首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
No tillage (NT) has been proposed as a practice to reduce the adverse effects of tillage on contaminant (e.g., sediment and nutrient) losses to waterways. Nonetheless, previous reports on impacts of NT on nitrate ( NO 3 ) leaching are inconsistent. A global meta-analysis was conducted to test the hypothesis that the response of NO 3 leaching under NT, relative to tillage, is associated with tillage type (inversion vs non-inversion tillage), soil properties (e.g., soil organic carbon [SOC]), climate factors (i.e., water input), and management practices (e.g., NT duration and nitrogen fertilizer inputs). Overall, compared with all forms of tillage combined, NT had 4% and 14% greater area-scaled and yield-scaled NO 3 leaching losses, respectively. The NO 3 leaching under NT tended to be 7% greater than that of inversion tillage but comparable to non-inversion tillage. Greater NO 3 leaching under NT, compared with inversion tillage, was most evident under short-duration NT (<5 years), where water inputs were low (<2 mm day−1), in medium texture and low SOC (<1%) soils, and at both higher (>200 kg ha−1) and lower (0–100 kg ha−1) rates of nitrogen addition. Of these, SOC was the most important factor affecting the risk of NO3 leaching under NT compared with inversion tillage. Globally, on average, the greater amount of NO3 leached under NT, compared with inversion tillage, was mainly attributed to corresponding increases in drainage. The percentage of global cropping land with lower risk of NO3 leaching under NT, relative to inversion tillage, increased with NT duration from 3 years (31%) to 15 years (54%). This study highlighted that the benefits of NT adoption for mitigating NO 3 leaching are most likely in long-term NT cropping systems on high-SOC soils.  相似文献   

2.
The existence of a large-biomass carbon (C) sink in Northern Hemisphere extra-tropical ecosystems (NHee) is well-established, but the relative contribution of different potential drivers remains highly uncertain. Here we isolated the historical role of carbon dioxide (CO2) fertilization by integrating estimates from 24 CO2-enrichment experiments, an ensemble of 10 dynamic global vegetation models (DGVMs) and two observation-based biomass datasets. Application of the emergent constraint technique revealed that DGVMs underestimated the historical response of plant biomass to increasing [CO2] in forests ( β Forest Mod ) but overestimated the response in grasslands ( β Grass Mod ) since the 1850s. Combining the constrained β Forest Mod (0.86 ± 0.28 kg C m−2 [100 ppm]−1) with observed forest biomass changes derived from inventories and satellites, we identified that CO2 fertilization alone accounted for more than half (54 ± 18% and 64 ± 21%, respectively) of the increase in biomass C storage since the 1990s. Our results indicate that CO2 fertilization dominated the forest biomass C sink over the past decades, and provide an essential step toward better understanding the key role of forests in land-based policies for mitigating climate change.  相似文献   

3.
Tropical and subtropical forest biomes are a main hotspot for the global nitrogen (N) cycle. Yet, our understanding of global soil N cycle patterns and drivers and their response to N deposition in these biomes remains elusive. By a meta-analysis of 2426-single and 161-paired observations from 89 published 15 N pool dilution and tracing studies, we found that gross N mineralization (GNM), immobilization of ammonium ( I NH 4 ) and nitrate ( I NO 3 ), and dissimilatory nitrate reduction to ammonium (DNRA) were significantly higher in tropical forests than in subtropical forests. Soil N cycle was conservative in tropical forests with ratios of gross nitrification (GN) to I NH 4 (GN/ I NH 4 ) and of soil nitrate to ammonium (NO3/NH4+) less than one, but was leaky in subtropical forests with GN/ I NH 4 and NO3/NH4+ higher than one. Soil NH4+ dynamics were mainly controlled by soil substrate (e.g., total N), but climatic factors (e.g., precipitation and/or temperature) were more important in controlling soil NO3 dynamics. Soil texture played a role, as GNM and I NH 4 were positively correlated with silt and clay contents, while I NO 3 and DNRA were positively correlated with sand and clay contents, respectively. The soil N cycle was more sensitive to N deposition in tropical forests than in subtropical forests. Nitrogen deposition leads to a leaky N cycle in tropical forests, as evidenced by the increase in GN/ I NH 4 , NO3/NH4+, and nitrous oxide emissions and the decrease in I NO 3 and DNRA, mainly due to the decrease in soil microbial biomass and pH. Dominant tree species can also influence soil N cycle pattern, which has changed from conservative in deciduous forests to leaky in coniferous forests. We provide global evidence that tropical, but not subtropical, forests are characterized by soil N dynamics sustaining N availability and that N deposition inhibits soil N retention and stimulates N losses in these biomes.  相似文献   

