首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The possibility of enhanced biosurfactant (BS) synthesis by the cultivation of Acinetobacter calcoaceticus IMV B-7241 on a mixture of energetically nonequivalent substrates (hexadecane and glycerol) was shown. Based on theoretical calculations of the energy requirements for biomass production and the synthesis of surface-active trehalose monomycolate from the energy-deficient substrate (glycerol), the concentration of the energy-excessive substrate (hexadecane), which increased the efficiency of the substrate carbon conversion to BS, was determined. The synthesis of extracellular BS on a mixture of hexadecane and glycerol in a molar ratio of 1: 7 at C/N ratio of 30 increased 2.6–3.5-fold compared to that on single-substrate media. Increased BS synthesis by Acinetobacter calcoaceticus IMV B-7241 grown on a hexadecane-glycerol mixture was accompanied by a 1.3–2.4-fold increase in activities of the enzymes involved in their biosynthesis, as well as by simultaneous functioning of two anaplerotic pathways (the glyoxylate cycle and the phosphoenolpyruvate carboxylase reaction).  相似文献   

2.

Probiotics, in particular Lactobacillus (lactic acid bacteria, LAB) strains, are widely used in clinical practice. Despite that these probiotics have GRAS (generally regarded as safe) and qualified presumption of safety (QPS) statuses, the safety of particular strains still needs to be thoroughly studied. The aim of the study was to evaluate the safety of Lact. casei IMV B-7280 strain by investigating toxicity and the effects on gut microbiota in experimental animal model. Male BALB/c mice (7–8 weeks, weight 20–24 g) were treated with amounts of Lact. casei IMV B-7280 strain: 5 × 106, 5 × 108, or 5 × 109 CFU/animal once per day during 7 days, or in the amount of 1 × 1010 CFU/animal once per day during 3 days (most of the proposed probiotic doses for humans—from 108 to 109 CFU) and monitored during 14 days. Blood tests and serum biochemistry were conducted; the cecal content from mice of the experimental and control groups were freshly collected and analyzed. At the end of the experiments (15th day), the presence of LAB in the heart, liver, kidney, and mesenteric lymph nodes and peripheral blood was determined; histology of the brain, liver, heart, fragments of the small and large intestine, and mesenteric lymph nodes was conducted. Survival rate of BALB/c mice treated with Lact. casei IMV B-7280 strain in different concentrations in toxicity experiments during 14 days was 100%. We observed no signs of toxicity as changes in gait, lethargy, sleep, somatomotor activity as well as changes in fur, eyes, skin and mucous membranes, tremors, behavior pattern, convulsions, salivation, diarrhea, and local injuries in mice from all experimental groups. After administration of probiotic strain, the number of opportunistic bacteria in cecal contents, such as Staphylococcus spp., Candida spp., Pseudomonas spp., and total aerobic and optionally anaerobic bacteria decreased compared to controls; the population of beneficial bacteria such as lactobacilli increased in cecal contents of these mice. LAB were not detected in the peripheral blood, heart, liver, kidneys, and mesenteric lymph nodes after administration of this strain to intact mice. Lact. casei IMV B-7280 strain is safe at dose up to 1010 CFU/animal during 3- and 7-day oral administration to mice and has a positive effect on the gut microbiota composition; it could be potentially considered as safe probiotic for humans.

  相似文献   

3.
Biological characteristics of a new phosphate-mobilizing bacillus strain are reported. Species-level identification of the strain was performed according to morphological, cultural, and biochemical characteristics and the sequence of the 16S rRNA gene. The strain was identified as Bacillus subtilis IMV V-7023 and displayed a very high ability to mobilize phosphorus from its sparingly soluble inorganic and organic compounds and the capability of synthesizing biologically active substances; in addition, the strain essentially suppressed the growth of phytopathogenic bacteria, micromycetes, and agents causing various diseases of vegetable, cereal, leguminous, and other plants. The strain Bacillus subtilis IMV V-7023 is promising for developing bacterial preparations for crop production.  相似文献   

4.
Biological characteristics of a new phosphate-mobilizing bacillus strain are reported. Species-level identification of the strain was performed according to morphological, cultural, and biochemical characteristics and the sequence of the 16S rRNA gene. The strain was identified as Bacillus subtilis IMV V-7023 and displayed a very high ability to mobilize phosphorus from its sparingly soluble inorganic and organic compounds and the capability of synthesizing biologically active substances; in addition, the strain essentially suppressed the growth of phytopathogenic bacteria, micromycetes, and agents causing various diseases of vegetable, cereal, leguminous, and other plants. The strain Bacillus subtilis IMV V-7023 is promising for developing bacterial preparations for crop production.  相似文献   

5.

