首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present study investigated the influence of abiotic conditions on microbial mat communities from Shark Bay, a World Heritage area well known for a diverse range of extant mats presenting structural similarities with ancient stromatolites. The distributions and stable carbon isotopic values of lipid biomarkers [aliphatic hydrocarbons and polar lipid fatty acids (PLFAs)] and bulk carbon and nitrogen isotope values of biomass were analysed in four different types of mats along a tidal flat gradient to characterize the microbial communities and systematically investigate the relationship of the above parameters with water depth. Cyanobacteria were dominant in all mats, as demonstrated by the presence of diagnostic hydrocarbons (e.g. n‐C17 and n‐C17:1). Several subtle but important differences in lipid composition across the littoral gradient were, however, evident. For instance, the shallower mats contained a higher diatom contribution, concordant with previous mat studies from other locations (e.g. Antarctica). Conversely, the organic matter (OM) of the deeper mats showed evidence for a higher seagrass contribution [high C/N, 13C‐depleted long‐chain n‐alkanes]. The morphological structure of the mats may have influenced CO2 diffusion leading to more 13C‐enriched lipids in the shallow mats. Alternatively, changes in CO2 fixation pathways, such as increase in the acetyl COA‐pathway by sulphate‐reducing bacteria, could have also caused the observed shifts in δ13C values of the mats. In addition, three smooth mats from different Shark Bay sites were analysed to investigate potential functional relationship of the microbial communities with differing salinity levels. The C25:1 HBI was identified in the high salinity mat only and a lower abundance of PLFAs associated with diatoms was observed in the less saline mats, suggesting a higher abundance of diatoms at the most saline site. Furthermore, it appeared that the most and least saline mats were dominated by autotrophic biomass using different CO2 fixation pathways.  相似文献   

2.
Microbialite‐forming microbial mats in a hypersaline lake on the atoll of Kiritimati were investigated with respect to microgradients, bulk water chemistry, and microbial community composition. O2, H2S, and pH microgradients show patterns as commonly observed for phototrophic mats with cyanobacteria‐dominated primary production in upper layers, an intermediate purple layer with sulfide oxidation, and anaerobic bottom layers with sulfate reduction. Ca2+ profiles, however, measured in daylight showed an increase of Ca2+ with depth in the oxic zone, followed by a sharp decline and low concentrations in anaerobic mat layers. In contrast, dark measurements show a constant Ca2+ concentration throughout the entire measured depth. This is explained by an oxygen‐dependent heterotrophic decomposition of Ca2+‐binding exopolymers. Strikingly, the daylight maximum in Ca2+ and subsequent drop coincides with a major zone of aragonite and gypsum precipitation at the transition from the cyanobacterial layer to the purple sulfur bacterial layer. Therefore, we suggest that Ca2+ binding exopolymers function as Ca2+ shuttle by their passive downward transport through compression, triggering aragonite precipitation in the mats upon their aerobic microbial decomposition and secondary Ca2+ release. This precipitation is mediated by phototrophic sulfide oxidizers whose action additionally leads to the precipitation of part of the available Ca2+ as gypsum.  相似文献   

