首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The world's oceans are highly impacted by climate change and other human pressures, with significant implications for marine ecosystems and the livelihoods that they support. Adaptation for both natural and human systems is increasingly important as a coping strategy due to the rate and scale of ongoing and potential future change. Here, we conduct a review of literature concerning specific case studies of adaptation in marine systems, and discuss associated characteristics and influencing factors, including drivers, strategy, timeline, costs, and limitations. We found ample evidence in the literature that shows that marine species are adapting to climate change through shifting distributions and timing of biological events, while evidence for adaptation through evolutionary processes is limited. For human systems, existing studies focus on frameworks and principles of adaptation planning, but examples of implemented adaptation actions and evaluation of outcomes are scarce. These findings highlight potentially useful strategies given specific social–ecological contexts, as well as key barriers and specific information gaps requiring further research and actions.  相似文献   

2.
Human‐induced climate change and ocean acidification (CC‐OA) is changing the physical and biological processes occurring within the marine environment, with poorly understood implications for marine life. Within the aquaculture sector, molluskan culture is a relatively benign method of producing a high‐quality, healthy, and sustainable protein source for the expanding human population. We modeled the vulnerability of global bivalve mariculture to impacts of CC‐OA over the period 2020–2100, under RCP8.5. Vulnerability, assessed at the national level, was dependent on CC‐OA‐related exposure, taxon‐specific sensitivity and adaptive capacity in the sector. Exposure risk increased over time from 2020 to 2100, with ten nations predicted to experience very high exposure to CC‐OA in at least one decade during the period 2020–2100. Predicted high sensitivity in developing countries resulted, primarily, from the cultivation of species that have a narrow habitat tolerance, while in some European nations (France, Ireland, Italy, Portugal, and Spain) high sensitivity was attributable to the relatively high economic value of the shellfish production sector. Predicted adaptive capacity was low in developing countries primarily due to governance issues, while in some developed countries (Denmark, Germany, Iceland, Netherlands, Sweden, and the United Kingdom) it was linked to limited species diversity in the sector. Developing and least developed nations (n = 15) were predicted to have the highest overall vulnerability. Across all nations, 2060 was identified as a tipping point where predicted CC‐OA will be associated with the greatest challenge to shellfish production. However, rapid declines in mollusk production are predicted to occur in the next decade for some nations, notably North Korea. Shellfish culture offers human society a low‐impact source of sustainable protein. This research highlights, on a global scale, the likely extent and nature of the CC‐OA‐related threat to shellfish culture and this sector enabling early‐stage adaption and mitigation.  相似文献   

3.
Climate change is causing range shifts in many marine species, with implications for biodiversity and fisheries. Previous research has mainly focused on how species' ranges will respond to changing ocean temperatures, without accounting for other environmental covariates that could affect future distribution patterns. Here, we integrate habitat suitability modeling approaches, a high‐resolution global climate model projection, and detailed fishery‐independent and ‐dependent faunal datasets from one of the most extensively monitored marine ecosystems—the U.S. Northeast Shelf. We project the responses of 125 species in this region to climate‐driven changes in multiple oceanographic factors (e.g., ocean temperature, salinity, sea surface height) and seabed characteristics (i.e., rugosity and depth). Comparing model outputs based on ocean temperature and seabed characteristics to those that also incorporated salinity and sea surface height (proxies for primary productivity and ocean circulation features), we explored how an emphasis on ocean temperature in projecting species' range shifts can impact assessments of species' climate vulnerability. We found that multifactor habitat suitability models performed better in explaining and predicting species historical distribution patterns than temperature‐based models. We also found that multifactor models provided more concerning assessments of species' future distribution patterns than temperature‐based models, projecting that species' ranges will largely shift northward and become more contracted and fragmented over time. Our results suggest that using ocean temperature as a primary determinant of range shifts can significantly alter projections, masking species' climate vulnerability, and potentially forestalling proactive management.  相似文献   

4.
For practical reasons, assessments of species' vulnerability to rising temperatures are often limited to measuring responses to a single ecological response variable, but this could result in an underestimation of vulnerability. Using the Cape Rockjumper Chaetops frenatus (‘Rockjumper’) we examined the thermal risk to nestling Rockjumpers for sublethal (i.e. reduced nestling mass gain) and lethal (i.e. increased nest predation) consequences of sustained hot weather under both current and predicted future climatic conditions (RCP 8.5). We used a direct approach to examine these risks, first as independent ecological responses and then as combined risk driven by both response variables (mass gain and predation risk). This study revealed that the inclusion of multiple climate-related responses affected the predicted vulnerability to climate change. Further, our analyses showed that increased vulnerability to climate change will vary within the Rockjumper's habitat. Our results demonstrate that the variability in predicted thermal risk depends on which response variable was used, with implications for how and where conservation practitioners direct their already limited resources.  相似文献   

