首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The experiments presented here were designed to examine the contribution of p125 focal adhesion kinase (p125FAK) tyrosine phosphorylation to the activation of the mitogen-activated protein kinase cascade induced by bombesin, lysophosphatidic acid (LPA), and platelet-derived growth factor (PDGF) in Swiss 3T3 cells. We found that tyrosine phosphorylation of p125FAK in response to these growth factors is completely abolished in cells treated with cytochalasin D or in cells that were suspended in serum-free medium for 30 min. In marked contrast, the activation of p42mapk by these factors was independent of the integrity of the actin cytoskeleton and of the interaction of the cells with the extracellular matrix. The protein kinase C inhibitor GF 109203X and down-regulation of protein kinase C by prolonged pretreatment of cells with phorbol esters blocked bombesin-stimulated activation of p42mapk, p90rsk, and MAPK kinase-1 but did not prevent bombesin-induced tyrosine phosphorylation of p125FAK. Furthermore, LPA-induced p42mapk activation involved a pertussis toxin-sensitive guanylate nucleotide-binding protein, whereas tyrosine phosphorylation of p125FAK in response to LPA was not prevented by pretreatment with pertussis toxin. Finally, PDGF induced maximum p42mapk activation at concentrations (30 ng/ml) that failed to induce tyrosine phosphorylation of p125FAK. Thus, our results demonstrate that p42mapk activation in response to bombesin, LPA, and PDGF can be dissociated from p125FAK tyrosine phosphorylation in Swiss 3T3 cells.  相似文献   

2.
We investigatedthe role of the integrin-associated proteins focal adhesion kinase(FAK) and paxillin as mediators of mechanosensitive signal transductionin tracheal smooth muscle. In muscle strips contracted isometricallywith ACh, we observed higher levels of tyrosine phosphorylation of FAKand paxillin at the optimal muscle length(Lo) than atshorter muscle lengths of 0.5 or 0.75 Lo. Paxillinphosphorylation was also length sensitive in muscles activated byK+ depolarization and adjustedrapidly to changes in muscle length imposed after contractileactivation by either ACh or K+depolarization. Ca2+ depletion didnot affect the length sensitivity of paxillin and FAK phosphorylationin muscles activated with ACh, indicating that the mechanotransductionprocess can be mediated by aCa2+-independent pathway. SinceCa2+-depleted muscles do notgenerate significant active tension, this suggests that themechanotransduction mechanism is sensitive to muscle length rather thantension. We conclude that FAK and paxillin participate in anintegrin-mediated mechanotransduction process in tracheal smoothmuscle. We propose that this pathway may initiate alterations in smoothmuscle cell structure and contractility via the remodeling of actinfilaments and/or via the mechanosensitive regulation ofsignaling molecules involved in contractile protein activation.

  相似文献   

3.
A rapid increase in tyrosine phosphorylation of focal adhesion kinase (FAK), paxillin, and Crk-associated substrate (CAS) are prominent early events triggered by many G protein-coupled receptors (GPCRs), but the mechanisms involved remain unclear. Here, we examined whether the Rho-associated protein serine/threonine kinase family (ROCK) is a critical Rho effector in the pathway that links GPCR activation to the tyrosine phosphorylation of FAK, CAS, and paxillin. Treatment of Swiss 3T3 cells with Y-27632, a preferential inhibitor of ROCK, dramatically inhibited the formation of actin stress fibers, the assembly of focal contacts, and the increase in tyrosine phosphorylation of FAK and paxillin induced by bombesin in these cells. Surprisingly, we found that treatment with Y-27632 did not produce any detectable effect on bombesin-elicited CAS tyrosine phosphorylation even at the highest concentrations of Y-27632 tested. HA-1077, a preferential inhibitor of ROCK activity structurally unrelated to Y-27632, also attenuated the increase in the tyrosine phosphorylation of FAK and paxillin but did not affect the tyrosine phosphorylation of CAS induced by bombesin in Swiss 3T3 cells. The results demonstrate that ROCK-dependent tyrosine phosphorylation of FAK and paxillin can be dissociated from a ROCK-independent pathway leading to tyrosine phosphorylation of CAS.  相似文献   