3.
Green nonsulfur-like bacteria (GNSLB) in Yellowstone hot spring microbial mats have been extensively studied and are thought to operate both as photoheterotrophs and photoautotrophs. Here we studied the occurrence and carbon metabolisms of GNSLB by analyzing the distribution and isotopic composition of their characteristic wax ester lipids in four Californian and Nevada hot spring microbial mats at a range of temperatures (37–96°C). The distribution of wax esters varied strongly with temperature. At temperatures between 50–60°C the wax ester composition in each of the four hot spring microbial mats was dominated by C30 to C36 wax esters, consisting of mixtures of C15-C18 n-alkyl and branched fatty acids and alcohols, typical for GNSLB. Stable carbon isotopic analysis showed that these wax esters were only depleted by 5 to 10‰ compared to dissolved inorganic carbon in the overlying water, suggesting that these GNSLB were mainly autotrophic. However, analysis of different depth layers of one microbial mat showed that these GNSLB wax esters were increasingly depleted in 13C with depth, suggesting that photoautotrophy mainly occurred in the top layer of the mat. 13C-depleted C36-C44 wax esters were found in one hot spring at high temperatures (77–96°C) and are likely derived from allochtonous plant waxes. At several lower temperature sites (35–40°C) the wax esters were predominantly composed of C28, C30 and C32 wax esters consisting of mixtures of C14-C16 fatty acids and n-alkanols and were depleted in 13C by 15–20‰ relative to dissolved inorganic carbon, suggesting they may be derived from heterotrophic organisms. Our results indicate that autotrophic GNSLB occur widely in hot springs and that diverse groups of organisms contribute to the pool of wax ester lipids in hot spring environments.  相似文献   

4.
Microbial mats have arguably been the most important ecosystem on Earth over its 3.5 Gyr inhabitation. Mats have persisted as consortia for billions of years and occupy some of Earth's most hostile environments. With rare exceptions (e.g. microbial mats developed on geothermal springs at Yellowstone National Park, USA), today's mats do not exist under conditions analogous to Precambrian habitats with substantially lower oxygen and sulphate concentrations. This study uses a numerical model of a microbial mat to investigate how mat composition in the past might have differed from modern mats. We present a numerical model of mat biogeochemistry that simulates the growth of cyanobacteria (CYA), colourless sulphur bacteria (CSB), and purple sulphur bacteria (PSB), with sulphate‐reducing bacteria (SRB) and heterotrophic bacteria represented by parameterized sulphate reduction rates and heterotrophic consumption rates, respectively. Variations in the availability of light, oxygen, sulphide, and sulphate at the upper boundary of the mat are the driving forces in the model. Mats with remarkably similar biomass and chemical profiles develop in models under oxygen boundary conditions ranging from 2.5 × 10?13 to 0.25 mm and sulphate boundary concentrations ranging from 0.29 to 29 mm , designed to simulate various environments from Archean to modern. The modelled mats show little sensitivity to oxygen boundary conditions because, independent of the overlying oxygen concentrations, cyanobacterial photosynthesis creates similar O2 concentrations of 0.45–0.65 mm in the upper reaches of the mat during the photoperiod. Varying sulphate boundary conditions have more effect on the biological composition of the mat. Sulphide generated from sulphate reduction controls the magnitude and distribution of the PSB population, and plays a part in the distribution of CSB. CSB are the most sensitive species to environmental change, varying with oxygen and sulphide.  相似文献   

5.
Summary Constructed microbial mats, used for studies on the removal and transformation of metals and metalloids, are made by combining cyanobacteria inoculum with a sediment inoculum from a metal-contaminated site. These mats are a heterotrophic and autotrophic community dominated by cyanobacteria and held together by slimy secretions produced by various microbial groups. When contaminated water containing high concentrations of metals is passed over microbial mats immobilized on glass wool, there is rapid removal of the metals from the water. The mats are tolerant of high concentrations of toxic metals and metalloids, such as cadmium, lead, chromium, selenium and arsenic (up to 350 mg L–1). This tolerance may be due to a number of mechanisms at the molecular, cellular and community levels. Management of toxic metals by the mats is related to deposition of metal compounds outside the cell surfaces as well as chemical modification of the aqueous environment surrounding the mats. The location of metal deposition is determined by factors such as redox gradients, cell surface micro-environments and secretion of extra-cellular bioflocculents. Metal-binding flocculents (polyanionic polysaccharides) are produced in large quantities by the cyanobacterial component of the mat. Steep gradients of redox and oxygen exist from the surface through the laminated strata of microbes. These are produced by photosynthetic oxygen production at the surface and heterotrophic consumption in the deeper regions. Additionally, sulfur-reducing bacteria colonize the lower strata, removing and utilizing the reducing H2S, rather than water, for photosynthesis. Thus, depending on the chemical character of the microzone of the mat, the sequestered metals or metalloids can be oxidized, reduced and precipitated as sulfides or oxides. For example precipitates of red amorphous elemental selenium were identified in mats exposed to selenate (Se-VI) and insoluble precipitates of manganese, chromium, cadmium, cobalt, and lead were found in mats exposed to soluble salts of these metals. Constructed microbial mats offer several advantages for use in the bioremediation of metal-contaminated sites. These include low cost, durability, ability to function in both fresh and salt water, tolerance to high concentrations of metals and metalloids and the unique capacity of mats to form associations with new microbial species. Thus one or several desired microbial species might be integrated into mats in order to design the community for specific bioremediation applications.  相似文献   

