首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
China is the world's largest producer and consumer of fertilizer N, and decades of overuse has caused nitrate leaching and possibly soil acidification. We hypothesized that this would enhance the soils' propensity to emit N2O from denitrification by reducing the expression of the enzyme N2O reductase. We investigated this by standardized oxic/anoxic incubations of soils from five long‐term fertilization experiments in different regions of China. After adjusting the nitrate concentration to 2 mM, we measured oxic respiration (R), potential denitrification (D), substrate‐induced denitrification, and the denitrification product stoichiometry (NO, N2O, N2). Soils with a history of high fertilizer N levels had high N2O/(N2O+N2) ratios, but only in those field experiments where soil pH had been lowered by N fertilization. By comparing all soils, we found a strong negative correlation between pH and the N2O/(N2O+N2) product ratio (r2 = 0.759, P < 0.001). In contrast, the potential denitrification (D) was found to be a linear function of oxic respiration (R), and the ratio D/R was largely unaffected by soil pH. The immediate effect of liming acidified soils was lowered N2O/(N2O+N2) ratios. The results provide evidence that soil pH has a marginal direct effect on potential denitrification, but that it is the master variable controlling the percentage of denitrified N emitted as N2O. It has been known for long that low pH may result in high N2O/(N2O+N2) product ratios of denitrification, but our documentation of a pervasive pH‐control of this ratio across soil types and management practices is new. The results are in good agreement with new understanding of how pH may interfere with the expression of N2O reductase. We argue that the management of soil pH should be high on the agenda for mitigating N2O emissions in the future, particularly for countries where ongoing intensification of plant production is likely to acidify the soils.  相似文献   

2.
No‐till (NT) practices are among promising options toward adaptation and mitigation of climate change. However, the mitigation effectiveness of NT depends not only on its carbon sequestration potential but also on soil‐derived CH4 and N2O emissions. A meta‐analysis was conducted, using a dataset involving 136 comparisons from 39 studies in China, to identify site‐specific factors which influence CH4 emission, CH4 uptake, and N2O emission under NT. Comparative treatments involved NT without residue retention (NT0), NT with residue retention (NTR), compared to plow tillage (PT) with residue removed (PT0). Overall, NT0 significantly decreased CH4 emission by ~30% (< 0.05) compared to PT0 with an average emission 218.8 kg ha−1 for rice paddies. However, the increase in N2O emission could partly offset the benefits of the decrease in CH4 emission under NT compared to PT0. NTR significantly enhanced N2O emission by 82.1%, 25.5%, and 20.8% (< 0.05) compared to PT0 for rice paddies, acid soils, and the first 5 years of the experiments, respectively. The results from categorical meta‐analysis indicated that the higher N2O emission could be mitigated by adopting NT within alkaline soils, for long‐term duration, and with less N fertilization input when compared to PT0. In addition, the natural log (lnR) of response ratio of CH4 and N2O emissions under NT correlated positively (enhancing emission) with climate factors (temperature and precipitation) and negatively (reducing emission) with experimental duration, suggesting that avoiding excess soil wetness and using NT for a long term could enhance the benefits of NT. Therefore, a thorough understanding of the conditions favoring greenhouse gas(es) reductions is essential to achieving climate change mitigation and advancing food security in China.  相似文献   

3.
This study analyses the spatial and temporal variability of N2O emissions from the agricultural soils of Belgium. Annual N2O emission rates are estimated with two statistical models, MCROPS and MGRASS, which take account of the impact of changes in land use, climate, and nitrogen‐fertilization rate. The models are used to simulate the temporal trend of N2O emissions between 1990 and 2050 for a 10′ latitude and longitude grid. The results are also aggregated to the regional and national scale to facilitate comparison with other studies and national inventories. Changes in climate and land use are derived from the quantitative scenarios developed by the ATEAM project based on the Intergovernmental Panel on Climate Change‐Special Report on Emissions Scenarios (IPCC‐SRES) storylines. The average N2O flux for Belgium was estimated to be 8.6 × 106 kg N2O‐N yr−1 (STD = 2.1 × 106 kg N2O‐N yr−1) for the period 1990–2000. Fluxes estimated for a single year (1996) give a reasonable agreement with published results at the national and regional scales for the same year. The scenario‐based simulations of future N2O emissions show the strong influence of land‐use change. The scenarios A1FI, B1 and B2 produce similar results between 2001 and 2050 with a national emission rate in 2050 of 11.9 × 106 kg N2O‐N yr−1. The A2 scenario, however, is very sensitive to the reduction in agricultural land areas (−14% compared with the 1990 baseline), which results in a reduced emission rate in 2050 of 8.3 × 106 kg N2O‐N yr−1. Neither the climatic change scenarios nor the reduction in nitrogen fertilization rate could explain these results leading to the conclusion that N2O emissions from Belgian agricultural soils will be more markedly affected by changes in agricultural land areas.  相似文献   

