首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Clustal W—蛋白质与核酸序列分析软件   总被引:2,自引:1,他引:2  
蛋白质与核酸的序列分析在现代生物学和生物信息学中发挥着重要作用,新的算法和软件层出不穷,本文介绍一个可运行在PC机上的完全免费的多序列比较软件-ClustalW,它不但可以进行蛋白质与核酸的多序列比较,分析不同序列之间的相似性关系,还可以绘制进化树。由于其灵活的输入输出格式、方便的参数设定和选择、详尽的在线帮助以及良好的可移植性,使得ClustalW在蛋白质与核酸的序列分析中得到了广泛应用。  相似文献   

2.
The PRINTS database: a resource for identification of protein families   总被引:4,自引:0,他引:4  
The PRINTS database houses a collection of protein fingerprints, which may be used to assign family and functional attributes to uncharacterised sequences, such as those currently emanating from the various genome-sequencing projects. The April 2002 release includes 1,700 family fingerprints, encoding approximately 10,500 motifs, covering a range of globular and membrane proteins, modular polypeptides and so on. Fingerprints are groups of conserved motifs that, taken together, provide diagnostic protein family signatures. They derive much of their potency from the biological context afforded by matching motif neighbours; this makes them at once more flexible and powerful than single-motif approaches. The technique further departs from other pattern-matching methods by readily allowing the creation of fingerprints at superfamily-, family- and subfamily-specific levels, thereby allowing more fine-grained diagnoses. Here, we provide an overview of the method of protein fingerprinting and how the results of fingerprint analyses are used to build PRINTS and its relational cousin, PRINTS-S.  相似文献   

3.
The most popular algorithms employed in the pairwise alignment of protein primary structures (Smith-Watermann (SW) algorithm, FASTA, BLAST, etc.) only analyze the amino acid sequence. The SW algorithm is the most accurate, yielding alignments that agree best with superimpositions of the corresponding spatial structures of proteins. However, even the SW algorithm fails to reproduce the spatial structure alignment when the sequence identity is lower than 30%. The objective of this work was to develop a new and more accurate algorithm taking the secondary structure of proteins into account. The alignments generated by this algorithm and having the maximal weight with the secondary structure considered proved to be more accurate than SW alignments. With sequences having less than 30% identity, the accuracy (i.e., the portion of reproduced positions of a reference alignment obtained by superimposing the protein spatial structures) of the new algorithm is 58 vs. 35% of the SW algorithm. The accuracy of the new algorithm is much the same with secondary structures established experimentally or predicted theoretically. Hence, the algorithm is applicable to proteins with unknown spatial structures. The program is available at ftp://194.149.64.196/STRUSWER/.  相似文献   

4.
Using a data set of aligned protein domain superfamilies of known three-dimensional structure, we compared the location of interdomain interfaces on the tertiary folds between members of distantly related protein domain superfamilies. The data set analyzed is comprised of interdomain interfaces, with domains occurring within a polypeptide chain and those between two polypeptide chains. We observe that, in general, the interfaces between protein domains are formed entirely in different locations on the tertiary folds in such pairs. This variation in the location of interface happens in protein domains involved in a wide range of functions, such as enzymes, adapters, and domains that bind protein ligands, or cofactors. While basic biochemical functionality is preserved at the domain superfamily level, the effect of biochemical function on protein assemblies is different in these protein domains related by superfamily. The divergence between proteins, in most cases, is coupled with domain recruitment, with different modes of interaction with the recruited domain. This is in complete contrast to the observation that in closely related homologous protein domains, almost always the interaction interfaces are topologically equivalent. In a small subset of interacting domains within proteins related by remote homology, we observe that the relative positioning of domains with respect to one another is preserved. Based on the analysis of multidomain proteins of known or unknown structure, we suggest that variation in protein-protein interactions in members within a superfamily could serve as diverging points in otherwise parallel metabolic or signaling pathways. We discuss a few representative cases of diverging pathways involving domains in a superfamily.  相似文献   