4.
Epidermal growth factor (EGF) induces transformed phenotypes in EGF receptor-overexpressing NIH3T3 (ER12) cells. Tyrosine kinase inhibitors such as erbstatin and its stable analogue methyl 2,5-dihydroxycinnamate inhibited the EGF-induced phenotypic changes in these cells; while 5'-O-methylerbstatin, an inactive analogue, did not. Methyl 2,5-dihydroxycinnamate inhibited intracellular tyrosine kinase activity in EGF-treated ER12 cells. Methyl 2,5-dihydroxycinnamate also delayed the EGF-induced DNA synthesis from the quiescent phase ER12 cells without showing irreversible cytotoxicity. It inhibited the DNA synthesis most efficiently at the early G1 phase. Thus, tyrosine kinase inhibitors may modify malignant phenotypes in EGF receptor-overexpressing neoplasms.  相似文献   

5.
Incubation of Swiss mouse 3T3 cells at 37 degrees C with bovine brain-derived growth factor (BDGF) decrease the cell surface 125I-EGF binding activity of these cells by 70-80%. This down-modulation of the EGF receptor by BDGF was time, temperature, and dose dependent. Scatchard plot analysis indicated that BDGF binding led to a selective decrease in the number of high-affinity EGF receptors. The BDGF-induced down-modulation of the EGF receptor was completely blocked by protamine, a potent inhibitor of receptor binding and mitogenic activities of BDGF. BDGF down-modulated the EGF receptor in phorbol myristic acetate (PMA)-pretreated cells, as well as in control cells. Furthermore, PMA-pretreated cells responded mitogenically to BDGF, whereas PMA itself failed to stimulate the mitogenic response of PMA-pretreated cells. This BDGF-induced down-modulation of the EGF receptor in PMA-desensitized cells suggests that BDGF down-regulates the EGF receptor by a mechanism distinct from that of PMA. Incubation of cells with compounds which are known to inhibit pinocytosis blocked the down-modulation induced either by BDGF or by platelet-derived growth factor (PDGF) but had no effect on the PMA-induced down-modulation. Incubation of cells with inhibitors of receptor recycling enhanced the BDGF-induced down-modulation of the EGF receptor. These results suggest that BDGF and PDGF induce down-modulation of the EGF receptor by increasing the internalization of cell surface high-affinity receptors and that the internalization process may not be required for down-modulation induced by PMA.  相似文献   

6.
A rapid increase in the tyrosine phosphorylation of focal adhesion kinase (FAK) has been extensively documented in cells stimulated by multiple signaling molecules, but virtually nothing is known about the regulation of FAK phosphorylation at serine residues. Stimulation of Swiss 3T3 cells with bombesin promoted a striking increase ( approximately 13-fold) in the phosphorylation of FAK at Ser-910, as revealed by site-specific antibodies that recognized the phosphorylated state of this residue. Lysophosphatidic acid and epidermal growth factor (EGF) also stimulated FAK phosphorylation at Ser-910. Direct activation of protein kinase C isoforms with phorbol-12,13-dibutyrate (PDB) also promoted striking phosphorylation of FAK at Ser-910. Treatment with the protein kinase C inhibitor GF I or Ro 31-8220 or chronic exposure to PDB prevented the increase in FAK phosphorylation at Ser-910 induced by bombesin or PDB but not by EGF. Treatment with the ERK inhibitors U0126 and PD98059 prevented FAK phosphorylation at Ser-910 in response to all of the stimuli tested. Furthermore, incubation of activated ERK2 with FAK immunocomplexes leads to FAK phosphorylation at Ser-910 in vitro. Our results demonstrate, for the first time, that stimulation with bombesin, lysophosphatidic acid, PDB, or EGF induces phosphorylation of endogenous FAK at Ser-910 via an ERK-dependent pathway in Swiss 3T3 cells.  相似文献   