6.
The 2.1‐billion‐year‐old (Ga) Francevillian series in Gabon hosts some of the oldest reported macroscopic fossils of various sizes and shapes, stimulating new debates on the origin, evolution and organization of early complex life. Here, we document ten representative types of exceptionally well‐preserved mat‐related structures, comprising “elephant‐skin” textures, putative macro‐tufted microbial mats, domal buildups, flat pyritized structures, discoidal microbial colonies, horizontal mat growth patterns, wrinkle structures, “kinneyia” structures, linear patterns and nodule‐like structures. A combination of petrographic analyses, scanning electron microscopy, Raman spectroscopy and organic elemental analyses of carbon‐rich laminae and microtexture, indicate a biological origin for these structures. The observed microtextures encompass oriented grains, floating silt‐sized quartz grains, concentrated heavy minerals, randomly oriented clays, wavy‐crinkly laminae and pyritized structures. Based on comparisons with modern analogues, as well as an average δ13C organic matter (Corg) composition of ?32.94 ± 1.17‰ (1 standard deviation, SD) with an outlier of ?41.26‰, we argue that the mat‐related structures contain relicts of multiple carbon pathways including heterotrophic recycling of photosynthetically derived Corg. Moreover, the relatively close association of the macroscopic fossil assemblages to the microbial mats may imply that microbial communities acted as potential benthic O2 oases linked to oxyphototrophic cyanobacterial mats and grazing grounds. In addition, the mat's presence likely improved the preservation of the oldest large colonial organisms, as they are known to strongly biostabilize sediments. Our findings highlight the oldest community assemblage of microscopic and macroscopic biota in the aftermath of the “Great Oxidation Event,” widening our understanding of biological organization during Earth's middle age.  相似文献   

7.
Modern laminated photosynthetic microbial mats are ideal environments to study how microbial activity creates and modifies carbon and sulfur isotopic signatures prior to lithification. Laminated microbial mats from a hypersaline lagoon (Guerrero Negro, Baja California, Mexico) maintained in a flume in a greenhouse at NASA Ames Research Center were sampled for δ13C of organic material and carbonate to assess the impact of carbon fixation (e.g., photosynthesis) and decomposition (e.g., bacterial respiration) on δ13C signatures. In the photic zone, the δ13Corg signature records a complex relationship between the activities of cyanobacteria under variable conditions of CO2 limitation with a significant contribution from green sulfur bacteria using the reductive TCA cycle for carbon fixation. Carbonate is present in some layers of the mat, associated with high concentrations of bacteriochlorophyll e (characteristic of green sulfur bacteria) and exhibits δ13C signatures similar to DIC in the overlying water column (?2.0‰), with small but variable decreases consistent with localized heterotrophic activity from sulfate‐reducing bacteria (SRB). Model results indicate respiration rates in the upper 12 mm of the mat alter in situ pH and concentrations to create both phototrophic CO2 limitation and carbonate supersaturation, leading to local precipitation of carbonate minerals. The measured activity of SRB with depth suggests they variably contribute to decomposition in the mat dependent on organic substrate concentrations. Millimeter‐scale variability in the δ13Corg signature beneath the photic zone in the mat is a result of shifting dominance between cyanobacteria and green sulfur bacteria with the aggregate signature overprinted by heterotrophic reworking by SRB and methanogens. These observations highlight the impact of sedimentary microbial processes on δ13Corg signatures; these processes need to be considered when attempting to relate observed isotopic signatures in ancient sedimentary strata to conditions in the overlying water column at the time of deposition and associated inferences about carbon cycling.  相似文献   