4.
Climate change leads to increasing temperature and more extreme hot and drought events. Ecosystem capability to cope with climate warming depends on vegetation's adjusting pace with temperature change. How environmental stresses impair such a vegetation pace has not been carefully investigated. Here we show that dryness substantially dampens vegetation pace in warm regions to adjust the optimal temperature of gross primary production (GPP) ( T opt GPP ) in response to change in temperature over space and time. T opt GPP spatially converges to an increase of 1.01°C (95% CI: 0.97, 1.05) per 1°C increase in the yearly maximum temperature (Tmax) across humid or cold sites worldwide (37oS–79oN) but only 0.59°C (95% CI: 0.46, 0.74) per 1°C increase in Tmax across dry and warm sites. T opt GPP temporally changes by 0.81°C (95% CI: 0.75, 0.87) per 1°C interannual variation in Tmax at humid or cold sites and 0.42°C (95% CI: 0.17, 0.66) at dry and warm sites. Regardless of the water limitation, the maximum GPP (GPPmax) similarly increases by 0.23 g C m−2 day−1 per 1°C increase in T opt GPP in either humid or dry areas. Our results indicate that the future climate warming likely stimulates vegetation productivity more substantially in humid than water-limited regions.  相似文献   

5.
Increasing atmospheric reactive nitrogen (N) deposition due to human activities could change N cycling in terrestrial ecosystems. However, the differences between the fates of deposited and are still not fully understood. Here, we investigated the fates of deposited and , respectively, via the application of 15NH4NO3 and NH415NO3 in a temperate forest ecosystem. Results showed that at 410 days after tracer application, most was immobilized in litter layer (50 ± 2%), while a considerable amount of penetrated into 0–5 cm mineral soil (42 ± 2%), indicating that litter layer and 0–5 cm mineral soil were the major N sinks of and , respectively. Broad‐leaved trees assimilated more 15N under NH415NO3 treatment compared to under 15NH4NO3 treatment, indicating their preference for –N. At 410 days after tracer application, 16 ± 4% added 15N was found in aboveground biomass under treatment, which was twice more than that under treatment (6 ± 1%). At the same time, approximately 80% added 15N was recovered in soil and plants under both treatments, which suggested that this forest had high potential for retention of deposited N. These results provided evidence that there were great differences between the fates of deposited and , which could help us better understand the mechanisms and capability of forest ecosystems as a sink of reactive nitrogen.  相似文献   

6.
The peak growth of plant in summer is an important indicator of the capacity of terrestrial ecosystem productivity, and ongoing studies have shown its responses to climate warming as represented in the mean temperature. However, the impacts from the asymmetrical warming, that is, different rates in the changes of daytime (Tmax) and nighttime (Tmin) warming were mostly ignored. Using 60 flux sites (674 site-year in total) measurements and satellite observations from two independent satellite platforms (Global Inventory Monitoring and Modeling Studies [1982–2015]; MODIS [2000–2020]) over the Northern Hemisphere (≥30°N), here we show that the peak growth, as represented by both flux-based maximum primary productivity and the maximum greenness indices (maximum normalized difference vegetation index and enhanced vegetation index), responded oppositely to daytime and nighttime warming. T max T min + (peak growth showed negative responses to Tmax, but positive responses to Tmin) dominated in most ecosystems and climate types, especially in water-limited ecosystems, while T max + T min (peak growth showed positive responses to Tmax, but negative responses to Tmin) was primarily observed in high latitude regions. These contrasting responses could be explained by the strong association between asymmetric warming and water conditions, including soil moisture, evapotranspiration/potential evapotranspiration, and the vapor pressure deficit. Our results are therefore important to the understanding of the responses of peak growth to climate change, and consequently a better representation of asymmetrical warming in future ecosystem models by differentiating the contributions between daytime and nighttime warming.  相似文献   