5.
Global climate change is a threat to ecosystems that are rich in biodiversity and endemism, such as the World Heritage‐listed subtropical rainforests of central eastern Australia. Possible effects of climate change on the biota of tropical rainforests have been studied, but subtropical rainforests have received less attention. We analysed published data for an assemblage of 38 subtropical rainforest vertebrate species in four taxonomic groups to evaluate their relative vulnerability to climate change. Focusing on endemic and/or threatened species, we considered two aspects of vulnerability: (i) resistance, defined by indicators of rarity (geographical range, habitat specificity and local abundance); and (ii) resilience, defined by indicators of a species potential to recover (reproductive output, dispersal potential and climatic niche). Our analysis indicated that frogs are most vulnerable to climate change, followed by reptiles, birds, then mammals. Many species in our assemblage are regionally endemic montane rainforest specialists with high vulnerability. Monitoring of taxa in regenerating rainforest showed that many species with high resilience traits also persisted in disturbed habitat, suggesting that they have capacity to recolonize habitats after disturbance, that is climate change‐induced events. These results will allow us to prioritize adaptation strategies for species most at risk. We conclude that to safeguard the most vulnerable amphibian, reptile and bird species against climate change, climatically stable habitats (cool refugia) that are currently without protection status need to be identified, restored and incorporated in the current reserve system. Our study provides evidence that montane subtropical rainforest deserves highest protection status as habitat for vulnerable taxa.  相似文献   

6.
中国水稻生产对历史气候变化的敏感性和脆弱性   总被引:9,自引:0,他引:9  
熊伟  杨婕  吴文斌  黄丹丹  曹阳 《生态学报》2013,33(2):509-518
有效的适应措施需要了解两类基础信息,一是农业生产所面临的各种气候变异风险,二是作物产量对潜在气候变异风险的反应及其机制.评价作物生产对历史气候变化的敏感性和脆弱性,可以在时间上和空间上揭示气候变化的趋势及作物产量对其的反应,从而为适应行动的全面开展提供基础信息.通过分析1981-2007年水稻生育期3个气候因子(平均温度、日较差、辐射)的变化对水稻产量的影响,评估我国水稻生产对这3个气候因子变化的敏感性和脆弱性及其区域分布状况.结果表明,1981-2007年间我国大部分水稻产区生育期内3个气候因子均发生了明显变化,存在着气候变异风险,其中以最高温的变化最普遍和明显,导致水稻生产中高温热害风险增加.部分区域水稻产量变化与单一气象因子的变化存在着显著的线性相关,这些地区气候因子的变化可以一定程度地解释水稻产量变化趋势,其中产量变化对辐射变化最敏感.当水稻生育期内平均温度上升1℃、日较差升高1℃、辐射下降10%时,我国部分地区水稻产量随之发生了相应的变化,其中辐射降低导致我国水稻生产的脆弱面积最大,其次为日较差.受3种气象因子变化趋势的综合影响,约有30%的水稻产区对1981-2007年的气候变化趋势敏感,少部分地区表现为脆弱,但水稻主产区受到的影响不大,且在东北地区还集中表现出产量增加的趋势,为我国水稻发展提供了契机.  相似文献   

7.
Observed ecological responses to climate change are highly individualistic across species and locations, and understanding the drivers of this variability is essential for management and conservation efforts. While it is clear that differences in exposure, sensitivity, and adaptive capacity all contribute to heterogeneity in climate change vulnerability, predicting these features at macroecological scales remains a critical challenge. We explore multiple drivers of heterogeneous vulnerability across the distributions of 96 vegetation types of the ecologically diverse western US, using data on observed climate trends from 1948 to 2014 to highlight emerging patterns of change. We ask three novel questions about factors potentially shaping vulnerability across the region: (a) How does sensitivity to different climate variables vary geographically and across vegetation classes? (b) How do multivariate climate exposure patterns interact with these sensitivities to shape vulnerability patterns? (c) How different are these vulnerability patterns according to three widely implemented vulnerability paradigms—niche novelty (decline in modeled suitability), temporal novelty (standardized anomaly), and spatial novelty (inbound climate velocity)—each of which uses a distinct frame of reference to quantify climate departure? We propose that considering these three novelty paradigms in combination could help improve our understanding and prediction of heterogeneous climate change responses, and we discuss the distinct climate adaptation strategies connected with different combinations of high and low novelty across the three metrics. Our results reveal a diverse mosaic of climate change vulnerability signatures across the region's plant communities. Each of the above factors contributes strongly to this heterogeneity: climate variable sensitivity exhibits clear patterns across vegetation types, multivariate climate change data reveal highly diverse exposure signatures across locations, and the three novelty paradigms diverge widely in their climate change vulnerability predictions. Together, these results shed light on potential drivers of individualistic climate change responses and may help to inform effective management strategies.  相似文献   