7.
Platelet-derived growth factor (PDGF) stimulates the hydrolysis of phosphatidylinositol 4,5-bisphosphate (Ptd InsP2) via phospholipase C-γ1 (PLC-γ1) in Swiss 3T3 cells. Treatment of cells with the protein kinase C (PKC) inhibitor Ro-31-8220 greatly decreased PDGF-induced tyrosine phosphorylation of PLC-γ1, but paradoxically enhanced the production of inositol phosphates (InsPs). The inhibitor also caused an increase of PDGF receptor tyrosine phosphorylation at later times. The changes in phosphorylation of the receptor were correlated with alterations in PLC-γ1 translocation to the particulate fraction. Thus, although activation of PLC-γ1 was associated with phosphorylation of the receptor and translocation of the enzyme to the particulate fraction, it was dissociated from its tyrosine phosphorylation. A non-receptor-associated, cytosolic tyrosine kinase also was found to phosphorylate PLC-γ1 in a PDGF-dependent manner, but was not inhibited by Ro-31-8220 in vitro. PKC depletion by phorbol ester treatment decreased the tyrosine phosphorylation of PLC-γ1 induced by PDGF and slowed the translocation of PLC-γ1, but Ro-31-8220 produced further effects. The effect of Ro-31-8220 to enhance the production of InsPs could not be attributed to inhibition of PKC since InsPs production with PDGF was decreased in PKC-depleted cells and a stimulatory effect of the inhibitor was still evident. Interestingly, Ro-31-8220 decreased the radioactivity in phosphatidylinositol and increased that in phosphatidylinositol 4-phosphate and PtdInsP2 in cells labeled with myo[3H]inositol. The increased synthesis of PtdInsP2 could contribute to the increased production of InsPs induced by Ro-31-8220. In summary, these results support the conclusion that the activation of PLC-γ1 in response to PDGF requires autophosphorylation of the receptor and membrane association of PLC-γ1, but not phosphorylation of the enzyme. Furthermore, the effects of Ro-31-8220 on the tyrosine phosphorylation and activity of PLC-γ1, and on PtdInsP2 synthesis cannot be attributed to inhibition of PKC. © 1997 Elsevier Science B.V. All rights reserved.  相似文献   

8.
Certain types of cells show a dramatic change in cell morphology cultured in the presence of transforming growth factor beta (TGF-beta). To identify cellular components or factors leading to morphological changes, we investigated if any members of cytoskeletal proteins and cell-adhesion molecules were redistributed in TGF-beta-treated Swiss 3T3 fibroblasts by indirect immunofluorescence and Western-blot analysis. Changes in cell morphology became apparent within 12 h of the addition of TGF-beta and new RNA and protein synthesis was necessitated by the changes. While TGF-beta induced reorganization of microfilaments as reported in earlier studies, one of the actin isoforms, alpha actin of smooth muscle, was induced to form stress fibers in Swiss 3T3 cells. It was observed that myosin light chain was relocated from cell periphery to cytoplasmic filamentous structures by TGF-beta treatment, with an increased amount. In addition, the cell-shape change was accompanied by an increase in the level of vinculin and tyrosine phosphorylation at focal adhesions. These results suggest that new protein synthesis is required for the cell-shape change, and acto-myosin filaments and focal adhesion proteins are involved in the alteration of cell morphology induced by TGF-beta in Swiss 3T3 fibroblasts.  相似文献   

9.
Focal adhesion kinase (FAK) and paxillin are focal adhesion-associated, phosphotyrosine-containing proteins that physically interact. A previous study has demonstrated that paxillin contains two binding sites for FAK. We have further characterized these two binding sites and have demonstrated that the binding affinity of the carboxyl-terminal domain of FAK is the same for each of the two binding sites. The presence of both binding sites increases the affinity for FAK by 5-10-fold. A conserved paxillin sequence called the LD motif has been implicated in FAK binding. We show that mutations in the LD motifs in both FAK-binding sites are required to dramatically impair FAK binding in vitro. A paxillin mutant containing point mutations in both FAK-binding sites was characterized. The mutant exhibited reduced levels of phosphotyrosine relative to wild type paxillin in subconfluent cells growing in culture, following cell adhesion to fibronectin and in src-transformed fibroblasts. These results suggest that paxillin must bind FAK for maximal phosphorylation in response to cell adhesion and that FAK may function to direct tyrosine phosphorylation of paxillin in the process of transformation by the src oncogene.  相似文献   