7.
Rising atmospheric CO2 concentrations are expected to increase nitrous oxide (N2O) emissions from soils via changes in microbial nitrogen (N) transformations. Several studies have shown that N2O emission increases under elevated atmospheric CO2 (eCO2), but the underlying processes are not yet fully understood. Here, we present results showing changes in soil N transformation dynamics from the Giessen Free Air CO2 Enrichment (GiFACE): a permanent grassland that has been exposed to eCO2, +20% relative to ambient concentrations (aCO2), for 15 years. We applied in the field an ammonium‐nitrate fertilizer solution, in which either ammonium () or nitrate () was labelled with 15N. The simultaneous gross N transformation rates were analysed with a 15N tracing model and a solver method. The results confirmed that after 15 years of eCO2 the N2O emissions under eCO2 were still more than twofold higher than under aCO2. The tracing model results indicated that plant uptake of did not differ between treatments, but uptake of was significantly reduced under eCO2. However, the and availability increased slightly under eCO2. The N2O isotopic signature indicated that under eCO2 the sources of the additional emissions, 8,407 μg N2O–N/m2 during the first 58 days after labelling, were associated with reduction (+2.0%), oxidation (+11.1%) and organic N oxidation (+86.9%). We presume that increased plant growth and root exudation under eCO2 provided an additional source of bioavailable supply of energy that triggered as a priming effect the stimulation of microbial soil organic matter (SOM) mineralization and fostered the activity of the bacterial nitrite reductase. The resulting increase in incomplete denitrification and therefore an increased N2O:N2 emission ratio, explains the doubling of N2O emissions. If this occurs over a wide area of grasslands in the future, this positive feedback reaction may significantly accelerate climate change.  相似文献   

8.
The bacterial adhesin FimH is a model for the study of protein allostery because its structure has been resolved in multiple configurations, including the active and the inactive state. FimH consists of a pilin domain (PD) that anchors it to the rest of the fimbria and an allosterically regulated lectin domain (LD) that binds mannose on the surface of infected cells. Under normal conditions, the two domains are docked to each other and LD binds mannose weakly. However, in the presence of tensile force generated by shear the domains separate and conformational changes propagate across LD resulting in a stronger bond to mannose. Recently, the crystallographic structure of a variant of FimH has been resolved, called FimH FocH , where PD contains 10 mutations near the inter-domain interface. Although the X-ray structures of FimH and FimH FocH are almost identical, experimental evidence shows that FimH FocH is activated even in the absence of shear. Here, molecular dynamics simulations combined with the Jarzynski equality were used to investigate the discrepancy between the crystallographic structures and the functional assays. The results indicate that the free energy barrier of the unbinding process between LD and PD is drastically reduced in FimH FocH . Rupture of inter-domain hydrogen bonds involving R166 constitutes a rate limiting step of the domain separation process and occurs more readily in FimH FocH than FimH. In conclusion, the mutations in FimH FocH shift the equilibrium toward an equal occupancy of bound and unbound states for LD and PD by reducing a rate limiting step.  相似文献   