8.
Undertaking climate vulnerability assessments (CVAs) on marine fisheries is instrumental to the identification of regions, species, and stakeholders at risk of impacts from climate change, and the development of effective and targeted responses for fisheries adaptation. In this global literature review, we addressed three important questions to characterize fisheries CVAs: (i) what are the available approaches to develop CVAs in various social–ecological contexts, (ii) are different geographic scales and regions adequately represented, and (iii) how do diverse knowledge systems contribute to current understanding of vulnerability? As part of these general research efforts, we identified and characterized an inventory of frameworks and indicators that encompass a wide range of foci on ecological and socioeconomic dimensions of climate vulnerability on fisheries. Our analysis highlighted a large gap between countries with top research inputs and the most urgent adaptation needs. More research and resources are needed in low-income tropical countries to ensure existing inequities are not exacerbated. We also identified an uneven research focus across spatial scales and cautioned a possible scale mismatch between assessment and management needs. Drawing on this information, we catalog (1) a suite of research directions that could improve the utility and applicability of CVAs, particularly the examination of barriers and enabling conditions that influence the uptake of CVA results into management responses at multiple levels, (2) the lessons that have been learned from applications in data-limited regions, particularly the use of proxy indicators and knowledge co-production to overcome the problem of data deficiency, and (3) opportunities for wider applications, for example diversifying the use of vulnerability indicators in broader monitoring and management schemes. This information is used to provide a set of recommendations that could advance meaningful CVA practices for fisheries management and promote effective translation of climate vulnerability into adaptation actions.  相似文献   

9.
10.
Climate change is driving rapid and widespread erosion of the environmental conditions that formerly supported species persistence. Existing projections of climate change typically focus on forecasts of acute environmental anomalies and global extinction risks. The current projections also frequently consider all species within a broad taxonomic group together without differentiating species-specific patterns. Consequently, we still know little about the explicit dimensions of climate risk (i.e., species-specific vulnerability, exposure and hazard) that are vital for predicting future biodiversity responses (e.g., adaptation, migration) and developing management and conservation strategies. Here, we use reef corals as model organisms (n = 741 species) to project the extent of regional and global climate risks of marine organisms into the future. We characterise species-specific vulnerability based on the global geographic range and historical environmental conditions (1900–1994) of each coral species within their ranges, and quantify the projected exposure to climate hazard beyond the historical conditions as climate risk. We show that many coral species will experience a complete loss of pre-modern climate analogs at the regional scale and across their entire distributional ranges, and such exposure to hazardous conditions are predicted to pose substantial regional and global climate risks to reef corals. Although high-latitude regions may provide climate refugia for some tropical corals until the mid-21st century, they will not become a universal haven for all corals. Notably, high-latitude specialists and species with small geographic ranges remain particularly vulnerable as they tend to possess limited capacities to avoid climate risks (e.g., via adaptive and migratory responses). Predicted climate risks are amplified substantially under the SSP5-8.5 compared with the SSP1-2.6 scenario, highlighting the need for stringent emission controls. Our projections of both regional and global climate risks offer unique opportunities to facilitate climate action at spatial scales relevant to conservation and management.  相似文献   

11.
气候变化背景下野生动物脆弱性评估方法研究进展   总被引:2,自引:2,他引:0  
李佳  刘芳  张宇  薛亚东  李迪强 《生态学报》2017,37(20):6656-6667
脆弱性评估是研究气候变化影响野生动物的重要内容,识别野生动物脆弱性,是适应和减缓气候变化影响的关键和基础。开展气候变化背景下野生动物的脆弱性评估工作,目的是为了确定易受气候变化影响的物种和明确导致物种脆弱性的因素,其评估结果有助于人类认识气候变化对野生动物的影响,为野生动物适应气候变化保护对策的制定提供科学依据。对野生动物而言(物种),脆弱性是物种受气候变化影响的程度,包括暴露度、敏感性和适应能力三大要素。其中,暴露度是由气候变化引起的外在因素,如温度、降雨量、极值天气等;敏感性是受物种自身因素影响,如种间关系、耐受性等;适应能力是物种通过自身调整来减小气候变化带来的影响,如迁移或扩散到适宜生境的能力、塑性反应和进化反应等。对近期有关气候变化背景下野生动物脆弱性评估方法予以综述,比较每种评估方法所选取指标的差异,总结在脆弱性评估中遇到的不确定性指标的处理方法,以及脆弱性评估结果在野生动物适应气候变化对策中的应用。通过总结野生动物脆弱性评估方法,以期为气候变化背景下评估我国野生动物资源的脆弱性提供参考方法。  相似文献   

