首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tropical wetlands have been shown to exhibit high rates of net primary productivity and may therefore play an important role in global climate change mitigation through carbon assimilation and sequestration. Many permanently flooded areas of tropical East Africa are dominated by the highly productive C4 emergent macrophyte sedge, Cyperus papyrus L. (papyrus). However, increasing population densities around wetland margins in East Africa are reducing the extent of papyrus coverage due to the planting of subsistence crops such as Colocasia esculenta (cocoyam). In this paper, we assess the impact of this land use change on the carbon cycle and in particular the impacts of land conversion on net ecosystem carbon dioxide exchange. Eddy covariance techniques were used, on a campaign basis, to measure fluxes of carbon dioxide over both papyrus and cocoyam dominated wetlands located on the Ugandan shore of Lake Victoria. Peak rates of net photosynthetic CO2 assimilation, derived from monthly diurnal averages of net ecosystem exchange, of 28–35 μmol CO2 m?2 s?1 and 15–20 μmol CO2 m?2 s?1 were recorded in the papyrus and cocoyam wetlands, respectively, whereas night‐time respiratory losses ranged between 10 and 15 μmol CO2 m?2 s?1 at the papyrus wetland and 5–10 μmol CO2 m?2 s?1 at the cocoyam site. The integration of the flux data suggests that papyrus wetlands have the potential to act as a sink for significant amounts of carbon, in the region of 10 t C ha?1 yr?1. The cocoyam vegetation assimilated ~7 t C ha?1 yr?1 but when carbon exports from crop biomass removal were accounted for these wetlands represent a significant net loss of carbon of similar magnitude. The development of sustainable wetland management strategies are therefore required to promote the dual wetland function of crop production and the mitigation of greenhouse gas emissions especially under future climate change scenarios.  相似文献   

2.
《Biomass》1989,18(1):1-14
Papyrus (Cyperus papyrus) standing biomass and the primary productivity of undisturbed and previously harvested areas of papyrus was measured in Lake Naivasha swamp, Kenya. Papyrus culm density in undisturbed swamp was estimated to be 13·1±1·9 culms m−2 and aerial biomass was 3602 g m−2. In undisturbed swamp the aerial productivity was 14·1 g m−2 day−1 while the previously harvested swamp reached a peak of 21·0 g m−2 after 6 months. The annual aerial production rate of papyrus in Lake Naivasha was estimated to be 5150 g m−2 year−1. To sustain yields of regularly harvested papyrus swamps, the harvest intervals should exceed 1 year.  相似文献   

3.
Highly productive papyrus (Cyperus papyrus L.) wetlands dominate many permanently flooded areas of tropical East Africa; however, the cycling of carbon and water within these ecosystems is poorly understood. The objective of this study was to utilise Eddy Covariance (EC) techniques to measure the fluxes of carbon dioxide and water vapour between papyrus vegetation and the atmosphere in a wetland located near Jinja, Uganda on the Northern shore of Lake Victoria. Peak, midday rates of photosynthetic CO2 net assimilation were approximately 40 μmol CO2 m−2 s−1, while night time losses through respiration ranged between 10 and 20 μmol COm−2 s−1. Numerical integration of the flux data suggests that papyrus wetlands have the potential to sequester approximately 0.48 kg C m−2 y−1. The average daily water vapour flux from the papyrus vegetation through canopy evapotranspiration was approximately 4.75 kg H2O m−2 d−1, which is approximately 25% higher than water loss through evaporation from open water.  相似文献   

4.
Papyrus (Cyperus papyrus, Cyperaceae) covers large areas in tropical African wetlands. Analysis of its nutritive value has revealed that crude protein is higher in umbels than culms. Ruminai dry matter digestibility of papyrus is, however, higher in culms than umbels. Both the crude protein and ruminai dry matter digestibility decrease with increasing age of the plant. Values for crude protein and ruminai dry matter digestibility are similar to those reported for the range grasses that constitute the greatest percentage of forage in East Africa. In general, papyrus has some grazing potential and could be used as fodder especially in the dry season when other forage is scarce and of low nutritive value.  相似文献   