The aim of the present study was to investigate the in vitro antioxidant potential of the cell-free extracts (CFE) of two probiotic bacteria Bacillus amyloliquefaciens ssp. plantarum IMV B-7142 and Bacillus amyloliquefaciens ssp. plantarum IMV B-7143 and their hepatoprotective effects. These strains are the main components of the veterinary probiotic preparation endosporyn. The CFE of probiotic bacteria were able to stabilize the 2.2-diphenyl-1-picrylhydrazyl radical to its neutral form at their cultivation during 24–48 h. But this index was more pronounced for the IMV B-7142 strain and amounted to 44.4–51.2%. The hydroxyl radical scavenging activity of the CFE of probiotic bacteria increased more than 70–80% regardless of the cultivation period (24–48 h). The antioxidant potential of probiotic strains is associated with the synthesis of the multiple biologically active molecules. The phenolic and benzoic acids-antioxidants (gallic, 4-hydroxyphenylacetic, caffeic, syringic, p-coumaric, trans-ferulic, and trans-cinnamic acids) were identified among metabolites of B. amyloliquefaciens ssp. plantarum strains. The CFE of probiotic strains were able to protect of rat hepatocytes from the toxic effects of the carbon tetrachloride (CCl4). Post-treatment of stress-induced rat hepatocytes by CFE of the IMV B-7042 was accompanied by an increase of the catalase activity of cells by 485.2 mM/min × mg of protein, compared to stress-damaged sample. In doing so, the content of the main markers of oxidative stress: lipid hydroperoxides and malondialdehyde decreased significantly. The results suggested that CFE of both probiotic strains have potent antioxidant properties and effectively protect of stress-damaged rat hepatocytes.

  相似文献   

6.
Glutathione is the metal stress protector and changes of its level in the sulfate-reducing bacteria cells under the influence of heavy metal salts have not been studied yet. CdCl2, Pb(NO3)2, CuCl2, and ZnCl2 influence on the total glutathione level in cell-free extracts of sulfate-reducing bacteria Desulfovibrio desulfuricans IMV K-6 was studied. The research has been carried out using Ellman, Lowry methods, statistical processing of the results. It was shown that the glutathione level depends on the heavy metal salts concentration in the medium. The total glutathione level was the highest under the influence of Pb(NO3)2. Other salts were also toxic to bacteria because glutathione level increased in bacterial cells after addition of these salts to the medium. On the basis of the results of our work the range of heavy metal salts influence on D. desulfuricans IMV K-6 cells glutathione level has been formed for the first time: Pb(NO3)2 > CuCl2 > CdCl2 > ZnCl2.  相似文献   

7.
The methane-oxidizing microbial communities inhabiting the bottom sediments of 36 hot springs of the Uzon caldera (Kamchatka, Russia) located in the thermal fields Vostochnoe, Oranzhevoe, and Severnoe, as well as near the lakes Fumarol’noe and Khloridnoe and the Izvilistyi stream, were studied. Methanotrophic bacteria were detected by PCR and FISH in only 8 hot springs. The highest numbers of copies of the pmoA gene (molecular marker of methanotrophy) (2.8 × 107 and 1.1 × 107 copies/mL sediment) were detected in the Kul’turnyi and Kvadrat springs; however, in other springs, the numbers of the pmoA gene copies were significantly lower (5.4 × 103–2.8 × 106 copies/mL sediment). By using the FISH method, only type I methanotrophs were detected in these springs, with their percentage ranging from 0.3 to 20.5% of the total number of eubacteria. PCR-DGGE analysis of the pmoA gene showed that the diversity of methanotrophs was extremely low (no more that two components). Analysis of the deduced PmoA amino acid sequences demonstrated that methanotrophic bacteria of the genus Methylothermus, closely related to representatives of two valid species, widely occurred in the thermal springs near Lake Fumarol’noe. Other bacteria differing considerably from the detected Methylothermus species were detected as well. In the springs with low pH values (2.6–3.8), methanotrophic Gammaproteobacteria most closely related to the genera Methylomonas and Methylobacter were detected for the first time.  相似文献   