12.
Climate change scenarios suggest that large-scale carbon dioxide removal (CDR) will be required to maintain global warming below 2°C, leading to renewed attention on ocean iron fertilization (OIF). Previous OIF modelling has found that while carbon export increases, nutrient transport to lower latitude ecosystems declines, resulting in a modest impact on atmospheric CO2. However, the interaction of these CDR responses with ongoing climate change is unknown. Here, we combine global ocean biogeochemistry and ecosystem models to show that, while stimulating carbon sequestration, OIF may amplify climate-induced declines in tropical ocean productivity and ecosystem biomass under a high-emission scenario, with very limited potential atmospheric CO2 drawdown. The ‘biogeochemical fingerprint’ of climate change, that leads to depletion of upper ocean major nutrients due to upper ocean stratification, is reinforced by OIF due to greater major nutrient consumption. Our simulations show that reductions in upper trophic level animal biomass in tropical regions due to climate change would be exacerbated by OIF within ~20 years, especially in coastal exclusive economic zones (EEZs), with potential implications for fisheries that underpin the livelihoods and economies of coastal communities. Any fertilization-based CDR should therefore consider its interaction with ongoing climate-driven changes and the ensuing ecosystem impacts in national EEZs.  相似文献   

13.
人类活动引起的大气CO2浓度的升高,除了使全球温度升高外,导致的另一个严重生态问题——海洋酸化(Ocean acidification,OA),受到社会各界包括科研界的高度重视,该领域的大部分研究结果都是在近十年才发表出来的,目前还有很多需要解决的问题。海洋酸化的研究涉及到很多学科的交叉包括化学、古生物学、生态学、生物地球化学等等。在生物学领域,海洋酸化主要围绕敏感物种,例如由碳酸钙形成贝壳或外骨骼的贝类,珊瑚礁群体等。鱼类作为海洋脊椎动物的代表生物类群,自身具有一定的酸碱平衡调节能力,但相关海洋酸化方向的研究并不是很多。尽管人们对于海洋酸化对鱼类的影响了解甚少,这并不说明海洋酸化对鱼类没有作用或者效应小,在相关研究逐步展开的同时,发现鱼类同样受到海洋酸化的危害,几乎涉及到鱼类整个生活史和几乎大部分生理过程,尤其是早期生活史的高度敏感。因此就目前国内外对此领域研究结果做综述,以期待业界同行能够对海水鱼类这个大的类群引起重视。  相似文献   

14.
15.
自然生态系统响应气候变化的脆弱性评价研究进展   总被引:7,自引:10,他引:7  
以气候变暖为标志的全球气候变化已引起各国政府、国际组织和科学工作者的高度重视.气候变化给人类及自然生态系统带来的风险和危害日趋增大.生态系统脆弱性分析和评价是适应和减缓气候变化的关键和基础,已成为近年来气候变化领域和生态学领域的研究热点.目前国内外学者正在不同领域、不同空间尺度上开展响应气候变化的脆弱性评价,其中以自然生态系统为评价对象的脆弱性研究也有了长足的发展.本文通过对脆弱性的概念、气候变化脆弱性评价研究现状、自然生态系统响应气候变化的脆弱性定量评价方法的综述,探讨了该研究领域存在的问题和未来的发展前景.  相似文献   

16.
气候变化影响下海岸带脆弱性评估研究进展   总被引:7,自引:3,他引:7  
王宁  张利权  袁琳  曹浩冰 《生态学报》2012,32(7):2248-2258
近百年来,全球气候系统正经历着以全球变暖为主要特征的显著变化。研究海岸带系统对气候变化的响应机制,评估气候变化对海岸带社会、经济和生态的潜在影响,提出切实可行的应对策略,是保障海岸带系统安全的重要前提。回顾了IPCC的四次评估报告,分析了全球气候变化对海岸带的影响。总结了海岸带脆弱性评估框架以及脆弱性评价指标体系,综述了国内外气候变化影响下海岸带脆弱性评估研究的进展。在综述国内外该领域研究进展的基础上,展望了气候变化影响下海岸带脆弱性评估研究。全球气候变化及其对海岸带的影响还有大量的科学技术问题需要进一步探讨,同时也需要对各种适应气候变化措施的可行性和有效性进行研究和验证。  相似文献   