8.
Thrombolites are unlaminated carbonate build‐ups that are formed via the metabolic activities of complex microbial mat communities. The thrombolitic mats of Highborne Cay, Bahamas develop in close proximity (1–2 m) to accreting laminated stromatolites, providing an ideal opportunity for biogeochemical and molecular comparisons of these two distinctive microbialite ecosystems. In this study, we provide the first comprehensive characterization of the biogeochemical activities and microbial diversity of the Highborne Cay thrombolitic mats. Morphological and molecular analyses reveal two dominant mat types associated with the thrombolite deposits, both of which are dominated by bacteria from the taxa Cyanobacteria and Alphaproteobacteria. Diel cycling of dissolved oxygen (DO) and dissolved inorganic carbon (DIC) were measured in all thrombolitic mat types. DO production varied between thrombolitic types and one morphotype, referred to in this study as ‘button mats’, produced the highest levels among all mat types, including the adjacent stromatolites. Characterization of thrombolite bacterial communities revealed a high bacterial diversity, roughly equivalent to that of the nearby stromatolites, and a low eukaryotic diversity. Extensive phylogenetic overlap between thrombolitic and stromatolitic microbial communities was observed, although thrombolite‐specific cyanobacterial populations were detected. In particular, the button mats were dominated by a calcified, filamentous cyanobacterium identified via morphology and 16S rRNA gene sequencing as Dichothrix sp. The distinctive microbial communities and chemical cycling patterns within the thrombolitic mats provide novel insight into the biogeochemical processes related to the lithifying mats in this system, and provide data relevant to understanding microbially induced carbonate biomineralization.  相似文献   

9.
Sulphoquinovosyldiacylglycerols (SQDG) are polar sulphur‐containing membrane lipids, whose presence has been related to a microbial strategy to adapt to phosphate deprivation. In this study, we have targeted the sqdB gene coding the uridine 5′‐diphosphate‐sulphoquinovose (UDP‐SQ) synthase involved in the SQDG biosynthetic pathway to assess potential microbial sources of SQDGs in the marine environment. The phylogeny of the sqdB‐coding protein reveals two distinct clusters: one including green algae, higher plants and cyanobacteria, and another one comprising mainly non‐photosynthetic bacteria, as well as other cyanobacteria and algal groups. Evolutionary analysis suggests that the appearance of UDP‐SQ synthase occurred twice in cyanobacterial evolution, and one of those branches led to the diversification of the protein in members of the phylum Proteobacteria. A search of homologues of sqdB‐proteins in marine metagenomes strongly suggested the presence of heterotrophic bacteria potential SQDG producers. Application of newly developed sqdB gene primers in the marine environment revealed a high diversity of sequences affiliated to cyanobacteria and Proteobacteria in microbial mats, while in North Sea surface water, most of the detected sqdB genes were attributed to the cyanobacterium Synechococcus sp. Lipid analysis revealed that specific SQDGs were characteristic of microbial mat depth, suggesting that SQDG lipids are associated with specific producers.  相似文献   