9.
Rising atmospheric CO2 concentrations is expected to stimulate photosynthesis and carbohydrate production, while inhibiting photorespiration. By contrast, nitrogen (N) concentrations in leaves generally tend to decline under elevated CO2 (eCO2), which may reduce the magnitude of photosynthetic enhancement. We tested two hypotheses as to why leaf N is reduced under eCO2: (a) A “dilution effect” caused by increased concentration of leaf carbohydrates; and (b) inhibited nitrate assimilation caused by reduced supply of reductant from photorespiration under eCO2. This second hypothesis is fully tested in the field for the first time here, using tall trees of a mature Eucalyptus forest exposed to Free‐Air CO2 Enrichment (EucFACE) for five years. Fully expanded young and mature leaves were both measured for net photosynthesis, photorespiration, total leaf N, nitrate () concentrations, carbohydrates and reductase activity to test these hypotheses. Foliar N concentrations declined by 8% under eCO2 in new leaves, while the fraction and total carbohydrate concentrations remained unchanged by CO2 treatment for either new or mature leaves. Photorespiration decreased 31% under eCO2 supplying less reductant, and in situ reductase activity was concurrently reduced (?34%) in eCO2, especially in new leaves during summer periods. Hence, assimilation was inhibited in leaves of E. tereticornis and the evidence did not support a significant dilution effect as a contributor to the observed reductions in leaf N concentration. This finding suggests that the reduction of reductase activity due to lower photorespiration in eCO2 can contribute to understanding how eCO2‐induced photosynthetic enhancement may be lower than previously expected. We suggest that large‐scale vegetation models simulating effects of eCO2 on N biogeochemistry include both mechanisms, especially where is major N source to the dominant vegetation and where leaf flushing and emergence occur in temperatures that promote high photorespiration rates.  相似文献   

10.
The terrestrial biosphere plays a critical role in mitigating climate change by absorbing anthropogenic CO2 emissions through photosynthesis. The rate of photosynthesis is determined jointly by environmental variables and the intrinsic photosynthetic capacity of plants (i.e. maximum carboxylation rate; ). A lack of an effective means to derive spatially and temporally explicit has long hampered efforts towards estimating global photosynthesis accurately. Recent work suggests that leaf chlorophyll content (Chlleaf) is strongly related to , since Chlleaf and are both correlated with photosynthetic nitrogen content. We used medium resolution satellite images to derive spatially and temporally explicit Chlleaf, which we then used to parameterize within a terrestrial biosphere model. Modelled photosynthesis estimates were evaluated against measured photosynthesis at 124 eddy covariance sites. The inclusion of Chlleaf in a terrestrial biosphere model improved the spatial and temporal variability of photosynthesis estimates, reducing biases at eddy covariance sites by 8% on average, with the largest improvements occurring for croplands (21% bias reduction) and deciduous forests (15% bias reduction). At the global scale, the inclusion of Chlleaf reduced terrestrial photosynthesis estimates by 9 PgC/year and improved the correlations with a reconstructed solar‐induced fluorescence product and a gridded photosynthesis product upscaled from tower measurements. We found positive impacts of Chlleaf on modelled photosynthesis for deciduous forests, croplands, grasslands, savannas and wetlands, but mixed impacts for shrublands and evergreen broadleaf forests and negative impacts for evergreen needleleaf forests and mixed forests. Our results highlight the potential of Chlleaf to reduce the uncertainty of global photosynthesis but identify challenges for incorporating Chlleaf in future terrestrial biosphere models.  相似文献   

11.
The response of soil carbon dynamics to climate and land‐use change will affect both the future climate and the quality of ecosystems. Deep soil carbon (>20 cm) is the primary component of the soil carbon pool, but the dynamics of deep soil carbon remain poorly understood. Therefore, radiocarbon activity (C), which is a function of the age of carbon, may help to understand the rates of soil carbon biodegradation and stabilization. We analyzed the published C contents in 122 profiles of mineral soil that were well distributed in most of the large world biomes, except for the boreal zone. With a multivariate extension of a linear mixed‐effects model whose inference was based on the parallel combination of two algorithms, the expectation–maximization (EM) and the Metropolis–Hasting algorithms, we expressed soil C profiles as a four‐parameter function of depth. The four‐parameter model produced insightful predictions of soil C as dependent on depth, soil type, climate, vegetation, land‐use and date of sampling (). Further analysis with the model showed that the age of topsoil carbon was primarily affected by climate and cultivation. By contrast, the age of deep soil carbon was affected more by soil taxa than by climate and thus illustrated the strong dependence of soil carbon dynamics on other pedologic traits such as clay content and mineralogy.  相似文献   