10.
Reactive oxygen species (ROS), particularly hydroxyl radical (HO), increase neutrophil adherence to hypoxanthine-xanthine oxidase (HX-XO)-treated human umbilical vein endothelial cells (HUVEC) in culture. This adherence is inhibited by the tyrosine kinase inhibitors genistein (30 μM) and herbimycin A (0.9 μM), suggesting the involvement of tyrosine kinase. Phosphorylation of several HUVEC proteins in the range of 120–130 and 70 kDa was found to depend on the XO concentration and stimulation time. This phosphorylation was inhibited by the antioxidants dimethylthiourea (DMTU, 0.75 to 7.5 mM) and pentoxifylline (Ptx, 0.1 mM), and by the iron chelators desferrioxamine (DF, 1 mM) and hydroxybenzyl ethylene diamine (HBED, 0.5 mM), suggesting the involvement of HO. Three tyrosine-phosphorylated proteins, focal adhesion kinase (p125FAK), paxillin (PAX) and p130cas were isolated and characterized by immunoprecipitation and western blotting. Antioxidants and iron chelators reduced their phosphorylation. HUVEC treated with ROS for 15 min showed actin stress fiber formation. Cytochalasin D (5 μM) inhibited tyrosine phosphorylation and PMN-HUVEC adherence, showing the importance of cytoskeleton integrity in these two functions. In conclusion, HO, which is involved in increased PMN-HUVEC adhesion, also increases tyrosine phosphorylation on three major cytoskeleton proteins which seem to play a role in this adhesion.  相似文献   

11.
12.
Glomerular permeability for macromolecules depends partially on proper attachment of the glomerular epithelial cells (GEC) to the glomerular basement membrane (GBM). The latter requires integrity of the actin cytoskeleton, which in turn is regulated by specific actin-associated proteins. Since several glomerulopathies characterized by heavy proteinuria are associated with increased glomerular tumor necrosis factor alpha (TNF-alpha) expression, we studied the interaction of TNF-alpha with the actin cytoskeleton of cultured rat GEC. Incubation of GEC with 10 ng/ml TNF-alpha for variable time periods ranging from 15 min to 24 hr demonstrated a marked accentuation and redistribution of actin microfilaments, as shown by direct fluorescence analysis and confocal laser scanning microscopy. Quantitative biochemical determination of the G/total-actin ratio confirmed the above observations. Indeed, this ratio was significantly reduced, indicating substantial polymerization of G-actin and formation of F-actin. Concurrently, TNF-alpha rapidly induced tyrosine phosphorylation of both paxillin and focal adhesion kinase, without affecting the expression levels of these two proteins. In addition, tyrosine phosphorylation of vinculin became evident, indicating involvement of this focal adhesion marker in the observed actin reorganization. Inhibition of tyrosine phosphorylation by genistein prevented the reorganization of the actin cytoskeleton by TNF-alpha. We conclude that TNF-alpha induces substantial reorganization of actin cytoskeleton and focal adhesions. These effects occur simultaneously, with a prompt TNF-alpha-induced tyrosine phosphorylation of paxillin and focal adhesion kinase, indicating that these proteins, known to regulate actin polymerization and formation of focal adhesions, may be directly involved in the mechanism controlling the observed actin redistribution. These findings suggest that the observed TNF-alpha-actin cytoskeleton interactions may relate to the pathogenesis of glomerulopathies with heavy proteinuria, in which increased glomerular expression of TNF-alpha is associated with disturbances in the attachment of podocytes to the GBM.  相似文献   

13.
Stimulation of quiescent Swiss 3T3 cells with bombesin induces a rapid increase in the formation of complexes between focal adhesion kinase (FAK) and Src family members, which can be extracted with a buffer containing Triton, deoxycholate, and SDS but not with a buffer containing Triton alone. An increase in complex formation between FAK and Src in response to bombesin could be detected within 1 min, reached a maximum after 10 min, and declined toward base-line levels after 60 min of bombesin treatment. Bradykinin, endothelin, and lysophosphatidic acid also stimulated FAK-Src complex formation. Bombesin stimulated FAK/Src association through a Ca(2+) and phosphatidylinositol 3'-kinase-independent pathway that requires the integrity of the actin filament network and is partly dependent on functional protein kinase C. Treatment with the selective Src kinase inhibitor PP-2 inhibited both FAK activation and phosphorylation of FAK at Tyr(577) induced by bombesin in intact cells. Platelet-derived growth factor at low concentrations (1-10 ng/ml) also induced FAK-Src complex formation via a pathway that depended on the integrity of the actin cytoskeleton and phosphatidylinositol 3'-kinase. Thus, G protein-coupled receptor agonists and platelet-derived growth factor promote complex formation between endogenous FAK and Src in attached cells through different signal transduction pathways.  相似文献   