4.
Organic compounds and mineral nitrogen (N) usually increase nitrous oxide (N2O) emissions. Vinasse, a by‐product of bio‐ethanol production that is rich in carbon, nitrogen, and potassium, is recycled in sugarcane fields as a bio‐fertilizer. Vinasse can contribute significantly to N2O emissions when applied with N in sugarcane plantations, a common practice. However, the biological processes involved in N2O emissions under this management practice are unknown. This study investigated the roles of nitrification and denitrification in N2O emissions from straw‐covered soils amended with different vinasses (CV: concentrated and V: nonconcentrated) before or at the same time as mineral fertilizers at different time points of the sugarcane cycle in two seasons. N2O emissions were evaluated for 90 days, the period that occurs most of the N2O emission from fertilizers; the microbial genes encoding enzymes involved in N2O production (archaeal and bacterial amoA, fungal and bacterial nirK, and bacterial nirS and nosZ), total bacteria, and total fungi were quantified by real‐time PCR. The application of CV and V in conjunction with mineral N resulted in higher N2O emissions than the application of N fertilizer alone. The strategy of vinasse application 30 days before mineral N reduced N2O emissions by 65% for CV, but not for V. Independent of rainy or dry season, the microbial processes were nitrification by ammonia‐oxidizing bacteria (AOB) and archaea and denitrification by bacteria and fungi. The contributions of each process differed and depended on soil moisture, soil pH, and N sources. We concluded that amoA‐AOB was the most important gene related to N2O emissions, which indicates that nitrification by AOB is the main microbial‐driven process linked to N2O emissions in tropical soil. Interestingly, fungal nirK was also significantly correlated with N2O emissions, suggesting that denitrification by fungi contributes to N2O emission in soils receiving straw and vinasse application.  相似文献   

5.
The Kyoto protocol requires countries to provide national inventories for a list of greenhouse gases including N2O. A standard methodology proposed by the Intergovernmental Panel on Climate Change (IPCC) estimates direct N2O emissions from soils as a constant fraction (1.25%) of the nitrogen input. This approach is insensitive to environmental variability. A more dynamic approach is needed to establish reliable N2O emission inventories and to propose efficient mitigation strategies. The objective of this paper is to develop a model that allows the spatial and temporal variation in environmental conditions to be taken into account in national inventories of direct N2O emissions. Observed annual N2O emission rates are used to establish statistical relationships between N2O emissions, seasonal climate and nitrogen‐fertilization rate. Two empirical models, MCROPS and MGRASS, were developed for croplands and grasslands. Validated with an independent data set, MCROPS shows that spring temperature and summer precipitation explain 35% of the variance in annual N2O emissions from croplands. In MGRASS, nitrogen‐fertilization rate and winter temperature explain 48% of the variance in annual N2O emissions from grasslands. Using long‐term climate observations (1900–2000), the sensitivity of the models with climate variability is estimated by comparing the year‐to‐year prediction of the model to the precision obtained during the validation process. MCROPS is able to capture interannual variability of N2O emissions from croplands. However, grassland emissions show very small interannual variations, which are too small to be detectable by MGRASS. MCROPS and MGRASS improve the statistical reliability of direct N2O emissions compared with the IPCC default methodology. Furthermore, the models can be used to estimate the effects of interannual variation in climate, climate change on direct N2O emissions from soils at the regional scale.  相似文献   