10.
11.
Aragonitic microbialites, characterized by a reticulate fabric, were discovered beneath lacustrine microbial mats on the atoll of Kiritimati, Republic of Kiribati, Central Pacific. The microbial mats, with cyanobacteria as major primary producers, grow in evaporated seawater modified by calcium carbonate and gypsum precipitation and calcium influx via surface and/or groundwaters. Despite the high aragonite supersaturation and a high photosynthetic activity, only minor aragonite precipitates are observed in the top parts of the microbial mats. Instead, major aragonite precipitation takes place in lower mat parts at the transition to the anoxic zone. The prokaryotic community shows a high number of phylotypes closely related to halotolerant taxa and/or taxa with preference to oligotrophic habitats. Soil- and plant- inhabiting bacteria underline a potential surface or subsurface influx from terrestrial areas, while chitinase-producing representatives coincide with the occurrence of insect remains in the mats. Strikingly, many of the clones have their closest relatives in microorganisms either involved in methane production or consumption of methane or methyl compounds. Methanogens, represented by the methylotrophic genus Methanohalophilus, appear to be one of the dominant organisms in anaerobic mat parts. All this points to a significant role of methane and methyl components in the carbon cycle of the mats. Nonetheless, thin sections and physicochemical gradients through the mats, as well as the 12C-depleted carbon isotope signatures of carbonates indicate that spherulitic components of the microbialites initiate in the photosynthesis-dominated orange mat top layer, and further grow in the green and purple layer below. Therefore, these spherulites are considered as product of an extraordinary high photosynthesis effect simultaneous to a high inhibition by pristine exopolymers. Then, successive heterotrophic bacterial activity leads to a condensation of the exopolymer framework, and finally to the formation of crevice-like zones of partly degraded exopolymers. Here initiation of horizontal aragonite layers and vertical aragonite sheets of the microbialite occurs, which are considered as a product of high photosynthesis at decreasing degree of inhibition. Finally, at low supersaturation and almost lack of inhibition, syntaxial growth of aragonite crystals at lamellae surfaces leads to thin fibrous aragonite veneers. While sulfate reduction, methylotrophy, methanogenesis and ammonification play an important role in element cycling of the mat, there is currently no evidence for a crucial role of them in CaCO3 precipitation. Instead, photosynthesis and exopolymer degradation sufficiently explain the observed pattern and fabric of microbialite formation.  相似文献   

12.
Microbial mats are stratified microbial communities composed by highly inter-related populations and therefore are frequently chosen as model systems to study diversity and ecophysiological strategies. The present study describes an integrated approach to analyze microbial quinones and intact polar lipids (IPLs) in microbial mats within layers as thin as 500 μm by liquid chromatography–tandem mass spectrometry. Quinone profiles revealed important depth-related differences in community composition in two mat systems. The higher abundance of ubiquinones, compared to menaquinones, reflected the clear predominance of microorganisms belonging to aerobic α-, β-, and γ-Proteobacteria in Ebro delta estuarine mats. Hypersaline photosynthetic Camargue mats (France) showed a predominance of menaquinone-9 at the top of the mat, which is consistent with an important contribution of facultative aerobic or anaerobic bacteria in its photic zone. Quinone indices also indicated a higher diversity of non-phototrophs and a more anaerobic character in the hypersaline mats. Besides, the dissimilarity index suggested that the samples were greatly influenced by a depth-related redox state gradient. In the analysis of IPLs, there was a predominance of phosphatidylglycerols and sulfoquinovosyldiacylglycerols, the latter being an abundant biomarker of Cyanobacteria. This combined approach based on quinone and IPL analysis has proven to be a useful method to establish differences in the microbial diversity and redox state of highly structure microbial mat systems at a fine-scale level.  相似文献   