5.
R B Russell  G J Barton 《Proteins》1992,14(2):309-323
An algorithm is presented for the accurate and rapid generation of multiple protein sequence alignments from tertiary structure comparisons. A preliminary multiple sequence alignment is performed using sequence information, which then determines an initial superposition of the structures. A structure comparison algorithm is applied to all pairs of proteins in the superimposed set and a similarity tree calculated. Multiple sequence alignments are then generated by following the tree from the branches to the root. At each branchpoint of the tree, a structure-based sequence alignment and coordinate transformations are output, with the multiple alignment of all structures output at the root. The algorithm encoded in STAMP (STructural Alignment of Multiple Proteins) is shown to give alignments in good agreement with published structural accounts within the dehydrogenase fold domains, globins, and serine proteinases. In order to reduce the need for visual verification, two similarity indices are introduced to determine the quality of each generated structural alignment. Sc quantifies the global structural similarity between pairs or groups of proteins, whereas Pij' provides a normalized measure of the confidence in the alignment of each residue. STAMP alignments have the quality of each alignment characterized by Sc and Pij' values and thus provide a reproducible resource for studies of residue conservation within structural motifs.  相似文献   

6.
Structural alignments often reveal relationships between proteins that cannot be detected using sequence alignment alone. However, profile search methods based entirely on structural alignments alone have not been found to be effective in finding remote homologs. Here, we explore the role of structural information in remote homolog detection and sequence alignment. To this end, we develop a series of hybrid multidimensional alignment profiles that combine sequence, secondary and tertiary structure information into hybrid profiles. Sequence-based profiles are profiles whose position-specific scoring matrix is derived from sequence alignment alone; structure-based profiles are those derived from multiple structure alignments. We compare pure sequence-based profiles to pure structure-based profiles, as well as to hybrid profiles that use combined sequence-and-structure-based profiles, where sequence-based profiles are used in loop/motif regions and structural information is used in core structural regions. All of the hybrid methods offer significant improvement over simple profile-to-profile alignment. We demonstrate that both sequence-based and structure-based profiles contribute to remote homology detection and alignment accuracy, and that each contains some unique information. We discuss the implications of these results for further improvements in amino acid sequence and structural analysis.  相似文献   

7.
Cozzetto D  Tramontano A 《Proteins》2005,58(1):151-157
Comparative modeling is the method of choice, whenever applicable, for protein structure prediction, not only because of its higher accuracy compared to alternative methods, but also because it is possible to estimate a priori the quality of the models that it can produce, thereby allowing the usefulness of a model for a given application to be assessed beforehand. By and large, the quality of a comparative model depends on two factors: the extent of structural divergence between the target and the template and the quality of the sequence alignment between the two protein sequences. The latter is usually derived from a multiple sequence alignment (MSA) of as many proteins of the family as possible, and its accuracy depends on the number and similarity distribution of the sequences of the protein family. Here we describe a method to evaluate the expected difficulty, and by extension accuracy, of a comparative model on the basis of the MSA used to build it. The parameter that we derive is used to compare the results obtained in the last two editions of the Critical Assessment of Methods for Structure Prediction (CASP) experiment as a function of the difficulty of the modeling exercise. Our analysis demonstrates that the improvement in the scope and quality of comparative models between the two experiments is largely due to the increased number of available protein sequences and to the consequent increased chance that a large and appropriately spaced set of protein sequences homologous to the proteins of interest is available.  相似文献   

8.
This study shows that a combination of sequence homology and structural information can be used to increase the stability of the WW domain by 2.5 kcal mol(-1) and increase the T(m) by 28 degrees C. Previous homology-based protein design efforts typically investigate positions with low sequence identity, whereas this study focuses on semi-conserved core residues and proximal residues, exploring their role(s) in mediating stabilizing interactions on the basis of structural considerations. The A20R and L30Y mutations allow increased hydrophobic interactions because of complimentary surfaces and an electrostatic interaction with a third residue adjacent to the ligand-binding hydrophobic cluster, increasing stability significantly beyond what additivity would predict for the single mutations. The D34T mutation situated in a pi-turn possibly disengages Asn31, allowing it to make up to three hydrogen bonds with the backbone in strand 1 and loop 2. The synergistic mutations A20R/L30Y in combination with the remotely located mutation D34T add together to create a hYap WW domain that is significantly more stable than any of the protein structures on which the design was based (Pin and FBP28 WW domains).  相似文献   