6.
Estimates of global riverine nitrous oxide (N2O) emissions contain great uncertainty. We conducted a meta‐analysis incorporating 169 observations from published literature to estimate global riverine N2O emission rates and emission factors. Riverine N2O flux was significantly correlated with NH4, NO3 and DIN (NH4 + NO3) concentrations, loads and yields. The emission factors EF(a) (i.e., the ratio of N2O emission rate and DIN load) and EF(b) (i.e., the ratio of N2O and DIN concentrations) values were comparable and showed negative correlations with nitrogen concentration, load and yield and water discharge, but positive correlations with the dissolved organic carbon : DIN ratio. After individually evaluating 82 potential regression models based on EF(a) or EF(b) for global, temperate zone and subtropical zone datasets, a power function of DIN yield multiplied by watershed area was determined to provide the best fit between modeled and observed riverine N2O emission rates (EF(a): R2 = 0.92 for both global and climatic zone models, n = 70; EF(b): R2 = 0.91 for global model and R2 = 0.90 for climatic zone models, n = 70). Using recent estimates of DIN loads for 6400 rivers, models estimated global riverine N2O emission rates of 29.6–35.3 (mean = 32.2) Gg N2O–N yr−1 and emission factors of 0.16–0.19% (mean = 0.17%). Global riverine N2O emission rates are forecasted to increase by 35%, 25%, 18% and 3% in 2050 compared to the 2000s under the Millennium Ecosystem Assessment's Global Orchestration, Order from Strength, Technogarden, and Adapting Mosaic scenarios, respectively. Previous studies may overestimate global riverine N2O emission rates (300–2100 Gg N2O–N yr−1) because they ignore declining emission factor values with increasing nitrogen levels and channel size, as well as neglect differences in emission factors corresponding to different nitrogen forms. Riverine N2O emission estimates will be further enhanced through refining emission factor estimates, extending measurements longitudinally along entire river networks and improving estimates of global riverine nitrogen loads.  相似文献   

7.
Nitrogen (N) additions to cropland soils are the largest source of anthropogenic nitrous oxide (N2O) emissions and are an important contributor to global greenhouse gas radiative forcing. Progress in understanding controls on N2O fluxes from soils is demonstrated in increasingly sophisticated emissions estimates with improved spatial and source resolution. These methods build upon ongoing field, laboratory, and modeling advances that are restricted to just a handful of countries. Thus, burgeoning new knowledge is of limited utility for improving N2O emissions estimates for the rest of the world where prospects for near‐term advances are constrained by the limited breadth of observations and availability of model driver data. Here, we use Bayesian inversion to leverage information from recent national‐level N2O emission inventories and reduce uncertainty by up to 65% for estimates of regional and global direct cropland N2O emissions. Our estimates for the proportion of N inputs lost as N2O vary by a factor of two between regions and depart from existing default emission factors, yet regional emissions estimates based on these factors are consistent with global, regional, and local observations. Improved regional emission factors will enhance national greenhouse gas inventories in information‐poor countries and guide efforts to reduce agricultural N2O emissions.  相似文献   

8.
Measurements were made of nitrous oxide (N2O) emissions from N‐fertilised ungrazed grassland and arable land at sites widely distributed across Great Britain during 1999–2001. The closed static chamber method was used throughout. Emissions varied widely throughout the year at each site, and between sites. Daily fluxes up to 1200 g N2O–N ha ? 1 d ? 1 were recorded. The highest annual flux was 27.6 kg N2O–N ha ? 1 at a grassland site in Wales, whereas the lowest, 1.7 kg N2O–N ha ? 1, occurred on a soil overlying chalk in southern England. The key factors affecting N2O emissions from agricultural soil were soil WFPS, temperature and soil NO3–N content. On grassland, rainfall (particularly around the time of N application), with its consequent effect on water‐filled pore space (WFPS), was the main driving factor during the growing season. Annual emission factors (EFs), uncorrected for background emission, varied from 0.4 to 6.5% of the nitrogen (N) applied, covering a similar range for grassland to that found previously for sites restricted to Scotland. Continued monitoring at a grassland reference site near Edinburgh showed that annual EFs vary greatly from year to year, even with similar management, and that several years' data are required to produce a robust mean EF. The overall distribution of EFs in this and previous studies was log‐normal. The EFs for small‐grain cereals (and oilseed rape) peaked at a much lower value than those for grassland, whereas the values for leafy vegetables and potato crops fitted well into the grassland distribution. These differences in EF between various types of crop should be taken into account when compiling regional or national N2O emission inventories.  相似文献   