14.
An increase in the intracellular cAMP concentration induces tyrosine phosphorylation of the epidermal growth factor receptor (EGFR) followed by activation of extracellular signal-regulated kinases 1/2 (ERK1/2). In this report we demonstrate that these effects of cAMP are mediated via activation of protein kinase A (PKA). Chemical inhibition of PKA suppressed forskolin-induced EGFR tyrosine phosphorylation and ERK1/2 activation in PC12 cells. Furthermore, forskolin failed to induce significant tyrosine phosphorylation of the EGFR and ERK1/2 activation in PKA-defective PC12 cells. Forskolin-induced EGFR tyrosine phosphorylation was also observed in A431 cells and in membranes isolated from these cells. Phosphoamino acid analysis indicated that the recombinant catalytic subunit of PKA elicited phosphorylation of the EGFR on both tyrosine and serine but not threonine residues in A431 membranes. Together, our data indicate that activation of PKA mediates the effects of cAMP on the EGFR and ERK1/2. While PKA may directly phosphorylate the EGFR on serine residues, PKA-induced tyrosine phosphorylation of the EGFR occurs by an indirect mechanism.  相似文献   

15.
The experiments presented here were designed to examine the contribution of the extracellular signal-regulated mitogen-activated protein kinases (ERKs) to the tyrosine phosphorylation of the focal adhesion proteins p125(Fak), p130(Cas), and paxillin induced by G protein-coupled receptors (GPCRs) and tyrosine kinase receptors in Swiss 3T3 cells. Stimulation of these cells with bombesin, lysophosphatidic acid (LPA), endothelin, and platelet-derived growth factor (PDGF) led to a marked increase in the tyrosine phosphorylation of these focal adhesion proteins and in ERK activation. Exposure of the cells to two structurally unrelated mitogen-activated protein kinase or ERK kinase (MEK) inhibitors, PD98059 and U0126, completely abrogated ERK activation but did not prevent tyrosine phosphorylation of p125(Fak), p130(Cas), and paxillin. Furthermore, different dose-response relationships were obtained for tyrosine phosphorylation of focal adhesion proteins and for ERK activation in response to PDGF. Putative upstream events in the activation of focal adhesion proteins including actin cytoskeletal reorganization and myosin light chain (MLC) phosphorylation were also not prevented by inhibition of ERK activation. Thus, our results demonstrate that the activation of the ERK pathway is not necessary for the increase of the tyrosine phosphorylation of p125(Fak), p130(Cas), and paxillin induced by either GPCRs or tyrosine kinase receptors in Swiss 3T3 cells.  相似文献   

16.
Epidermal growth factor (EGF) receptor protein kinase activity, estimated by the use of peptide substrates, was reduced by as much as 70% after the treatment of intact A431 human carcinoma cells with EGF. The apparent decrease in protein kinase activity was observed after immunoprecipitation of the receptor or after purification of the receptor by lectin chromatography. By the use of [35S]methionine, it was determined that the total amount of receptor obtained was the same whether or not cells were treated with EGF. EGF stimulated the purified receptor protein kinase activity in vitro; however, the EGF-stimulated activity of receptor from EGF-treated cells continued to be reduced by as much at 70% compared to the EGF-stimulated activity from untreated cells. The reduction in receptor protein kinase activity induced by EGF may represent a feedback mechanism by which responsiveness to the growth factor is regulated.  相似文献   