12.
Reducing energy loss (Eloss) is of critical importance to improving the photovoltaic performance of organic solar cells (OSCs). Although nonradiative recombination ( E loss nonrad ) is investigated in quite a few works, the method for modulating E loss nonrad is seldom reported. Here, a new method of depressing Eloss is reported for nonfullerene OSCs. In addition to ternary‐blend bulk heterojunction (BHJ) solar cells, it is proved that a small molecular material (NRM‐1) can be selectively dispersed into the acceptor phase in the PBDB‐T:IT‐4F‐based OSC, resulting in lower E loss rad and E loss nonrad , and hence a significant improvement in the open‐circuit voltage (VOC); under an optimal feed ratio of NRM‐1, an enhanced power conversion efficiency can also be gained. Moreover, the role of NRM‐1 in the method is illustrated and its applicability for several other representative OSCs is validated. This work paves a new pathway to reduce the Eloss for nonfullerene OSCs.  相似文献   

13.
Studies of anthropological genetics and bioarcheology often examine the degree of among-group variation in quantitative traits such as craniometrics and anthropometrics. One comparative index of among-group differentiation is the minimum value of Wright's F ST as estimated from quantitative traits. This measure has been used in certain population-genetic applications such as comparison with F ST estimated from genetic data, although some inferences are limited by how well the data and study design fit the underlying population-genetic model. In many cases, all that is needed is a simple measure of among-group variation. One such measure is R 2 , the proportion of total phenotypic variation accounted for by among-group phenotypic variation, a measure easily obtained from analysis of variance and regression methods. This paper shows that R 2 and minimum F ST are closely related as Min F ST R 2 / 2 R 2 . R 2 is computationally easy and may be useful in cases where all we need is a simple measure of relative among-group differentiation.  相似文献   

14.
Loblolly pine trees (Pinus taeda L.) occupy more than 20% of the forested area in the southern United States, represent more than 50% of the standing pine volume in this region, and remove from the atmosphere about 500 g C m per year through net ecosystem exchange. Hence, their significance as a major regional carbon sink can hardly be disputed. What is disputed is whether the proliferation of young plantations replacing old forest in the southern United States will alter key aspects of the hydrologic cycle, including convective rainfall, which is the focus of the present work. Ecosystem fluxes of sensible () and latent heat (LE) and large‐scale, slowly evolving free atmospheric temperature and water vapor content are known to be first‐order controls on the formation of convective clouds in the atmospheric boundary layer. These controlling processes are here described by a zero‐order analytical model aimed at assessing how plantations of different ages may regulate the persistence and transition of the atmospheric system between cloudy and cloudless conditions. Using the analytical model together with field observations, the roles of ecosystem and LE on convective cloud formation are explored relative to the entrainment of heat and moisture from the free atmosphere. Our results demonstrate that cloudy–cloudless regimes at the land surface are regulated by a nonlinear relation between the Bowen ratio and root‐zone soil water content, suggesting that young/mature pines ecosystems have the ability to recirculate available water (through rainfall predisposition mechanisms). Such nonlinearity was not detected in a much older pine stand, suggesting a higher tolerance to drought but a limited control on boundary layer dynamics. These results enable the generation of hypotheses about the impacts on convective cloud formation driven by afforestation/deforestation and groundwater depletion projected to increase following increased human population in the southeastern United States.  相似文献   

15.
For ordinal outcomes, the average treatment effect is often ill-defined and hard to interpret. Echoing Agresti and Kateri, we argue that the relative treatment effect can be a useful measure, especially for ordinal outcomes, which is defined as γ = pr { Y i ( 1 ) > Y i ( 0 ) } pr { Y i ( 1 ) < Y i ( 0 ) } , with Y i ( 1 ) and Y i ( 0 ) being the potential outcomes of unit i under treatment and control, respectively. Given the marginal distributions of the potential outcomes, we derive the sharp bounds on γ , which are identifiable parameters based on the observed data. Agresti and Kateri focused on modeling strategies under the assumption of independent potential outcomes, but we allow for arbitrary dependence.  相似文献   