9.
SNUFER is a software for the automatic localization and generation of tables used for the presentation of single nucleotide polymorphisms (SNPs). After input of a fasta file containing the sequences to be analyzed, a multiple sequence alignment is generated using ClustalW ran inside SNUFER. The ClustalW output file is then used to generate a table which displays the SNPs detected in the aligned sequences and their degree of similarity. This table can be exported to Microsoft Word, Microsoft Excel or as a single text file, permitting further editing for publication. The software was written using Delphi 7 for programming and FireBird 2.0 for sequence database management. It is freely available for noncommercial use and can be downloaded from http://www.heranza.com.br/bioinformatica2.htm.  相似文献   

10.
Covariation between positions in a multiple sequence alignment may reflect structural, functional, and/or phylogenetic constraints and can be analyzed by a wide variety of methods. We explored several of these methods for their ability to identify covarying positions related to the divergence of a protein family at different hierarchical levels. Specifically, we compared seven methods on a model system composed of three nested sets of G‐protein‐coupled receptors (GPCRs) in which a divergence event occurred. The covariation methods analyzed were based on: χ2 test, mutual information, substitution matrices, and perturbation methods. We first analyzed the dependence of the covariation scores on residue conservation (measured by sequence entropy), and then we analyzed the networking structure of the top pairs. Two methods out of seven—OMES (Observed minus Expected Squared) and ELSC (Explicit Likelihood of Subset Covariation)—favored pairs with intermediate entropy and a networking structure with a central residue involved in several high‐scoring pairs. This networking structure was observed for the three sequence sets. In each case, the central residue corresponded to a residue known to be crucial for the evolution of the GPCR family and the subfamily specificity. These central residues can be viewed as evolutionary hubs, in relation with an epistasis‐based mechanism of functional divergence within a protein family. Proteins 2014; 82:2141–2156. © 2014 Wiley Periodicals, Inc.  相似文献   

11.
PAS domains are widespread in archaea, bacteria, and eukaryota, and play important roles in various functions. In this study, we aim to explore functional evolutionary relationship among proteins in the PAS domain superfamily in view of the sequence‐structure‐dynamics‐function relationship. We collected protein sequences and crystal structure data from RCSB Protein Data Bank of the PAS domain superfamily belonging to three biological functions (nucleotide binding, photoreceptor activity, and transferase activity). Protein sequences were aligned and then used to select sequence‐conserved residues and build phylogenetic tree. Three‐dimensional structure alignment was also applied to obtain structure‐conserved residues. The protein dynamics were analyzed using elastic network model (ENM) and validated by molecular dynamics (MD) simulation. The result showed that the proteins with same function could be grouped by sequence similarity, and proteins in different functional groups displayed statistically significant difference in their vibrational patterns. Interestingly, in all three functional groups, conserved amino acid residues identified by sequence and structure conservation analysis generally have a lower fluctuation than other residues. In addition, the fluctuation of conserved residues in each biological function group was strongly correlated with the corresponding biological function. This research suggested a direct connection in which the protein sequences were related to various functions through structural dynamics. This is a new attempt to delineate functional evolution of proteins using the integrated information of sequence, structure, and dynamics.  相似文献   

12.
Rai BK  Fiser A 《Proteins》2006,63(3):644-661
A major bottleneck in comparative protein structure modeling is the quality of input alignment between the target sequence and the template structure. A number of alignment methods are available, but none of these techniques produce consistently good solutions for all cases. Alignments produced by alternative methods may be superior in certain segments but inferior in others when compared to each other; therefore, an accurate solution often requires an optimal combination of them. To address this problem, we have developed a new approach, Multiple Mapping Method (MMM). The algorithm first identifies the alternatively aligned regions from a set of input alignments. These alternatively aligned segments are scored using a composite scoring function, which determines their fitness within the structural environment of the template. The best scoring regions from a set of alternative segments are combined with the core part of the alignments to produce the final MMM alignment. The algorithm was tested on a dataset of 1400 protein pairs using 11 combinations of two to four alignment methods. In all cases MMM showed statistically significant improvement by reducing alignment errors in the range of 3 to 17%. MMM also compared favorably over two alignment meta-servers. The algorithm is computationally efficient; therefore, it is a suitable tool for genome scale modeling studies.  相似文献   