8.
The viral and bacterioplankton communities of the Barents Sea were investigated using a combination of methods of electron and epifluorescence microscopy for the first time. The quantitative composition of the communities and the nature of their interactions were also determined. Our study showed that during the summer the abundance and biomass of bacterioplankton reached 0.4–4.0 × 106 cells/mL and 25.09–84.21 mg/m3 in offshore waters and 0.4–1.8 × 106 cells/mL and 19.63–100.19 mg/m3 in coastal waters, respectively. In both regions, the number of viruses (1.7–35.8 × 106 and 14.5–32.4 × 106 particles/mL) exceeded the number of bacteria by 2–31 and 13–60 times, respectively; the average viral production was 0.75106 and 1.74 × 106 particles/mL/day, respectively. The proportion of infected cells in the total bacterioplankton (7% on average) and virus-induced mortality of bacteria (8%) were much lower in offshore than in coastal waters (14 and 20%, respectively).  相似文献   

9.
Methanotrophs containing methane monooxygenase (MMO) can catalyze the epoxidation of propene to epoxypropane. Methane cannot support dense biomass growth due to its low aqueous solubility. Low growth rate is important limiting factor for the application of methanotrophs. Methanol can act as growth substrate, but direct addition of methanol is toxic to most methanotrophs. The MMO activity during growth on methanol is also uncertain. In this paper, methanol-adapted Methylosinus trichosporium IMV 3011 was successfully cultivated at high cell densities using methanol as sole carbon source. A biomass density of 1.68 g dry weight cell l?1 was achieved and cells contained almost 80% of the MMO activity measured for cells grown with methane. It has been found that methanol can also act as the electron-donating substrate to regenerate the NADH and drive epoxypropane synthesis. The effect of methanol supply on the epoxidation capacity of Methylosinus trichosporium IMV3011 was studied in batch reactor. 0.016% methanol concentration was found to give the highest propene epoxidation capacity.  相似文献   

10.
Our studies enabled us to intensify the synthesis of the microbial exopolysaccharide (EPS) ethapolan produced by Acinetobacter sp. IMV B-7005 grown on a mixture of fumarate (an energy-excessive substrate) and glucose (an energy-deficient substrate). Supplementing glucose-containing medium with sodium (potassium) fumarate at a molar ratio of 4: 1 resulted in a 1.3–2.2-fold increase of the EPS amount synthesized and in a 1.3–2-fold increase of the EPS yield relative to the biomass compared to cultivation on monosubstrates. The conversion of the carbon of both substrates to EPS was the highest if the carbon/nitrogen ratio in the cultivation medium was 70.5 and inoculum grown on glucose monosubstrate was used.  相似文献   

11.
  • 1.1. The antibodies produced against the capsular poly-N-acetylneuraminic acid (poly-Neu5Ac) of E. coliK-92 (α 2-8-, α 2-9-linked) were 100-fold less sensitive than those obtained against E. coli K-235 capsular polysaccharide (CP) (α 2-8-linked) and recognized both kinds of polymers to a similar extent.
  • 2.2. The partial hydrolysis of each purified polysaccharide revealed that E. coli K-92 CP is more labile at acidic pH than the polymer α 2-8-linked of E. coli K-235.
  • 3.3. The antisera against CP from E. coli K-92 bound its own oligomers in which the number of Neu5Ac units was higher than three, whereas they only cross-reacted with the oligomers derived from E. coli K-235 containing a number of residues higher than 12.
  • 4.4. The antisera against E. coli K-235 CP that recognized α 2–8 oligomers with a number of Neu5Ac residues higher than 5, also reacted, although very weakly, with those containing α2–8 and α 2–9 linkages in which the carbon length was higher than (Neu5Ac)3.
  • 5.5. Both types of antibodies were also able to recognize the native antigens in living bacteria and could be employed for the recognition of the type of linkage presents in different sialylpolymers.
  相似文献   