9.
Urban land-use change has the potential to affect local to global biogeochemical carbon (C) and nitrogen (N) cycles and associated greenhouse gas (GHG) fluxes. We conducted a meta-analysis to (1) assess the effects of urbanization-induced land-use conversion on soil nitrous oxide (N2O) and methane (CH4) fluxes, (2) quantify direct N2O emission factors (EFd) of fertilized urban soils used, for example, as lawns or forests, and (3) identify the key drivers leading to flux changes associated with urbanization. On average, urbanization increases soil N2O emissions by 153%, to 3.0 kg N ha−1 year−1, while rates of soil CH4 uptake are reduced by 50%, to 2.0 kg C ha−1 year−1. The global mean annual N2O EFd of fertilized lawns and urban forests is 1.4%, suggesting that urban soils can be regional hotspots of N2O emissions. On a global basis, conversion of land to urban greenspaces has increased soil N2O emission by 0.46 Tg N2O-N year−1 and decreased soil CH4 uptake by 0.58 Tg CH4-C year−1. Urbanization driven changes in soil N2O emission and CH4 uptake are associated with changes in soil properties (bulk density, pH, total N content, and C/N ratio), increased temperature, and management practices, especially fertilizer use. Overall, our meta-analysis shows that urbanization increases soil N2O emissions and reduces the role of soils as a sink for atmospheric CH4. These effects can be mitigated by avoiding soil compaction, reducing fertilization of lawns, and by restoring native ecosystems in urban landscapes.  相似文献   

10.
Intensive dairy farming systems are a large source of emission of the greenhouse gas nitrous oxide (N2O), because of high nitrogen (N) application rates to grasslands and silage maize fields. The objective of this study was to compare measured N2O emissions from two different soils to default N2O emission factors, and to look at alternative emission factors based on (i) the N uptake in the crop and (ii) the N surplus of the system, i.e., N applied minus N uptake by the crop. Twelve N fertilization regimes were implemented on a sandy soil (typic endoaquoll) and a clay soil (typic endoaquept) in the Netherlands, and N2O emissions were measured throughout the growing season. Highest cumulative fluxes of 1.92 and 6.81 kg N2O-N ha–1 for the sandy soil and clay soil were measured at the highest slurry application rate of 250 kg N ha–1. Background emissions from unfertilized soils were 0.14 and 1.52 kg N2O-N ha–1 for the sandy soil and the clay soil, respectively. Emission factors for the sandy soil averaged 0.08, 0.51 and 0.26% of the N applied via fertilizer, slurry, and combinations of both. For the clay soil, these numbers were 1.18, 1.21 and 1.69%, respectively. Surplus N was linearly related to N2O emission for both the sandy soil (R2=0.60) and the clay soil (R2=0.40), indicating a possible alternative emission factor. We concluded that, in our study, N2O emission was not linearly related to N application rates, and varied with type and application rate of fertilizer. Finally, the relatively high emission from the clay soil indicates that background emissions might have to be taken into account in N2O budgets.  相似文献   

11.
Streams and river networks are increasingly recognized as significant sources for the greenhouse gas nitrous oxide (N2O). N2O is a transformation product of nitrogenous compounds in soil, sediment and water. Agricultural areas are considered a particular hotspot for emissions because of the large input of nitrogen (N) fertilizers applied on arable land. However, there is little information on N2O emissions from forest streams although they constitute a major part of the total stream network globally. Here, we compiled N2O concentration data from low‐order streams (~1,000 observations from 172 stream sites) covering a large geographical gradient in Sweden from the temperate to the boreal zone and representing catchments with various degrees of agriculture and forest coverage. Our results showed that agricultural and forest streams had comparable N2O concentrations of 1.6 ± 2.1 and 1.3 ± 1.8 µg N/L, respectively (mean ± SD) despite higher total N (TN) concentrations in agricultural streams (1,520 ± 1,640 vs. 780 ± 600 µg N/L). Although clear patterns linking N2O concentrations and environmental variables were difficult to discern, the percent saturation of N2O in the streams was positively correlated with stream concentration of TN and negatively correlated with pH. We speculate that the apparent contradiction between lower TN concentration but similar N2O concentrations in forest streams than in agricultural streams is due to the low pH (<6) in forest soils and streams which affects denitrification and yields higher N2O emissions. An estimate of the N2O emission from low‐order streams at the national scale revealed that ~1.8 × 109 g N2O‐N are emitted annually in Sweden, with forest streams contributing about 80% of the total stream emission. Hence, our results provide evidence that forest streams can act as substantial N2O sources in the landscape with 800 × 109 g CO2‐eq emitted annually in Sweden, equivalent to 25% of the total N2O emissions from the Swedish agricultural sector.  相似文献   