13.
In this work we examine how protein structural changes are coupled with sequence variation in the course of evolution of a family of homologs. The sequence-structure correlation analysis performed on 81 homologous protein families shows that the majority of them exhibit statistically significant linear correlation between the measures of sequence and structural similarity. We observed, however, that there are cases where structural variability cannot be mainly explained by sequence variation, such as protein families with a number of disulfide bonds. To understand whether structures from different families and/or folds evolve in the same manner, we compared the degrees of structural change per unit of sequence change ("the evolutionary plasticity of structure") between those families with a significant linear correlation. Using rigorous statistical procedures we find that, with a few exceptions, evolutionary plasticity does not show a statistically significant difference between protein families. Similar sequence-structure analysis performed for protein loop regions shows that evolutionary plasticity of loop regions is greater than for the protein core.  相似文献   

14.
15.
The availability of large expressed sequence tag (EST) databases has led to a revolution in the way new genes are identified. Mining of these databases using known protein sequences as queries is a powerful technique for discovering orthologous and paralogous genes. The scientist is often confronted, however, by an enormous amount of search output owing to the inherent redundancy of EST data. In addition, high search sensitivity often cannot be achieved using only a single member of a protein superfamily as a query. In this paper a technique for addressing both of these issues is described. Assembled EST databases are queried with every member of a protein superfamily, the results are integrated and false positives are pruned from the set. The result is a set of assemblies enriched in members of the protein superfamily under consideration. The technique is applied to the G protein-coupled receptor (GPCR) superfamily in the construction of a GPCR Resource. A novel full-length human GPCR identified from the GPCR Resource is presented, illustrating the utility of the method.  相似文献   

16.
The SH3 domain, comprised of approximately 60 residues, is found within a wide variety of proteins, and is a mediator of protein-protein interactions. Due to the large number of SH3 domain sequences and structures in the databases, this domain provides one of the best available systems for the examination of sequence and structural conservation within a protein family. In this study, a large and diverse alignment of SH3 domain sequences was constructed, and the pattern of conservation within this alignment was compared to conserved structural features, as deduced from analysis of eighteen different SH3 domain structures. Seventeen SH3 domain structures solved in the presence of bound peptide were also examined to identify positions that are consistently most important in mediating the peptide-binding function of this domain. Although residues at the two most conserved positions in the alignment are directly involved in peptide binding, residues at most other conserved positions play structural roles, such as stabilizing turns or comprising the hydrophobic core. Surprisingly, several highly conserved side-chain to main-chain hydrogen bonds were observed in the functionally crucial RT-Src loop between residues with little direct involvement in peptide binding. These hydrogen bonds may be important for maintaining this region in the precise conformation necessary for specific peptide recognition. In addition, a previously unrecognized yet highly conserved beta-bulge was identified in the second beta-strand of the domain, which appears to provide a necessary kink in this strand, allowing it to hydrogen bond to both sheets comprising the fold.  相似文献   

17.
To improve secondary structure predictions in protein sequences, the information residing in multiple sequence alignments of substituted but structurally related proteins is exploited. A database comprised of 70 protein families and a total of 2,500 sequences, some of which were aligned by tertiary structural superpositions, was used to calculate residue exchange weight matrices within alpha-helical, beta-strand, and coil substructures, respectively. Secondary structure predictions were made based on the observed residue substitutions in local regions of the multiple alignments and the largest possible associated exchange weights in each of the three matrix types. Comparison of the observed and predicted secondary structure on a per-residue basis yielded a mean accuracy of 72.2%. Individual alpha-helix, beta-strand, and coil states were respectively predicted at 66.7, and 75.8% correctness, representing a well-balanced three-state prediction. The accuracy level, verified by cross-validation through jack-knife tests on all protein families, dropped, on average, to only 70.9%, indicating the rigor of the prediction procedure. On the basis of robustness, conceptual clarity, accuracy, and executable efficiency, the method has considerable advantage, especially with its sole reliance on amino acid substitutions within structurally related proteins.  相似文献   

18.
Das R  Gerstein M 《Proteins》2004,55(2):455-463
We have introduced a method to identify functional shifts in protein families. Our method is based on the calculation of an active-site conservation ratio, which we call the "ASC ratio." For a structurally based alignment of a protein family, this ratio is the average sequence similarity of the active-site region compared to the full-length protein. The active-site region is defined as all the residues within a certain radius of the known functionally important groups. Using our method, we have analyzed enzymes of central metabolism from a large number of genomes (35). We found that for most of the enzymes, the active-site region is more highly conserved than the full-length sequence. However, for three tricarboxylic acid (TCA)-cycle enzymes, active-site sequences are considerably more diverged (than full-length ones). In particular, we were able to identify in six pathogens a novel isocitrate dehydrogenase that has very low sequence similarity around the active site. Detailed sequence-structure analysis indicates that while the active-site structure of isocitrate dehydrogenase is most likely similar between pathogens and nonpathogens, the unusual sequence divergence could result from an extra domain added at the N-terminus. This domain has a leucine-rich motif similar one in the Yersinia pestis cytotoxin and may therefore confer additional pathogenic functions.  相似文献   