12.
The present study was aimed to determine the effect of GnRH analog (buserelin acetate) on the quality of bovine spermatozoa stored at 16°?C for 24?h. Semen collected in the summer season from June to September from healthy Polish Holstein–Friesian bulls. Ejaculates were centrifuged, divided and diluted to the final concentration of 240?×?106 spermatozoa/mL using animal protein–free commercial BIOXcell® extender (IMV Technologies, L’aigle, France) (Control) or with BIOXcell® extender supplemented with buserelin acetate and stored 0, 8 and 24?h. Sperm motility parameters analysis was performed using a computer-assisted sperm analysis (CASA) system. The viability of spermatozoa was performed using flow cytometer. The addition of buserelin acetate to BIOXcell® extender did positively affect the total motility (was higher in the observed samples with the addition of 2?µg/mL and 4?µg/mL than in the control group), progressive motile (forward progressing sperm was significantly increased (p?<?0.05) over the control group at the 0?h and 8?h of incubation following the supplementation of 2, 4 and 8?μg/mL buserelin acetate) and viability of spermatozoa (the number of live spermatozoa was significantly higher (p?<?0.05) in 2?µg/mL and 4?µg/mL samples with buserelin acetate at 8th hour of incubation and in sample with 4?µg/mL at 24th hour of incubation compared to the control group). We recommend adding 4?µg/mL to the extender to improve the quality of bovine semen.  相似文献   

13.
Many phytopathogenic micro-organisms such as bacteria and fungi produce pectin methylesterases (PME) during plant invasion. Plants and insects also produce PME to degrade plant cell wall. In the present study, a thermostable pectin methylesterase (CtPME) from Clostridium thermocellum belonging to family 8 carbohydrate esterase (CE8) was cloned, expressed and purified. The amino acid sequence of CtPME exhibited similarity with pectin methylesterase from Erwinia chrysanthemi with 38% identity. The gene encoding CtPME was cloned into pET28a(+) vector and expressed using Escherichia coli BL21(DE3) cells. The recombinant CtPME expressed as a soluble protein and exhibited a single band of molecular mass approximately 35.2 kDa on SDS-PAGE gels. The molecular mass, 35.5 kDa of the enzyme, was also confirmed by MALDI-TOF MS analysis. Notably, highest protein concentration (11.4 mg/mL) of CtPME was achieved in auto-induction medium, as compared with LB medium (1.5 mg/mL). CtPME showed maximum activity (18.1 U/mg) against citrus pectin with >85% methyl esterification. The optimum pH and temperature for activity of CtPME were 8.5 and 50 °C, respectively. The enzyme was stable in pH range 8.0–9.0 and thermostable between 45 and 70 °C. CtPME activity was increased by 40% by 5 mM Ca2+ or Mg2+ ions. Protein melting curve of CtPME gave a peak at 80 °C. The peak was shifted to 85 °C in the presence of 5 mM Ca2+ ions, and the addition of 5 mM EDTA shifted back the melting peak to 80 °C. CtPME can be potentially used in food and textile industry applications.  相似文献   

14.
Homogeneous preparations of l-threonine dehydrogenase (l-threonine: NAD+ oxidoreductase, EC 1.1.1.103) from Escherichia coli K-12, after having been dialyzed against buffers containing Chelex-100 resin, have a basal level of activity of 10–20 units/mg. Added Cd2+ stimulates dehydrogenase activity approx. 10-fold; this activation is concentration-dependent and is saturable with an activation Kd = 0.9 μM. Full activation by Cd2+ is obtained in the absence of added thiols. The pH-activity profile of the Cd2+-activated enzyme conforms to a theoretical curve for one-proton ionization with a pKa = 7.85. Mn2+, the only other activating metal ion, competes with Cd2+ for the same binding site. Km values forl-threonine and NAD+ as well as the Vmax for ‘demetallized’, Cd2+-activated, and Mn2+-activated threonine dehydrogenase were determined and compared.  相似文献   