12.
Our understanding and quantification of global soil nitrous oxide (N2O) emissions and the underlying processes remain largely uncertain. Here, we assessed the effects of multiple anthropogenic and natural factors, including nitrogen fertilizer (N) application, atmospheric N deposition, manure N application, land cover change, climate change, and rising atmospheric CO2 concentration, on global soil N2O emissions for the period 1861–2016 using a standard simulation protocol with seven process‐based terrestrial biosphere models. Results suggest global soil N2O emissions have increased from 6.3 ± 1.1 Tg N2O‐N/year in the preindustrial period (the 1860s) to 10.0 ± 2.0 Tg N2O‐N/year in the recent decade (2007–2016). Cropland soil emissions increased from 0.3 Tg N2O‐N/year to 3.3 Tg N2O‐N/year over the same period, accounting for 82% of the total increase. Regionally, China, South Asia, and Southeast Asia underwent rapid increases in cropland N2O emissions since the 1970s. However, US cropland N2O emissions had been relatively flat in magnitude since the 1980s, and EU cropland N2O emissions appear to have decreased by 14%. Soil N2O emissions from predominantly natural ecosystems accounted for 67% of the global soil emissions in the recent decade but showed only a relatively small increase of 0.7 ± 0.5 Tg N2O‐N/year (11%) since the 1860s. In the recent decade, N fertilizer application, N deposition, manure N application, and climate change contributed 54%, 26%, 15%, and 24%, respectively, to the total increase. Rising atmospheric CO2 concentration reduced soil N2O emissions by 10% through the enhanced plant N uptake, while land cover change played a minor role. Our estimation here does not account for indirect emissions from soils and the directed emissions from excreta of grazing livestock. To address uncertainties in estimating regional and global soil N2O emissions, this study recommends several critical strategies for improving the process‐based simulations.  相似文献   

13.
Direct field emissions of nitrous oxide (N2O) may determine whether biodiesel from oilseed rape (Brassica napus L.) fulfills the EU requirement of at least 50% reduction of greenhouse gas emissions as compared to fossil diesel. However, only few studies have documented fertilizer N emission factors (EF) and mitigation options for N2O emissions from oilseed rape cropping systems. We conducted a field experiment with three N levels (0, 171, and 217 kg/ha), where the N fertilizer was applied as ammonium sulfate nitrate with or without the nitrification inhibitor 3,4‐dimethylpyrazole phosphate (DMPP). N2O fluxes were measured using static chambers technique and soil samples were analyzed for water and mineral N content during a monitoring period of 368 days. The DMPP treatments showed a significantly increased level of ammonium () for up to 18 weeks after spring fertilization as compared to the treatments without DMPP. However, this difference did not result in a corresponding decrease in soil content, and no differences in cumulative N2O emissions were found between any fertilized treatments with or without DMPP (mean, 1.26 kg N2O‐N ha?1 year?1). More field experiments are needed to clarify whether DMPP‐coated mineral fertilizers could mitigate N2O emissions under different weather conditions, for example, under conditions where fertilization events concurred with rainfall events increasing water‐filled pore space to the assumed 60% threshold for denitrification. Emission factors for mineral N fertilizer were 0.28%–0.36% with a mean of 0.32% across the fertilized treatments. These data concur with recent European studies suggesting that the EF for mineral N fertilizers in oilseed rape cropping systems may typically be lower than the default IPCC value of 1%. Further studies are needed to consolidate an EF for oilseed rape under temperate conditions, which will be determining for the sustainability of Northern European oilseed rape cultivation for biodiesel.  相似文献   

