai) and a generalist (Aphis gossypii) aphid herbivore. Consistent with predictions, these three factors interactively determine herbivore performance in ways not addressed by existing hypotheses. Compared to the specialist, the generalist was less fecund, competitively inferior, and more sensitive to low plant quality. Correspondingly, predator effects were contingent upon plant quality only for the generalist. Contrary to predictions, predator effects were weaker for the generalist and on low-quality plants, likely due to density-dependent benefits provided to the generalist by mutualist ants. Because the TTI hypothesis predicts the superior performance of specialists, mutualist ants may be critical to A. gossypii persistence under competition from U. macolai. In summary, the integrative nature of the TTI hypothesis offers novel insight into the determinants of plant-herbivore and herbivore-predator interactions and the coexistence of specialist and generalist herbivores.  相似文献   

18.
19.
Induced plant responses to herbivory appear to be universal, yet the degree to which they are specific to sets of herbivores is poorly understood. The generalist/specialist hypothesis predicts that generalist herbivores are more often negatively affected by host plant defenses, wheras specialists may be either unaffected by or attracted to these same "plant defenses". Therefore, specialists should be less predictable than generalists in their responses to induced plant resistance traits. To better understand the variation in plant responses to herbivore attack, and the impacts these responses have on specialist herbivores, we conducted a series of experiments examining pairwise interactinos between two specialaist herbivores of the common milkweed ( Asclepias syriaca ). We damaged plants mechnically, with swamp milkweed beetles ( Labidomera clivicollis ), or with monarchs ( Danaus plexippus ), and then asessed specificity of elicitation, both by measuring a putative defensive trait (latex volume) and by challenging plants with insects of both species in bioasays. Latex production increased by 34% and 13% following beetle and monarch herbivory, respectively, but only beetles significantly elevated latex production compared to undamaged controls. While beetle growth was negatively affected by latex across all experiments, beetles were not affected by previous damage caused by conspecifies or by monarchs. In contrast, monarchs feeding on previously damaged plants were 20% smaller, and their response was the same on plants damaged mechnically or by either herbivore. Therefore, these specialist herbivores exhibit both specificity of elicitation in plant responses and specificity of effects in response to prior damage.  相似文献   

20.
Summary Two species of lepidopteran herbivores, Manduca sexta (Sphingidae) and Trichoplusia ni (Noctuidae), were reared on synthetic diet containing either the alkaloid nicotine or the flavonoid rutin. Survival and pupal weight of the specialist M. sexta did not differ when larvae were reared on diet containing nicotine or rutin. In contrast, the generalist T. ni did not survive on diet containing 0.125% nicotine or greater, whereas larvae survived on all concentrations of rutin. These data demonstrate that the alkaloid nicotine is inhibitory toward generalist, but not specialist herbivores, whereas the flavonoid rutin has no effect on specialist herbivores and limited effects on generalist herbivores. Five species of Pseudomonas bacterial pathogens: P. syringae, P. syringae pv. angulata, P. syringae pv. tabaci, P. fluorescens, and P. solanacearum were grown on nutrient agar containing nicotine or rutin at concentrations ranging from 0.0 to 1.0% wet weight in 0.1% intervals. No species of Pseudomonas grew at concentrations greater than 0.5% nicotine when 106 colony forming units (cfu) were used, but growth occurred at all concentrations of rutin when 102 cfu were used. These data indicate that nicotine was inhibitory to growth of both herbivores and pathogens, suggesting that certain plant secondary chemicals with high toxicity are of a generalized nature and affect multiple species. Differences in the sensitivity of organisms to allelochemicals such as generalist or specialist can make it appear that specific allelochemicals affect specific organisms, when in fact it is the tolerance of the organism to the plant chemical that is responsible. In four separate studies, the growth of M. sexta, T. ni and Helicoverpa zea was significantly lower on plants inoculated with P. solanacearum. Alteration in leaf quality by P. solanacearum was due to either reductions in leaf nutrients or increases in allelochemicals. We speculate that localized or systemic induction by both herbivores and pathogens can cause changes in leaf quality, effecting each other's subsequent colonization. The generalized nature of plant secondary compounds and potential reciprocal effects on induction by both species suggests that herbivores and pathogens may affect plant quality through induction and diffuse interactions of disparate species can alter the community of organisms colonizing a plant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号