13.
In modern microbial mats, hydrogen sulfide shows pronounced sulfur isotope (δ34S) variability over small spatial scales (~50‰ over <4 mm), providing information about microbial sulfur cycling within different ecological niches in the mat. In the geological record, the location of pyrite formation, overprinting from mat accretion, and post‐depositional alteration also affect both fine‐scale δ34S patterns and bulk δ34Spyrite values. We report μm‐scale δ34S patterns in Proterozoic samples with well‐preserved microbial mat textures. We show a well‐defined relationship between δ34S values and sulfide mineral grain size and type. Small pyrite grains (<25 μm) span a large range, tending toward high δ34S values (?54.5‰ to 11.7‰, mean: ?14.4‰). Larger pyrite grains (>25 μm) have low but equally variable δ34S values (?61.0‰ to ?10.5‰, mean: ?44.4‰). In one sample, larger sphalerite grains (>35 μm) have intermediate and essentially invariant δ34S values (?22.6‰ to ?15.6‰, mean: ?19.4‰). We suggest that different sulfide mineral populations reflect separate stages of formation. In the first stage, small pyrite grains form near the mat surface along a redox boundary where high rates of sulfate reduction, partial closed‐system sulfate consumption in microenvironments, and/or sulfide oxidation lead to high δ34S values. In another stage, large sphalerite grains with low δ34S values grow along the edges of pore spaces formed from desiccation of the mat. Large pyrite grains form deeper in the mat at slower sulfate reduction rates, leading to low δ34Ssulfide values. We do not see evidence for significant 34S‐enrichment in bulk pore water sulfide at depth in the mat due to closed‐system Rayleigh fractionation effects. On a local scale, Rayleigh fractionation influences the range of δ34S values measured for individual pyrite grains. Fine‐scale analyses of δ34Spyrite patterns can thus be used to extract environmental information from ancient microbial mats and aid in the interpretation of bulk δ34Spyrite records.  相似文献   

14.
It is widely held that sterols are key cyclic triterpenoid lipids in eukaryotic cell membranes and are synthesized through oxygen‐dependent multienzyme pathways. However, there are known exceptions―ciliated protozoans, such as Tetrahymena, along with diverse low‐oxygen‐adapted eukaryotes produce, instead of sterols, the cyclic triterpenoid lipid tetrahymanol that does not require molecular oxygen for its biosynthesis. Here, we report that a number of anaerobic microbial eukaryotes (protists) utilize neither sterols nor tetrahymanol in their membranes. The lack of detectable sterol‐like compounds in their membranes may provide an opportunity to reconsider the physiological function of sterols and sterol‐like lipids in eukaryotes.  相似文献   

15.
Heterotrophic bacterial biomass and growth rates were examined in stromatolites formed from four different types of benthic cyanobacterial mats. Bacteria in algal mats were counted using direct microscopy and biomass was estimated from the numbers of bacteria. Heterotrophic bacterial growth rates were estimated from the rate of incorporation of tritiated thy‐midine into DNA. Pustular mat, which occurs in the upper in‐tertidal zone, contained relatively few bacteria in the surface layers (0–5 mm), having about 0.2 x 106 cells mm‐3, or 20 mgC m‐2 per millimetre depth. Other mats in the lower intertidal and subtidal zones had from 1 x 106 cells mm‐3 to 8 x 106 cells mm‐3. Heterotrophic bacterial productivities were 2.1 to 5.0 mgC m‐2 h‐1. Turnover times were an average of 1 day in the sandy sediment and 5 days in the colloform mat. Although these results are minimum estimates, they indicate that heterotrophic bacteria contribute substantially to the carbon cycle in stromatolites, by utilizing about 20 to 30% of primary production.  相似文献   

16.
Modern microbial mats are highly complex and dynamic ecosystems. Diffusive equilibration in thin films (DET) and diffusive gradients in thin films (DGT) samplers were deployed in a modern smooth microbial mat from Shark Bay in order to observe, for the first time, two‐dimensional distributions of porewater solutes during day and night time. Two‐dimensional sulfide and alkalinity distributions revealed a strong spatial heterogeneity and a minor contribution of sulfide to alkalinity. Phosphate distributions were also very heterogeneous, while iron(II) distributions were quite similar during day and night with a few hotspots of mobilization. Lipid biomarkers from the three successive layers of the mat were also analysed in order to characterize the microbial communities regulating analyte distributions. The major hydrocarbon products detected in all layers included n‐alkanes and isoprenoids, whilst other important biomarkers included hopanoids. Phospholipid fatty acid profiles revealed a decrease in cyanobacterial markers with depth, whereas sulfate‐reducing bacteria markers increased in abundance in accordance with rising sulfide concentrations with depth. Despite the general depth trends in community structure and physiochemical conditions within the mat, two‐dimensional solute distributions showed considerable small‐scale lateral variability, indicating that the distributions and activities of the microbial communities regulating these solute distributions were equally heterogeneous and complex.  相似文献   