14.
Nitrous oxide (N2O) emissions can be significantly affected by the amounts and forms of nitrogen (N) available in soils, but the effect is highly dependent on local climate and soil conditions in specific ecosystem. To improve our understanding of the response of N2O emissions to different N sources of fertilizer in a typical semiarid temperate steppe in Inner Mongolia, a 2-year field experiment was conducted to investigate the effects of high, medium and low N fertilizer levels (HN: 200 kg N?ha-1y-1, MN: 100 kg N ha-1y-1, and LN: 50 kg N ha-1y-1) respectively and N fertilizer forms (CAN: calcium ammonium nitrate, AS: ammonium sulphate and NS: sodium nitrate) on N2O emissions using static closed chamber method. Our data showed that peak N2O fluxes induced by N treatments were concentrated in short periods (2 to 3 weeks) after fertilization in summer and in soil thawing periods in early spring; there were similarly low N2O fluxes from all treatments in the remaining seasons of the year. The three N levels increased annual N2O emissions significantly (P?<?0.05) in the order of MN > HN > LN compared with the CK (control) treatment in year 1; in year 2, the elevation of annual N2O emissions was significant (P?<?0.05) by HN and MN treatments but was insignificant by LN treatments (P?>?0.05). The three N forms also had strong effects on N2O emissions. Significantly (P?<?0.05) higher annual N2O emissions were observed in the soils of CAN and AS fertilizer treatments than in the soils of NS fertilizer treatments in both measured years, but the difference between CAN and AS was not significant (P?>?0.05). Annual N2O emission factors (EF) ranged from 0.060 to 0.298% for different N fertilizer treatments in the two observed years, with an overall EF value of 0.125%. The EF values were by far less than the mean default EF proposed by the Intergovernmental Panel on Climate Change (IPCC).  相似文献   

15.
Nitrogen (N) deposition is a component of global change that has considerable impact on belowground carbon (C) dynamics. Plant growth stimulation and alterations of fungal community composition and functions are the main mechanisms driving soil C gains following N deposition in N‐limited temperate forests. In N‐rich tropical forests, however, N deposition generally has minor effects on plant growth; consequently, C storage in soil may strongly depend on the microbial processes that drive litter and soil organic matter decomposition. Here, we investigated how microbial functions in old‐growth tropical forest soil responded to 13 years of N addition at four rates: 0 (Control), 50 (Low‐N), 100 (Medium‐N), and 150 (High‐N) kg N ha?1 year?1. Soil organic carbon (SOC) content increased under High‐N, corresponding to a 33% decrease in CO2 efflux, and reductions in relative abundances of bacteria as well as genes responsible for cellulose and chitin degradation. A 113% increase in N2O emission was positively correlated with soil acidification and an increase in the relative abundances of denitrification genes (narG and norB). Soil acidification induced by N addition decreased available P concentrations, and was associated with reductions in the relative abundance of phytase. The decreased relative abundance of bacteria and key functional gene groups for C degradation were related to slower SOC decomposition, indicating the key mechanisms driving SOC accumulation in the tropical forest soil subjected to High‐N addition. However, changes in microbial functional groups associated with N and P cycling led to coincidentally large increases in N2O emissions, and exacerbated soil P deficiency. These two factors partially offset the perceived beneficial effects of N addition on SOC storage in tropical forest soils. These findings suggest a potential to incorporate microbial community and functions into Earth system models considering their effects on greenhouse gas emission, biogeochemical processes, and biodiversity of tropical ecosystems.  相似文献   

16.
The emission of nitrous oxide (N2O) from streams draining agricultural landscapes is estimated by the Intergovernmental Panel on Climate Change (IPCC) to constitute a globally significant source of this gas to the atmosphere, although there is considerable uncertainty in the magnitude of this source. We measured N2O emission rates and potential controlling variables in 12 headwater streams draining a predominantly agricultural basin on glacial terrain in southwestern Michigan. The study sites were nearly always supersaturated with N2O and emission rates ranged from ?8.9 to 266.8 μg N2O‐N m?2 h?1 with an overall mean of 35.2 μg N2O‐N m?2 h?1. Stream water NO3? concentrations best‐predicted N2O emission rates. Although streams and agricultural soils in the basin had similar areal emission rates, emissions from streams were equivalent to 6% of the anthropogenic emissions from soils because of the vastly greater surface area of soils. We found that the default value of the N2O emission factor for streams and groundwater as defined by the IPCC (EF5‐g) was similar to the value observed in this study lending support to the recent downward revision to EF5‐g. However, the EF5‐g spanned four orders of magnitude across our study sites suggesting that the IPCC's methodology of applying one emission factor to all streams may be inappropriate.  相似文献   