5.
Papyrus wetlands around Lake Victoria, East Africa play an important role in the nutrient flows from the catchment to the lake. A dynamic model for nitrogen cycling was constructed to understand the processes contributing to nitrogen retention in the wetland and to evaluate the effects of papyrus harvesting on the nitrogen absorption capacity of the wetlands. The model had four layers: papyrus mat, water, sludge and sediment. Papyrus growth was modelled as the difference between nitrogen uptake and loss. Nitrogen uptake was modelled with a logistic equation combined with a Monod-type nitrogen limitation. Nitrogen compartments were papyrus plants, organic material in the floating mat; and total ammonia, nitrate and organic nitrogen in the water, sludge and sediment. Apart from the uptake and decay rates of the papyrus, the model included sloughing and settling of mat material into the water, mineralization of organic matter, and nitrification and diffusion of dissolved inorganic nitrogen. Literature data and field measurements were used for parameterization. The model was calibrated with data from Kirinya wetland in Jinja, Uganda which receives effluent from a municipal wastewater treatment plant. The model simulated realistic concentrations of dissolved nitrogen with a stable biomass density of papyrus and predicted accumulation of organic sludge in the wetland. Assuming that this sludge is not washed out of the wetland, the overall nitrogen retention of the wetland over a three-year period was 21.5 g N m−2 year−1 or about 25% of input. Harvesting 10, 20 and 30% of the papyrus biomass per year increased nitrogen retention capacity of the wetland to 32.3, 36.8 and 38.1 g m−2 year−1, respectively. Although the nutrient flows estimated by the model are within the ranges found in other papyrus wetlands, the model could be improved with regard to the dynamics of detrital nitrogen. Actual net retention of nitrogen in the sludge is likely to be lower than 21.5 g N m−2 year−1 because of flushing out of the sludge to the lake during the rainy season.  相似文献   

6.
This study estimated the potential emissions of greenhouse gases (GHG) from bioenergy ecosystems with a biogeochemical model AgTEM, assuming maize (Zea mays L.), switchgrass (Panicum virgatum L.), and Miscanthus (Miscanthus × giganteus) will be grown on the current maize‐producing areas in the conterminous United States. We found that the maize ecosystem acts as a mild net carbon source while cellulosic ecosystems (i.e., switchgrass and Miscanthus) act as mild sinks. Nitrogen fertilizer use is an important factor affecting biomass production and N2O emissions, especially in the maize ecosystem. To maintain high biomass productivity, the maize ecosystem emits much more GHG, including CO2 and N2O, than switchgrass and Miscanthus ecosystems, when high‐rate nitrogen fertilizers are applied. For maize, the global warming potential (GWP) amounts to 1–2 Mg CO2eq ha?1 yr?1, with a dominant contribution of over 90% from N2O emissions. Cellulosic crops contribute to the GWP of less than 0.3 Mg CO2eq ha?1 yr?1. Among all three bioenergy crops, Miscanthus is the most biofuel productive and the least GHG intensive at a given cropland. Regional model simulations suggested that substituting Miscanthus for maize to produce biofuel could potentially save land and reduce GHG emissions.  相似文献   

7.
Papyrus Cyperus papyrus swamps are characteristic of many wetlands of tropical Africa. Like most wetland habitats worldwide, they are under human pressure due to harvesting and reclamation for agriculture. Changes in papyrus cover were assessed using aerial photographs at three Important Bird Areas (IBAs) in the Kenyan sector of Lake Victoria. Papyrus area losses of 50% (Dunga), 47% (Koguta) and 34% (Kusa) occurred between 1969 and 2000. The habitat loss and degradation at the sites appeared purposeful, driven by demand for agricultural land and other papyrus products. Cleared papyrus and cultivated areas around all sites increased over the same period. If papyrus habitat loss continues at current rates, papyrus swamps at Dunga and Koguta will disappear by 2020, and Kusa will be reduced to only 19% of its 1969 area. Human population growth around the sites, with concomitant increase in land use activities and papyrus harvesting are the major factors that account for papyrus area reductions. Loss of total habitat is accompanied by deterioration in habitat quality within remaining areas. Papyrus physical structure (height and density) inversely correlate to human disturbances that include footpaths, cutting, burning, grazing and farming. The continued papyrus habitat loss and degradation represents a significant threat to biodiversity conservation particularly for papyrus-specialist birds and other papyrus-reliant species in western Kenya. The observed pattern of papyrus extents and land use changes at all sites provide the site-scale information necessary for papyrus conservation planning. In particular, conservation action is needed most urgently at Dunga and Koguta as they face severe land use pressures.  相似文献   