17.
We investigated the diversity, distribution, and phenotypes of uncultivated Chloroflexaceae-related bacteria in photosynthetic microbial mats of an alkaline hot spring (Mushroom Spring, Yellowstone National Park). By applying a directed PCR approach, molecular cloning, and sequence analysis of 16S rRNA genes, an unexpectedly large phylogenetic diversity among these bacteria was detected. Oligonucleotide probes were designed to target 16S rRNAs from organisms affiliated with the genus Chloroflexus or with the type C cluster, a group of previously discovered Chloroflexaceae relatives of this mat community. The application of peroxidase-labeled probes in conjunction with tyramide signal amplification enabled the identification of these organisms within the microbial mats by fluorescence in situ hybridization (FISH) and the investigation of their morphology, abundance, and small-scale distribution. FISH was combined with oxygen microelectrode measurements, microscope spectrometry, and microautoradiography to examine their microenvironment, pigmentation, and carbon source usage. Abundant type C-related, filamentous bacteria were found to flourish within the cyanobacterium-dominated, highly oxygenated top layers and to predominate numerically in deeper orange-colored zones of the investigated microbial mats, correlating with the distribution of bacteriochlorophyll a. Chloroflexus sp. filaments were rare at 60°C but were more abundant at 70°C, where they were confined to the upper millimeter of the mat. Both type C organisms and Chloroflexus spp. were observed to assimilate radiolabeled acetate under in situ conditions.  相似文献   

18.
The capability of Time of Flight–Secondary Ion Mass Spectrometry (ToF‐SIMS) of analysing molecular archaeal biomarkers in geobiological samples was tested and demonstrated. Using a bismuth cluster primary ion source, isopranyl glycerol di‐ and tetraether core lipids were detected in small amounts of total organic extracts from methanotrophic microbial mats, simultaneously and without further chemical treatment and chromatographic separation. ToF‐SIMS was also employed to track the distribution of fossilized ether lipids in a massive carbonate (aragonite) microbialite that precipitated as a result of the microbial anaerobic oxidation of methane. An unambiguous signal was obtained when analysing a freshly broken rock surface (base of a microdrill core). Though some limitation occurred due to µm‐topographical effects (sample roughness), it was possible to display the abundance of high molecular weight (C86) of tetraethers exposed in particular regions of the rock surface. ‘Molecular mapping’ revealed that a part of these molecules was encased within the rock fabric in a cluster‐like distribution that might trace the arrangement of the calcifying microbial colonies in the once active mat system. The results reveal promising perspectives of ToF‐SIMS for (i) the quasi‐nondestructive analysis of lipids in extremely small geobiological samples at low concentrations; (ii) resolving the spatial distribution of these compounds on a µm2‐ to cm2‐scale; and (iii) the more exact assignment of lipid biomarkers to their biological source.  相似文献   