17.
18.
张雪  梅莉  宋利豪  刘力诚  赵泽尧 《生态学报》2019,39(6):1917-1925
以2年生马尾松(Pinus massoniana)盆栽苗土壤为对象,通过施氮肥模拟氮沉降对土壤理化性质、微生物群落结构及温室气体释放的影响,探明氮沉降对森林土壤温室气体释放的驱动机制。结果表明,模拟氮沉降处理显著提高了土壤速效氮含量和苗木根系氮含量;土壤微生物碳(SMBC)含量比对照显著下降78%,而土壤微生物氮(SMBN)则提高2.6倍。模拟氮沉降处理显著降低土壤中微生物群落总含量。施氮肥对马尾松土壤N_2O和CO_2的释放速率均有显著影响,增施氮肥不仅显著提高了土壤N_2O的释放速率,而且CO_2释放速率短期内也显著提高,但伴随微生物群落的下降,施肥后期CO_2释放速率表现下降趋势。相关分析表明,土壤CO_2和N_2O释放与土壤pH值、土壤温度、土壤湿度、土壤速效氮含量及SMBC、SMBN相关;逐步回归分析表明,土壤硝态氮含量的变化是驱动土壤温室气体释放的主导因子。3株种植单位土壤体积内根系生物量较高,增加了土壤水分的消耗速率和氮的吸收固定,因而减少N_2O的释放速率。以上研究阐明了氮沉降或过量施肥对土壤氮含量、土壤pH值、根系生物量及氮含量、土壤微生物群落结构等因子的影响,这些因子直接或间接影响土壤温室气体释放速率。氮沉降及施用氮肥是加快土壤温室气体(CO_2和N_2O)排放进程的重要因素。  相似文献   

19.
China has experienced rapid agricultural development over recent decades, accompanied by increased fertilizer consumption in croplands; yet, the trend and drivers of the associated nitrous oxide (N2O) emissions remain uncertain. The primary sources of this uncertainty are the coarse spatial variation of activity data and the incomplete model representation of N2O emissions in response to agricultural management. Here, we provide new data‐driven estimates of cropland‐N2O emissions across China in 1990–2014, compiled using a global cropland‐N2O flux observation dataset, nationwide survey‐based reconstruction of N‐fertilization and irrigation, and an updated nonlinear model. In addition, we have evaluated the drivers behind changing cropland‐N2O patterns using an index decomposition analysis approach. We find that China's annual cropland‐N2O emissions increased on average by 11.2 Gg N/year2 (p < .001) from 1990 to 2003, after which emissions plateaued until 2014 (2.8 Gg N/year2, p = .02), consistent with the output from an ensemble of process‐based terrestrial biosphere models. The slowdown of the increase in cropland‐N2O emissions after 2003 was pervasive across two thirds of China's sowing areas. This change was mainly driven by the nationwide reduction in N‐fertilizer applied per area, partially due to the prevalence of nationwide technological adoptions. This reduction has almost offset the N2O emissions induced by policy‐driven expansion of sowing areas, particularly in the Northeast Plain and the lower Yangtze River Basin. Our results underline the importance of high‐resolution activity data and adoption of nonlinear model of N2O emission for capturing cropland‐N2O emission changes. Improving the representation of policy interventions is also recommended for future projections.  相似文献   

20.
The production and use of biofuels have increased rapidly in recent decades. Bioethanol derived from sugarcane has become a promising alternative to fossil fuel for use in automotive vehicles. The ‘savings’ calculated from the carbon footprint of this energy source still generates many questions related to nitrous oxide (N2O) emissions from sugarcane cultivation. We quantified N2O emissions from soil covered with different amounts of sugarcane straw and determined the direct N2O emission factors of nitrogen fertilizers (applied at the planting furrows and in the topdressing) and the by‐products of sugarcane processing (filter cake and vinasse) applied to sugarcane fields. The results showed that the presence of different amounts of sugarcane straw did not change N2O emissions relative to bare soil (control). N‐fertilizer increased N2O emissions from the soil, especially when urea was used, both at the planting furrow (plant cane) and during the regrowth process (ratoon cane) in relation to ammonium nitrate. The emission factor for N‐fertilizer was 0.46 ± 0.33%. The field application of filter cake and vinasse favored N2O emissions from the soil, the emission factor for vinasse was 0.65 ± 0.29%, while filter cake had a lower emission factor of 0.13 ± 0.04%. The experimentally obtained N2O emission factors associated with sugarcane cultivation, specific to the major sugarcane production region of the Brazil, were lower than those considered by the IPCC. Thus, the results of this study should contribute to bioethanol carbon footprint calculations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号