8.
9.
Tropical papyrus wetlands have the ability to assimilate and sequester significant amounts of carbon. However, the spatial extent, productivity and carbon sink strength associated with papyrus wetlands remains poorly characterised. The objective of this study was to collate information from peer-reviewed publications and relevant government and NGO reports to better understand carbon dynamics within papyrus dominated wetlands, and to assess the processes that regulate the magnitude of the carbon sink. Papyrus wetlands were shown to exhibit high rates of photosynthetic carbon dioxide (CO2) assimilation of up to 40 μmol CO2 m?2 s?1 where the incident photosynthetic photon flux density was ≥1,000 μmol m?2 s?1, high rates of net primary production ranging between 14 and 52 g DM m?2 d?1 and represent a significant carbon sink where up to 88 t C ha?1 is stored in the aboveground and belowground components of the papyrus vegetation. Under flooded conditions significant detrital and peat deposits accumulate in excess of 1 m in depth, representing an additional carbon store in the order of 640 t C ha?1. This study also highlighted the lack of empirical data on emissions of other radiatively important trace gases such as methane and nitrous oxide and also the vulnerability of these carbon sinks to both future changes in climate, in particular periods of hydrological drawdown, and anthropogenic land use change where the papyrus vegetation is removed in favour of subsistence agricultural cropping systems.  相似文献   

10.
Papyrus wetlands (dominated by the giant sedge Cyperus papyrus L.) occur throughout eastern, central and southern Africa and are important for biodiversity, for water quality and quantity regulation and for the livelihoods of millions of people. To draw attention to the importance of papyrus wetlands, a special session entitled “The ecology of livelihoods in papyrus wetlands” was organized at the 9th INTECOL Wetlands Conference in Orlando, Florida in June 2012. Papers from the session, combined with additional contributions, were collected in a special issue of Wetlands Ecology and Management. The current paper reviews ecological and hydrological characteristics of papyrus wetlands, summarizes their ecosystem services and sustainable use, provides an overview of papyrus research to date, and looks at policy development for papyrus wetlands. Based on this review, the paper provides a synthesis of research and policy priorities for papyrus wetlands and introduces the contributions in the special issue. Main conclusions are that (1) there is a need for better estimates of the area covered by papyrus wetlands. Limited evidence suggests that the loss of papyrus wetlands is rapid in some areas; (2) there is a need for a better understanding and modelling of the regulating services of papyrus wetlands to support trade-off analysis and improve economic valuation; (3) research on papyrus wetlands should include assessment of all ecosystem services (provisioning, regulating, habitat, cultural) so that trade-offs can be determined as the basis for sustainable management strategies (‘wise use’); (4) more research on the governance, institutional and socio-economic aspects of papyrus wetlands is needed to assist African governments in dealing with the challenges of conserving wetlands in the face of growing food security needs and climate change. The papers in the special issue address a number of these issues.  相似文献   

11.
Birds of papyrus swamps have not been adequately studied in Kenya, and little is known about their ecology and habitat associations. Using fixed‐radius point counts and playbacks, we counted papyrus specialist birds and evaluated papyrus physical characteristics and levels of disturbance at a series of sample stations at three papyrus swamps of Dunga, Koguta and Kusa in the Kenyan sector of Lake Victoria. Papyrus height and density were significantly correlated across all sites but negatively correlated with levels of disturbance. Standardized point counts of swamp birds showed the papyrus gonolek Laniarius mufumbiri and Carruthers's cisticola Cisticola carruthersi to be the most abundant papyrus specialists across sites. Only Carruthers's cisticola numbers differed between sites. Overall, papyrus cover was the best predictor of the presence and abundance of all papyrus specialist birds, and significantly predicted the numbers of papyrus gonolek and white‐winged warbler Bradypterus carpalis.  相似文献   

12.
Analysis of growth and biomass turnover in natural forests of Eucalyptus regnans, the world's tallest angiosperm, reveals it is also the world's most productive forest type, with fire disturbance an important mediator of net primary productivity (NPP). A comprehensive empirical database was used to calculate the averaged temporal pattern of NPP from regeneration to 250 years age. NPP peaks at 23.1 ± 3.8 (95% interquantile range) Mg C ha?1 year?1 at age 14 years, and declines gradually to about 9.2 ± 0.8 Mg C ha?1 year?1 at 130 years, with an average NPP over 250 years of 11.4 ± 1.1 Mg C ha?1 year?1, a value similar to the most productive temperate and tropical forests around the world. We then applied the age‐class distribution of E. regnans resulting from relatively recent historical fires to estimate current NPP for the forest estate. Values of NPP were 40% higher (13 Mg C ha?1 year?1) than if forests were assumed to be at maturity (9.2 Mg C ha?1 year?1). The empirically derived NPP time series for the E. regnans estate was then compared against predictions from 21 global circulation models, showing that none of them had the capacity to simulate a post‐disturbance peak in NPP, as found in E. regnans. The potential importance of disturbance impacts on NPP was further tested by applying a similar approach to the temperate forests of conterminous United States and of China. Allowing for the effects of disturbance, NPP summed across both regions was on average 11% (or 194 Tg C/year) greater than if all forests were assumed to be in a mature state. The results illustrate the importance of accounting for past disturbance history and growth stage when estimating forest primary productivity, with implications for carbon balance modelling at local to global scales.  相似文献   