19.
Fossil microbiotas are rare in the early rock record, limiting the type of ecological information extractable from ancient microbialites. In the absence of body fossils, emphasis may instead be given to microbially derived features, such as microbialite growth patterns, microbial mat morphologies, and the presence of fossilized gas bubbles in lithified mats. The metabolic affinity of micro‐organisms associated with phosphatization may reveal important clues to the nature and accretion of apatite‐rich microbialites. Stromatolites from the 1.6 Ga Chitrakoot Formation (Semri Group, Vindhyan Supergroup) in central India contain abundant fossilized bubbles interspersed within fine‐grained in situ‐precipitated apatite mats with average δ13Corg indicative of carbon fixation by the Calvin cycle. In addition, the mats hold a synsedimentary fossil biota characteristic of cyanobacterial and rhodophyte morphotypes. Phosphatic oncoid cone‐like stromatolites from the Paleoproterozoic Aravalli Supergroup (Jhamarkotra Formation) comprise abundant mineralized bubbles enmeshed within tufted filamentous mat fabrics. Construction of these tufts is considered to be the result of filamentous bacteria gliding within microbial mats, and as fossilized bubbles within pristine mat laminae can be used as a proxy for oxygenic phototrophy, this provides a strong indication for cyanobacterial activity in the Aravalli mounds. We suggest that the activity of oxygenic phototrophs may have been significant for the formation of apatite in both Vindhyan and Aravalli stromatolites, mainly by concentrating phosphate and creating steep diurnal redox gradients within mat pore spaces, promoting apatite precipitation. The presence in the Indian stromatolites of alternating apatite‐carbonate lamina may result from local variations in pH and oxygen levels caused by photosynthesis–respiration in the mats. Altogether, this study presents new insights into the ecology of ancient phosphatic stromatolites and warrants further exploration into the role of oxygen‐producing biotas in the formation of Paleoproterozoic shallow‐basin phosphorites.  相似文献   

20.

Background

Microbial mats are a good model system for ecological and evolutionary analysis of microbial communities. There are more than 20 alkaline hot springs on the banks of the Barguzin river inflows. Water temperature reaches 75 °C and pH is usually 8.0–9.0. The formation of microbial mats is observed in all hot springs. Microbial communities of hot springs of the Baikal rift zone are poorly studied. Garga is the biggest hot spring in this area.

Results

In this study, we investigated bacterial and archaeal diversity of the Garga hot spring (Baikal rift zone, Russia) using 16S rRNA metagenomic sequencing. We studied two types of microbial communities: (i) small white biofilms on rocks in the points with the highest temperature (75 °C) and (ii) continuous thick phototrophic microbial mats observed at temperatures below 70 °C. Archaea (mainly Crenarchaeota; 19.8% of the total sequences) were detected only in the small biofilms. The high abundance of Archaea in the sample from hot springs of the Baikal rift zone supplemented our knowledge of the distribution of Archaea. Most archaeal sequences had low similarity to known Archaea. In the microbial mats, primary products were formed by cyanobacteria of the genus Leptolyngbya. Heterotrophic microorganisms were mostly represented by Actinobacteria and Proteobacteria in all studied samples of the microbial mats. Planctomycetes, Chloroflexi, and Chlorobi were abundant in the middle layer of the microbial mats, while heterotrophic microorganisms represented mostly by Firmicutes (Clostridia, strict anaerobes) dominated in the bottom part. Besides prokaryotes, we detect some species of Algae with help of detection their chloroplasts 16 s rRNA.

Conclusions

High abundance of Archaea in samples from hot springs of the Baikal rift zone supplemented our knowledge of the distribution of Archaea. Most archaeal sequences had low similarity to known Archaea. Metagenomic analysis of microbial communities of the microbial mat of Garga hot spring showed that the three studied points sampled at 70 °C, 55 °C, and 45 °C had similar species composition. Cyanobacteria of the genus Leptolyngbya dominated in the upper layer of the microbial mat. Chloroflexi and Chlorobi were less abundant and were mostly observed in the middle part of the microbial mat. We detected domains of heterotrophic organisms in high abundance (Proteobacteria, Firmicutes, Verrucomicrobia, Planctomicetes, Bacteroidetes, Actinobacteria, Thermi), according to metabolic properties of known relatives, which can form complete cycles of carbon, sulphur, and nitrogen in the microbial mat. The studied microbial mats evolved in early stages of biosphere formation. They can live autonomously, providing full cycles of substances and preventing live activity products poisoning.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号