17.
We have previously shown that the Gq protein coupled receptor (GqPCR) agonist, carbachol (CCh), transactivates and recruits epidermal growth factor receptor (EGFr)-dependent signaling mechanisms in intestinal epithelial cells. Increasing evidence suggests that GqPCR agonists can also recruit focal adhesion-dependent signaling pathways in some cell types. Therefore, the aim of the present study was to investigate if CCh stimulates activation of the focal adhesion-associated protein, focal adhesion kinase (FAK), in intestinal epithelia and, if so, to examine the signaling mechanisms involved. Experiments were carried out on monolayers of T84 cells grown on permeable supports. CCh rapidly induced tyrosine phosphorylation of FAK in T84 cells. This effect was accompanied by phosphorylation of another focal adhesion-associated protein, paxillin, and association of FAK with paxillin. CCh-stimulated FAK phosphorylation was inhibited by a chelator of intracellular Ca2+, BAPTA/AM (20 microM), and was mimicked by thapsigargin (2 microM), which mobilizes intracellular Ca2+ in a receptor-independent fashion. CCh also induced association of FAK with the EGFr and FAK phosphorylation was attenuated by an EGFr inhibitor, tyrphostin AG1478, and an inhibitor of Src family kinases, PP2. The actin cytoskeleton disruptor, cytochalasin D (20 microM), abolished FAK phosphorylation in response to CCh but did not alter CCh-induced EGFr or ERK MAPK activation. In summary, these data demonstrate that agonists of GqPCRs have the ability to induce FAK activation in intestinal epithelial cells. GqPCR-induced FAK activation is mediated by via a pathway involving transactivation of the EGFr and alterations in the actin cytoskeleton.  相似文献   

18.
The regulation of phosphoinositide phosphorylation was studied in Swiss 3T3 cells that were stimulated by platelet-derived growth factor (PDGF). Studies with intact cells showed that the mitogen increased the incorporation of 32P into phosphatidylinositol (PtdIns), phosphatidylinositol 4-phosphate (PtdIns-P), and phosphatidylinositol 4,5-bisphosphate (PtdIns-P2) during the cell cycle, with distinct peaks of incorporation for all three phosphoinositides after 1 h, and for PtdIns and PtdIns-P2 after 20 h. Direct measurements of the activities of PtdIns kinase and PtdIns-P kinase in freeze-thawed cells revealed that the activity of PtdIns kinase was rate-limiting for the synthesis of PtdIns-P2. Maximal activities of PtdIns kinase and PtdIns-P kinase, with exogenous substrates, were unchanged during the 1st h of PDGF treatment, but doubled during the next 24 h. The increase in PtdIns kinase activity began within 2-4 h, exceeded the increase in cell protein, and was abolished by cycloheximide, which suggests that the enzyme was induced specifically in response to PDGF. The increase in activity of PtdIns-P kinase paralleled the increase in cell protein. Dose-response curves for PDGF showed that the activities of PtdIns kinase and PtdIns-P kinase at 24 h increased in proportion to the extent of mitogenic stimulation of the cells. Our results support the conclusion that the activities of PtdIns kinase and PtdIns-P kinase increase in response to PDGF, but only after several hours of cell cycle traverse.  相似文献   

19.
Lysophosphatidic acid (LPA) is known to induce protein tyrosine phosphorylation and has growth factor-like effects. In the last several years, the epidermal growth factor (EGF) receptor has been recognized as a protein tyrosine kinase that plays a central role in mediating LPA-induced tyrosine phosphorylation and Erk MAP kinase activation. In this article, we review recent progress in the study of trans-regulation of EGF receptor by LPA and G protein-coupled receptors (GPCR) and discuss the gap in our knowledge of the mechanism by which LPA induces EGF receptor activation.  相似文献   

20.
Epidermal growth factor receptor (EGFR) plays a critical role in the promotion of epithelial cell proliferation and migration. Previous studies have suggested a cooperative role between EGFR and integrin signalling pathways that enable efficient adhesion and migration but the mechanisms controlling this remain poorly defined. Here, we show that EGFR forms a complex with focal adhesion kinase in epithelial cells. Surprisingly, this complex enhances local Src activity at focal adhesions to promote phosphorylation of the cytoskeletal adaptor protein ezrin at Y478, leading to actomyosin contractility, suppression of focal adhesion dynamics and slower migration. We further demonstrate this regulation of Src is due to the suppression of PTP1B activity. Our data provide new insight into EGF-independent cooperation between EGFR and integrins and suggest transient interactions between these kinases at the leading edge of cells act to spatially control signalling to permit efficient motility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号