17.
This study applied livelihood vulnerability index (LVI) and livelihood effect index (LEI) to assess vulnerability from climate variability and change of three agricultural and natural resources dependent commune in northwest Vietnam, a country that is expected to bear some of the most severe impacts of climate change. Based on a survey of 335 farm household data, complemented with secondary data on climate factors, a composite index was calculated and differential vulnerabilities were compared. The results of the analysis suggest that one of the communities, “Pa Vay Su,” was more vulnerable than the others, particularly in relation to housing, knowledge and skills, socio-demographics, health and water security, social networks, and livelihood strategy. “Hien Luong” commune, on the other hand, was more vulnerable in relation to other LVI indicators with the exception of food security, climate variability, and natural disasters. “Moc Chau” community was more vulnerable in relation to water security, social demographic than Hien Luong commune. Overall, the article shows that three different vulnerability assessment indices can be broadly applied in comparable setting in other areas of country and they could usefully establish the basis for a nationally applicable index to identify and prioritize adaptation and mitigation needs.  相似文献   

18.
Climate change vulnerability assessments are an important tool for understanding the threat that climate change poses to species and populations, but do not generally yield insight into the spatial variation in vulnerability throughout a species’ habitat. We demonstrate how to adapt the method of ecological‐niche factor analysis (ENFA) to objectively quantify aspects of species sensitivity to climate change. We then expand ENFA to quantify aspects of exposure and vulnerability to climate change as well, using future projections of global climate models. This approach provides spatially‐explicit insight into geographic patterns of vulnerability, relies only on readily‐available spatial data, is suitable for a wide range of species and habitats, and invites comparison between different species. We apply our methods to a case study of two species of montane mammals, the American pika Ochotona princeps and the yellow‐bellied marmot Marmota flaviventris.  相似文献   

19.
Livestock production is an important contributor to sustainable food security for many nations, particularly in low‐income areas and marginal habitats that are unsuitable for crop production. Animal products account for approximately one‐third of global human protein consumption. Here, a range of indicators, derived from FAOSTAT and World Bank statistics, are used to model the relative vulnerability of nations at the global scale to predicted climate and population changes, which are likely to impact on their use of grazing livestock for food. Vulnerability analysis has been widely used in global change science to predict impacts on food security and famine. It is a tool that is useful to inform policy decision making and direct the targeting of interventions. The model developed shows that nations within sub‐Saharan Africa, particularly in the Sahel region, and some Asian nations are likely to be the most vulnerable. Livestock‐based food security is already compromised in many areas on these continents and suffers constraints from current climate in addition to the lack of economic and technical support allowing mitigation of predicted climate change impacts. Governance is shown to be a highly influential factor and, paradoxically, it is suggested that current self‐sufficiency may increase future potential vulnerability because trade networks are poorly developed. This may be relieved through freer trade of food products, which is also associated with improved governance. Policy decisions, support and interventions will need to be targeted at the most vulnerable nations, but given the strong influence of governance, to be effective, any implementation will require considerable care in the management of underlying structural reform.  相似文献   

20.
Climate change is increasingly impacting marine protected areas (MPAs) and MPA networks, yet adaptation strategies are rarely incorporated into MPA design and management plans according to the primary scientific literature. Here we review the state of knowledge for adapting existing and future MPAs to climate change and synthesize case studies (n = 27) of how marine conservation planning can respond to shifting environmental conditions. First, we derive a generalized conservation planning framework based on five published frameworks that incorporate climate change adaptation to inform MPA design. We then summarize examples from the scientific literature to assess how conservation goals were defined, vulnerability assessments performed and adaptation strategies incorporated into the design and management of existing or new MPAs. Our analysis revealed that 82% of real‐world examples of climate change adaptation in MPA planning derive from tropical reefs, highlighting the need for research in other ecosystems and habitat types. We found contrasting recommendations for adaptation strategies at the planning stage, either focusing only on climate refugia, or aiming for representative protection of areas encompassing the full range of expected climate change impacts. Recommendations for MPA management were more unified and focused on adaptative management approaches. Lastly, we evaluate common barriers to adopting climate change adaptation strategies based on reviewing studies which conducted interviews with MPA managers and other conservation practitioners. This highlights a lack of scientific studies evaluating different adaptation strategies and shortcomings in current governance structures as two major barriers, and we discuss how these could be overcome. Our review provides a comprehensive synthesis of planning frameworks, case studies, adaptation strategies and management actions which can inform a more coordinated global effort to adapt existing and future MPA networks to continued climate change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号