16.
Hydrogel electrolytes have attracted increasing attention due to their potential uses in the fabrication of flexible solid‐state batteries. However, the development of hydrogel electrolytes is still in the initial stage and the number of available strategies is limited. Ideally, the hydrogel electrolyte should exhibit suitable ionic conductivity rate, mechanical strength, and biocompatibility for safety. In this study, a zwitterionic sulfobetaine/cellulose hydrogel electrolyte is fabricated using raw materials from natural plants, which exhibits a good biocompatibility with mammalian cells. The intrinsic zwitterionic groups on sulfobetaine chains can provide separated ion migration channels for positive and negative ions, which largely facilitates electrolyte ion transport. A solid‐state Zn‐MnO2 battery with a fabricated zwitterionic gel electrolyte exhibits a very high rate performance. It exhibits a specific capacity of 275 mA h g MnO 2 ? 1 at 1 C. Even up to 30 C, a high capacity of 74 mA h g MnO 2 ? 1 is maintained during the charging–discharging for up to 10 000 cycles. For wearable applications, the flexible solid‐state batteries can be used as reliable and portable sources to power different wearable electronics such as a commercial smart watch, electroluminescent panel, and color electroluminescence line, which shows their large potentials for use in next‐generation flexible and wearable battery technologies.  相似文献   

17.
Improving the accuracy of estimates of forest carbon exchange is a central priority for understanding ecosystem response to increased atmospheric CO2 levels and improving carbon cycle modelling. However, the spatially continuous parameterization of photosynthetic capacity (Vcmax) at global scales and appropriate temporal intervals within terrestrial biosphere models (TBMs) remains unresolved. This research investigates the use of biochemical parameters for modelling leaf photosynthetic capacity within a deciduous forest. Particular attention is given to the impacts of seasonality on both leaf biophysical variables and physiological processes, and their interdependent relationships. Four deciduous tree species were sampled across three growing seasons (2013–2015), approximately every 10 days for leaf chlorophyll content (ChlLeaf) and canopy structure. Leaf nitrogen (NArea) was also measured during 2014. Leaf photosynthesis was measured during 2014–2015 using a Li‐6400 gas‐exchange system, with A‐Ci curves to model Vcmax. Results showed that seasonality and variations between species resulted in weak relationships between Vcmax normalized to 25°C () and NArea (R2 = 0.62, < 0.001), whereas ChlLeaf demonstrated a much stronger correlation with (R2 = 0.78, < 0.001). The relationship between ChlLeaf and NArea was also weak (R2 = 0.47, < 0.001), possibly due to the dynamic partitioning of nitrogen, between and within photosynthetic and nonphotosynthetic fractions. The spatial and temporal variability of was mapped using Landsat TM/ETM satellite data across the forest site, using physical models to derive ChlLeaf. TBMs largely treat photosynthetic parameters as either fixed constants or varying according to leaf nitrogen content. This research challenges assumptions that simple NArea– relationships can reliably be used to constrain photosynthetic capacity in TBMs, even within the same plant functional type. It is suggested that ChlLeaf provides a more accurate, direct proxy for and is also more easily retrievable from satellite data. These results have important implications for carbon modelling within deciduous ecosystems.  相似文献   