13.
We used satellite‐derived estimates of global fire emissions and a chemical transport model to estimate atmospheric nitrogen (N) fluxes from savanna and deforestation fires in tropical ecosystems. N emissions and reactive N deposition led to a net transport of N equatorward, from savannas and areas undergoing deforestation to tropical forests. Deposition of fire‐emitted N in savannas was only 26% of emissions – indicating a net export from this biome. On average, net N loss from fires (the sum of emissions and deposition) was equivalent to approximately 22% of biological N fixation (BNF) in savannas (4.0 kg N ha?1 yr?1) and 38% of BNF in ecosystems at the deforestation frontier (9.3 kg N ha?1 yr?1). Net N gains from fires occurred in interior tropical forests at a rate equivalent to 3% of their BNF (0.8 kg N ha?1 yr?1). This percentage was highest for African tropical forests in the Congo Basin (15%; 3.4 kg N ha?1 yr?1) owing to equatorward transport from frequently burning savannas north and south of the basin. These results provide evidence for cross‐biome atmospheric fluxes of N that may help to sustain productivity in some tropical forest ecosystems on millennial timescales. Anthropogenic fires associated with slash and burn agriculture and deforestation in the southern part of the Amazon Basin and across Southeast Asia have substantially increased N deposition in these regions in recent decades and may contribute to increased rates of carbon accumulation in secondary forests and other N‐limited ecosystems.  相似文献   

14.
The demand for biofuels has created a market for feedstocks to meet future energy requirements. Temperate × tropical maize (Zea mays L.) hybrids, which combine high biomass and fermentable stalk sugars, have yet to be considered as a biomass feedstock. Our objective was to evaluate biological potential, genetic variability and impact of nitrogen (N) on biomass, stalk sugar, and biofuel potential of temperate × tropical maize (TTM) hybrids. Twelve TTM hybrids, two grain and silage hybrids were grown in 2008, followed in 2009 by seven earshoot‐bagged TTM hybrids. In both years, they were grown with and without supplemental N (202 kg ha?1) in Champaign, IL. Plants were sampled for total and partitioned biomass, and analyzed for concentration and content of sugar. The TTM hybrids were 40% taller, exhibited later reproductive maturity, greater flowering asynchrony, and remained green longer. All hybrids responded to supplemental N by producing more biomass and grain, a lower percent of biomass partitioned to stalk and leaf, whereas TTM also had a decreased concentration of sugar. Total average biomass yields were 24 Mg ha?1 for both the TTM and grain hybrids. However, TTM partitioned 50% more biomass to the stalk and produced 50% more sugar, and had less than half the grain of the commercial hybrids, indicating grain production and sugar accumulation are inversely related. When grain formation was prevented by earshoot bagging, TTM hybrids produced, without supplemental N fertilizer, an average of 4024 kg ha?1 of sugar, which was three‐ to four‐fold greater than the non earshoot‐bagged TTM and ear removed hybrid. Calculated estimates for ethanol production, considering the potential from sugar, stover and grain, indicate TTM can yield nearly the amount of ethanol per hectare as modern grain hybrids, but with a decreased requirement for supplemental fertilizer N.  相似文献   