15.
Actinomycete strain SA198, isolated from a Saharan soil sample of Algeria, exhibited antimicrobial activity against Gram-positive and Gram-negative bacteria, and phytopathogenic and toxinogenic fungi. The morphological and chemotaxonomic characteristics of the strain were consistent with those of the genus Saccharothrix. Analysis of the 16S rRNA gene sequence of strain SA198 showed a similarity level ranging between 97.2 and 98.8% within Saccharothrix species, S. australiensis being the most closely related. Two new active products were isolated by reverse HPLC using a C18 column. The ultraviolet–visible (UV–VIS), infrared (IR), mass, and 1H and 14C nuclear magnetic resonance (NMR) spectra showed that these products were new bioactive compounds. The minimum inhibitory concentrations of these antibiotics showed a strong activity against fungi and moderate activities against Gram-positive and Gram-negative bacteria.  相似文献   

16.
The teichoic acids (TAs) of type strains, viz. Bacillus licheniformis VKM B-511T and Bacillus pumilus VKM B-508T, as well as phylogenetically close bacteria VKM B-424, VKM B-1554, and VKM B-711 previously assigned to Bacillus pumilus on the basis of morphological, physiological, and biochemical properties, were investigated. Three polymers were found in the cell wall of each of the 5 strains under study. Strains VKM B-508T, VKM B-424, and VKM B-1554 contained polymers of the same core: unsubstituted 1,3-poly(glycerol phosphate) (TA I) and 1,3-poly(glycerol phosphate) with O-D-Ala and N-acetyl-??-D-glucosamine substituents (TA II and TA III??, respectively). The cell walls of two remaining strains contained TA I, TA II, and a poly(glycosylpolyol phosphate) with the following structure of repeating units: -6)-??-D-GlcpNAc(1??1)-snGro-(3-P-(TA III?) in ??Bacillus pumilus?? VKM B-711 (100% 16S rRNA gene similarity with the type strain of Bacillus safensis) and -6)-??-D-Galp-(1??2)-snGro-(3-P-(TA III?) in Bacillus licheniformis VKM B-511T. The simultaneous presence of three different TAs in the cell walls was confirmed by the NMR spectroscopic DOSY methods. The structure of the polymers and localization of O-D-Ala residues were investigated by the chemical and NMR spectroscopic methods.  相似文献   

17.
The results of in vitro studies of the immunomodulatory action of the lipopolysaccharides (LPS) of the Pseudomonas bacteria—P. fluorescens biovar I strains IMV 4125 = ATCC 13525, IMV 7769, and IMV 1152; P. fluorescens biovar IV strain IMV 2111; P. syringae pv. syringae IMV 281 = CPPB 281 = ATCC 19310 and IMV 467; and P. wieringae IMV 7923-on the mouse spleenocytes and human peripheral blood mononuclear cells (PBMC), B lymphocytes, and T lymphocytes are described. The proliferative activity of mouse spleenocytes correlated with the degree of LPS toxicity. The PBMC mitogenic activity induced by the P. fluorescens IMV 7769 LPS preparation exceeded the activity of E. coli 026:B6 LPS. The immunomodulatory effect of LPS on T cells was strain and dose dependent. The LPS of P. syringae pv. syringae INV 467 displayed a comparatively pronounced immunomodulatory effect on human blood B lymphocytes.  相似文献   

18.
Chemically synthesized 4-hydroxybenzoate (4HBA) is widely used in the chemical and electrical industries as a material for producing polymers such as those of the liquid crystal type. Its alkyl esters, called parabens, have been the most widely used preservatives by the food and cosmetic industries. We report here for the first time a microorganism, a marine bacterium, which biosynthesizes these petrochemical products. The marine bacterial strain, A4B-17, which was found to belong to the genus Microbulbifer on the basis of its rRNA and gyrB sequences, was isolated from an ascidian in the coastal waters of Palau. Strain A4B-17 was, surprisingly, found to produce 10 mg/liter of 4HBA, together with its butyl (24 mg/liter), heptyl (0.4 mg/liter), and nonyl (6 mg/liter) esters. We therefore characterized 23 other marine bacteria belonging to the genus Microbulbifer, which our institute had previously isolated from various marine environments, and found that these bacteria also produced 4HBA, although with low production levels (less than one-fifth of that produced by A4B-17). We also show that the alkyl esters of 4HBA produced by strain A4B-17 were effective in preventing the growth of yeasts, molds, and gram-positive bacteria.  相似文献   