19.
In a previous paper we obtained ten (orthogonal) factors, linear combinations of which can express the properties of the 20 naturally occurring amino acids. In this paper, we assume that the most important properties (linear combinations of these ten factors) that determine the three-dimensional structure of a protein are conserved properties, i.e., are those that have been conserved during evolution. Two definitions of a conserved property are presented: (1) a conserved property for an average protein is defined as that linear combination of the ten factors that optimally expresses the similarity of one amino acid to another (hence, little change during evolution), as given by the relatedness odds matrix of Dayhoff et al.; (2) a conserved property for each position in the amino acid sequence (locus) of a specific family of homologous proteins (the cytochromec family or the globin family) is defined as that linear combination of the ten factors that is common among a set of amino acids at a given locus when the sequences are properly aligned. When the specificity at each locus is averaged over all loci, the same features are observed for three expressions of these two definitions, namely the conserved property for an average protein, the average conserved property for the cytochromec family, and the average conserved property for the globin family; we find that bulk and hydrophobicity (information about packing and long-range interactions) are more important than other properties, such as the preference for adopting a specific backbone structure (information about short-range interactions). We also demonstrate that the sequence profile of a conserved property, defined for each locus of a protein family (definition 2), corresponds uniquely to the three-dimensional structure, while the conserved property for an average protein (definition 1) is not useful for the prediction of protein structure. The amino acid sequences of numerous proteins are searched to find those that are similar, in terms of the conserved properties (definition 2), to sequences of the same size from one of the homologous families (cytochromec and globin, respectively) for whose loci the conserved properties were defined. Many similar sequences are found, the number of similarities decreasing with increasing size of the segment. However, the segments must be rather long (15 residues) before the comparisons become meaningful. As an example, one sufficiently large sequence (20 residues) from a protein of known structure (apo-liver alcohol dehydrogenase that is not a member of either family) is found to be similar in the conserved properties to a particular sequence of a member of the family of human hemoglobin chains, and the two sequences have similar structures. This means that, since conserved properties are expected to be structure determinants, we can use the conserved properties to predict an initial protein structure for subsequent energy minimization for a protein for which the conserved properties are similar to those of a family of proteins with a sufficiently large number of homologous amino acid sequences; such a large number of homologous sequences is required to define a conserved property for each locus of the homologous protein family.  相似文献   

20.
Circulatory lipid transport in animals is mediated to a substantial extent by members of the large lipid transfer (LLT) protein (LLTP) superfamily. These proteins, including apolipoprotein B (apoB), bind lipids and constitute the structural basis for the assembly of lipoproteins. The current analyses of sequence data indicate that LLTPs are unique to animals and that these lipid binding proteins evolved in the earliest multicellular animals. In addition, two novel LLTPs were recognized in insects. Structural and phylogenetic analyses reveal three major families of LLTPs: the apoB-like LLTPs, the vitellogenin-like LLTPs, and the microsomal triglyceride transfer protein (MTP)-like LLTPs, or MTPs. The latter are ubiquitous, whereas the two other families are distributed differentially between animal groups. Besides similarities, remarkable variations are also found among LLTPs in their major lipid-binding sites (i.e., the LLT module as well as the predicted clusters of amphipathic secondary structure): variations such as protein modification and number, size, or occurrence of the clusters. Strikingly, comparative research has also highlighted a multitude of functions for LLTPs in addition to circulatory lipid transport. The integration of LLTP structure, function, and evolution reveals multiple adaptations, which have come about in part upon neofunctionalization of duplicated genes. Moreover, the change, exchange, and expansion of functions illustrate the opportune application of lipid-binding proteins in nature. Accordingly, comparative research exposes the structural and functional adaptations in animal lipid carriers and brings up novel possibilities for the manipulation of lipid transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号