15.
High irradiance arid environments are promising, yet understudied, areas for biofuel production. We investigated the productivity and environmental trade‐offs of growing sorghum (Sorghum bicolor) as a biofuel feedstock in the low deserts of California (CA). Using a 5.3 ha experimental field in the Imperial Valley, CA, we measured aboveground biomass production and net ecosystem exchange of CO2 and H2O via eddy covariance over three growing periods between February and November 2012. Environmental conditions were extreme, with high irradiance, vapor pressure deficit (VPD), and air temperature throughout the growing season. Air temperature peaked in August with a maximum of 45.7 °C. Sorghum produced an annual aboveground biomass yield of 43.7 Mg per hectare. Net ecosystem exchange (NEE) was highest during the summer growth period and reached a maximum of ?68 μmol CO2 m?2 s?1. Water use efficiency, or biomass water ratio (BWR), was high (4.0 g dry biomass kg?1 H2O) despite high seasonal evapotranspiration (1094 kg H2O m?2). The BWR of sorghum surpassed that of many C4 biofuel candidate crops in the United States, as well as that of alfalfa which is currently widely grown in the Imperial Valley. Sorghum also outperformed many US biofuel crops in terms of radiation use efficiency (RUE), achieving 1.5 g dry biomass MJ?1. We found no evidence of saturation of NEE at high levels of photosynthetically active radiation (PAR) (up to 2250 μmol m?2 s?1). In addition, we found no evidence that NEE was inhibited by either high VPD or air temperature during peak photosynthetic phases. The combination of high productivity, high BWR, and high RUE suggests that sorghum is well adapted to this extreme environment. The biomass production rates and efficiency metrics spanning three growing periods provide fundamental data for future Life Cycle Assessments (LCA), which are needed to assess the sustainability of this sorghum biofuel feedstock system.  相似文献   

16.
Growing biomass feedstocks from marginal lands is becoming an increasingly attractive choice for producing biofuel as an alternative energy to fossil fuels. Here, we used a biogeochemical model at ecosystem scale to estimate crop productivity and greenhouse gas (GHG) emissions from bioenergy crops grown on marginal lands in the United States. Two broadly tested cellulosic crops, switchgrass, and Miscanthus, were assumed to be grown on the abandoned land and mixed crop‐vegetation land with marginal productivity. Production of biomass and biofuel as well as net carbon exchange and nitrous oxide emissions were estimated in a spatially explicit manner. We found that, cellulosic crops, especially Miscanthus could produce a considerable amount of biomass, and the effective ethanol yield is high on these marginal lands. For every hectare of marginal land, switchgrass and Miscanthus could produce 1.0–2.3 kl and 2.9–6.9 kl ethanol, respectively, depending on nitrogen fertilization rate and biofuel conversion efficiency. Nationally, both crop systems act as net GHG sources. Switchgrass has high global warming intensity (100–390 g CO2eq l?1 ethanol), in terms of GHG emissions per unit ethanol produced. Miscanthus, however, emits only 21–36 g CO2eq to produce every liter of ethanol. To reach the mandated cellulosic ethanol target in the United States, growing Miscanthus on the marginal lands could potentially save land and reduce GHG emissions in comparison to growing switchgrass. However, the ecosystem modeling is still limited by data availability and model deficiencies, further efforts should be made to classify crop‐specific marginal land availability, improve model structure, and better integrate ecosystem modeling into life cycle assessment.  相似文献   

17.
This study projects future (e.g., 2050 and 2099) grassland productivities in the Greater Platte River Basin (GPRB) using ecosystem performance (EP, a surrogate for measuring ecosystem productivity) models and future climate projections. The EP models developed from a previous study were based on the satellite vegetation index, site geophysical and biophysical features, and weather and climate drivers. The future climate data used in this study were derived from the National Center for Atmospheric Research Community Climate System Model 3.0 ‘SRES A1B’ (a ‘middle’ emissions path). The main objective of this study is to assess the future sustainability of the potential biofuel feedstock areas identified in a previous study. Results show that the potential biofuel feedstock areas (the more mesic eastern part of the GPRB) will remain productive (i.e., aboveground grassland biomass productivity >2750 kg ha?1 year?1) with a slight increasing trend in the future. The spatially averaged EPs for these areas are 3519, 3432, 3557, 3605, 3752, and 3583 kg ha?1 year?1 for current site potential (2000–2008 average), 2020, 2030, 2040, 2050, and 2099, respectively. Therefore, the identified potential biofuel feedstock areas will likely continue to be sustainable for future biofuel development. On the other hand, grasslands identified as having no biofuel potential in the drier western part of the GPRB would be expected to stay unproductive in the future (spatially averaged EPs are 1822, 1691, 1896, 2306, 1994, and 2169 kg ha?1 year?1 for site potential, 2020, 2030, 2040, 2050, and 2099). These areas should continue to be unsuitable for biofuel feedstock development in the future. These future grassland productivity estimation maps can help land managers to understand and adapt to the expected changes in future EP in the GPRB and to assess the future sustainability and feasibility of potential biofuel feedstock areas.  相似文献   