18.
Acid deposition arising from sulphur (S) and nitrogen (N) emissions from fossil fuel combustion and agriculture has contributed to the acidification of terrestrial ecosystems in many regions globally. However, in Europe and North America, S deposition has greatly decreased in recent decades due to emissions controls. In this study, we assessed the response of soil solution chemistry in mineral horizons of European forests to these changes. Trends in pH, acid neutralizing capacity (ANC), major ions, total aluminium (Altot) and dissolved organic carbon were determined for the period 1995–2012. Plots with at least 10 years of observations from the ICP Forests monitoring network were used. Trends were assessed for the upper mineral soil (10–20 cm, 104 plots) and subsoil (40–80 cm, 162 plots). There was a large decrease in the concentration of sulphate () in soil solution; over a 10‐year period (2000–2010), decreased by 52% at 10–20 cm and 40% at 40–80 cm. Nitrate was unchanged at 10–20 cm but decreased at 40–80 cm. The decrease in acid anions was accompanied by a large and significant decrease in the concentration of the nutrient base cations: calcium, magnesium and potassium (Bc = Ca2+ + Mg2+ + K+) and Altot over the entire dataset. The response of soil solution acidity was nonuniform. At 10–20 cm, ANC increased in acid‐sensitive soils (base saturation ≤10%) indicating a recovery, but ANC decreased in soils with base saturation >10%. At 40–80 cm, ANC remained unchanged in acid‐sensitive soils (base saturation ≤20%,  ≤ 4.5) and decreased in better‐buffered soils (base saturation >20%,  > 4.5). In addition, the molar ratio of Bc to Altot either did not change or decreased. The results suggest a long‐time lag between emission abatement and changes in soil solution acidity and underline the importance of long‐term monitoring in evaluating ecosystem response to decreases in deposition.  相似文献   

19.
Increases in atmospheric CO2 levels and associated ocean changes are expected to have dramatic impacts on marine ecosystems. Although the Southern Ocean is experiencing some of the fastest rates of change, few studies have explored how Antarctic fishes may be affected by co‐occurring ocean changes, and even fewer have examined early life stages. To date, no studies have characterized potential trade‐offs in physiology and behavior in response to projected multiple climate change stressors (ocean acidification and warming) on Antarctic fishes. We exposed juvenile emerald rockcod Trematomus bernacchii to three PCO2 treatments (~450, ~850, and ~1,200 μatm PCO2) at two temperatures (?1 or 2°C). After 2, 7, 14, and 28 days, metrics of physiological performance including cardiorespiratory function (heart rate [fH] and ventilation rate [fV]), metabolic rate (), and cellular enzyme activity were measured. Behavioral responses, including scototaxis, activity, exploration, and escape response were assessed after 7 and 14 days. Elevated PCO2 independently had little impact on either physiology or behavior in juvenile rockcod, whereas warming resulted in significant changes across acclimation time. After 14 days, fH, fV and significantly increased with warming, but not with elevated PCO2. Increased physiological costs were accompanied by behavioral alterations including increased dark zone preference up to 14%, reduced activity by 12%, as well as reduced escape time suggesting potential trade‐offs in energetics. After 28 days, juvenile rockcod demonstrated a degree of temperature compensation as fV, , and cellular metabolism significantly decreased following the peak at 14 days; however, temperature compensation was only evident in the absence of elevated PCO2. Sustained increases in fV and after 28 days exposure to elevated PCO2 indicate additive (fV) and synergistic () interactions occurred in combination with warming. Stressor‐induced energetic trade‐offs in physiology and behavior may be an important mechanism leading to vulnerability of Antarctic fishes to future ocean change.  相似文献   

20.
Fluorescence (FL) quenching of 3-aminoquinoline (3AQ) by halide ions Cl Br and I has been explored in an aqueous acidic medium using the steady-state and time-domain FL measurement techniques. The halide ions showed no significant change in the absorption spectra of 3AQ in an aqueous acidic medium. The FL intensity was strongly quenched by I ions and the order of FL quenching by halide ions was I > Br > Cl . The decrease in FL lifetime along with the reduction in FL intensity of 3AQ suggested the dynamic nature of quenching. The obtained K SV values were 328 M 1 for I ions and 119 M 1 for Br ions and the k q values were ~ 1.66 × 10 10 M 1 s 1 and 6.02 × 10 9 M 1 s 1 , respectively. The observations suggested that the likely governing mechanism for FL quenching may be an electron transfer process and the involvement of the heavy atom effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号