19.
The green silver nanoparticles (green AgNPs) exhibit an exceptional antimicrobial property against different microbes, including bacteria and fungi. The current study aimed to compare the antifungal activities of both the crude aqueous extract of Portulaca oleracea or different preparations of green AgNPs biosynthesized by mixing that aqueous extract with silver nitrate (AgNO3). Two preparations of the green AgNPs were synthesized either by mixing the aqueous extract of P. oleracea with silver nitrate (AgNO3) (normal AgNPs) or either irradiation of the AgNPs, previously prepared, under 60Co γ-ray using chitosan (gamma-irradiated AgNPs). Characterization of different AgNPs were tested by Zeta potential analyzer, Ultraviolet (UV) Visible Spectroscopy, and Fourier-Transform Infrared (FTIR) spectrometry. Three different plant pathogenic fungi were tested, Curvularia spicifera, Macrophomina phaseolina, and Bipolaris sp. The antifungal activities were evaluated by Transmission Electron Microscope (TEM) for either the crude aqueous extract of P. oleracea at three doses (25%, 50%, and 100%) or the newly biosynthesized AgNPs, normal or gamma-irradiated. With a few exceptions, the comparative analysis revealed that the irradiated green AgNPs at all three concentrations showed a relatively stronger antifungal effect than the normal AgNPs against all the three selected fungal strains. UV–visible spectroscopy of both preparations showed surface plasmon resonance at 421 nm. TEM results showed that both AgNPs were aggregated and characterized by a unique spherical shape, however, the gamma-irradiated AgNPs were smaller than the non-irradiated AgNPs (0.007–0.026 µM vs. 0.009–0.086 µM). TEM photographs of the fungal strains treated with the two AgNPs preparations showed flaccid structures, condensed hyphae, and shrunken surface compared with control cells. The data suggested that the biosynthesized P. oleracea AgNPs have antifungal properties against C. spicifera, M. phaseolina, and Bipolaris sp. These AgNPs may be considered a fungicide to protect different plants against phytopathogenic fungi.  相似文献   

20.
Pseudomonas spp., a ubiquitous biocontrol agent, protects the plants from phytopathogens by suppressing them directly by reinforcing the plant’s intrinsic defense mechanism. Root exudated phenolics play an important role in establishing the rhizobacteria population and cross the host boundaries in beneficial plant–microbe interaction. In this study, Pseudomonas spp. HU-8 & HU-9 antagonized the sugarcane red rot pathogen (C. falcatum) and showed a positive chemotactic response against different concentrations (10–30 µM) of synthetic phenolic acids like p-coumaric, vanillic, and 3,4 di-hydroxybenzoic acid. In a pot experiment, they effectively colonized the sugarcane rhizosphere and mediated defense response in sugarcane plants challenged with red rot pathogen C. falcatum by regulating the exudation of root phenolics under hydroponic conditions. They significantly induced the activity of the antioxidant enzymes CAT (1.24–1.64 fold), PO (0.78–1.61 fold), PAL (0.77–0.97 fold), and PPO (3.67–3.73 fold) over untreated plants in sugarcane. They also induced the total phenolic contents (TPC) in sugarcane in the presence (6.56–10.29 mg/g GAE) and absence (2.89–4.16 mg/g GAE) of the pathogen quantified through the Folin-Ciocalteu (FC) method. However, their effect was lower than that of the pathogen (4.34–8 mg/g GAE). The Pseudomonas spp. significantly colonized the sugarcane rhizosphere by maintaining a cell population of (1.0E + 07–1.3E + 08 CFU/mL). A significant positive Pearson’s correlation was observed between the root exudated total phenolic contents, antioxidant enzymatic activities, and rhizospheric population of inoculated bacteria. The 16S rRNA and rpoD gene analysis showed sequence conservation (C: 0.707), average number of nucleotide differences (k: 199.816), nucleotide diversity, (Pi): 0.09819), average number of informative nucleotide sites per site (Psi: 0.01275), GC content (0.57), and polymorphic sites (n = 656). These diverse Pseudomonas spp. could be an ideal bio-inoculants for a broad range of hosts especially graminaceous crops.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号