18.
Growing concerns about energy and the environment have led to worldwide use of bioenergy. Switching from food crops to biofuel crops is an option to meet the fast‐growing need for biofuel feedstocks. This land use change consequently affects the ecosystem carbon balance. In this study, we used a biogeochemistry model, the Terrestrial Ecosystem Model, to evaluate the impacts of this change on the carbon balance, bioenergy production, and agricultural yield, assuming that several land use change scenarios from corn, soybean, and wheat to biofuel crops of switchgrass and Miscanthus will occur. We found that biofuel crops have much higher net primary production (NPP) than soybean and wheat crops. When food crops from current agricultural lands were changed to different biofuel crops, the national total NPP increased in all cases by a range of 0.14–0.88 Pg C yr?1, except while switching from corn to switchgrass when a decrease of 14% was observed. Miscanthus is more productive than switchgrass, producing about 2.5 times the NPP of switchgrass. The net carbon loss ranges from 1.0 to 6.3 Tg C yr?1 if food crops are changed to switchgrass, and from 0.4 to 6.7 Tg C yr?1 if changed to Miscanthus. The largest loss was observed when soybean crops were replaced with biofuel crops. Soil organic carbon increased significantly when land use changed, reaching 100 Mg C ha?1 in biofuel crop ecosystems. When switching from food crops to Miscanthus, the per unit area croplands produced a larger amount of ethanol than that of original food crops. In comparison, the land use change from wheat to Miscanthus produced more biomass and sequestrated more carbon. Our study suggests that Miscanthus could better serve as an energy crop than food crops or switchgrass, considering both economic and environmental benefits.  相似文献   

19.
Switchgrass (Panicum virgatum) productivity on marginal and fertile lands has not been thoroughly evaluated in a systematic manner that includes soil–crop–weather–management interactions and to quantify the risk of failure or success in growing the crop. We used the Systems Approach to Land Use Sustainability (SALUS) model to identify areas with low risk of failing to having more than 8000 kg ha?1 yr?1 switchgrass aboveground net primary productivity (ANPP) under rainfed and unfertilized conditions. In addition, we diagnosed constraining factors for switchgrass growth, and tested the effect of nitrogen fertilizer application on plant productivity across Michigan for 30 years under three climate scenarios (baseline climate in 1981–2010, future climate with emissions using RCP 2.6 and RCP 6.0). We determined that <16% of land in Michigan may have at least 8 Mg ha?1 yr?1 ANPP under rainfed and unfertilized management with a low risk of failure. Of the productive low‐risk land, about 25% was marginal land, with more than 80% of which was affected by limited water availability due to low soil water‐holding capacity and shallow depth. About 80% of the marginal land was N limited under baseline conditions, but that percentage decreased to 58.5% and 42.1% under RCP 2.6 and RCP 6.0 climate scenarios, respectively, partly due to shorter growing season, smaller plants and less N demand. We also found that the majority of Michigan's land could have high switchgrass ANPP and low risk of failure with no more than 60 kgN ha?1 fertilizer input. We believe that the methodology used in this study works at different spatial scales, as well as for other biofuel crops.  相似文献   

20.
The US Department of Energy has mandated the production of 16 billion gallons (60.6 billion liters) of renewable biofuel from cellulosic feedstocks by 2022. The perennial grass, Miscanthus × giganteus, is a potential candidate for cellulosic biofuel production because of high productivity with minimal inputs. This study determined the effect of three different spring fertilizer treatments (0, 60, and 120 kg N ha?1 yr?1 as urea) on biomass production, soil organic matter (SOM), and inorganic N leaching in Illinois, Kentucky, Nebraska, New Jersey, and Virginia, along with N2O and CO2 emissions at the IL site. There were no significant yield responses to fertilizer treatments, except at the IL site in 2012 (yields in 2012, year 4, varied from 10 to 23.7 Mg ha?1 across all sites). Potentially mineralizable N increased across all fertilizer treatments and sites in the 0–10 cm soil depth. An increase in permanganate oxidizable carbon (POX‐C, labile C) in surface soils occurred at the IL and NJ sites, which were regularly tilled before planting. Decreases in POX‐C were observed in the 0 – 10 cm soil depth at the KY and NE sites where highly managed turfgrass was grown prior to planting. Growing M. × giganteus altered SOM composition in only 4 years of production by increasing the amount of potentially mineralizable N at every site, regardless of fertilization amount. Nitrogen applications increased N leaching and N2O emission without increasing biomass production. This suggests that for the initial period (4 years) of M. × giganteus production, N application has a detrimental environmental impact without any yield benefits and thus should not be recommended. Further research is needed to define a time when N application to M. × giganteus results in increased biomass production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号