首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
The μ-opioid receptor (OPRM1) plays an important role in opiate addiction. The OPRM1 gene promoter showed hypermethylation in lymphocytes of opiate addicts as well as opioid medications users, while the methylation status displayed ethnic diversity. The purpose of the study was to investigate the methylation pattern of OPRM1 promoter in the Han Chinese population. We analyzed 22 CpG sites located in OPRM1 promoter in 186 former opiate addicts (94 males and 92 females) and 184 healthy controls (102 males and 82 females). The +?126 CpG site was significantly hypermethylated in the former heroin addicts compared with controls (13.67% versus 8.39%, \(P = 3.78 \times 10^{ - 9}\), corrected for 36 tests). Six CpG sites were significantly associated with opioid exposure, including the most significant +126 CpG site (opiate addicts 13.57%, control 8.39%, \(P = 9.19 \times 10^{ - 12}\), corrected for 36 tests), while the +23 GpG site was the only hypomethylated one in former opiate addicts compared with controls (P?=?0.0023 after Bonferroni correction). Our results supported that opioid exposure was associated with methylation status of OPRM1 promoter and showed ethnic dependence.  相似文献   

2.
The objectives of this study were to investigate the effect of sexing by flow cytometry on the methylation patterns of the IGF2 and IGF2R genes. Frozen‐thawed, unsorted, and sex‐sorted sperm samples from four Nellore bulls were used. Each ejaculate was separated into three fractions: non‐sexed (NS), sexed for X‐sperm (SX), and sexed for Y‐sperm (SY). Sperm were isolated from the extender, cryoprotectant, and other cell types by centrifugation on a 40:70% Percoll gradient, and sperm pellets were used for genomic DNA isolation. DNA was used for analyses of the methylation patterns by bisulfite sequencing. Methylation status of the IGF2 and IGF2R genes were evaluated by sequencing 195 and 147 individual clones, respectively. No global differences in DNA methylation were found between NS, SX, and SY groups for the IGF2 (P = 0.09) or IGF2R genes (P = 0.38). Very specific methylation patterns were observed in the 25th and 26th CpG sites in the IGF2R gene. representing higher methylation in NS than in the SX and SY groups compared with the other CpG sites. Further, individual variation in methylation patterns was found among bulls. In conclusion, the sex‐sorting procedure by flow cytometry did not affect the overall DNA methylation patterns of the IGF2 and IGF2R genes, although individual variation in their methylation patterns among bulls was observed. Mol. Reprod. Dev. 79:77–84, 2012. © 2011 Wiley Periodicals, Inc.  相似文献   

3.
The μ-opioid receptor is the site of action of many endogenous opioids as well as opiates. We hypothesize that differences in DNA methylation of specific CpG dinucleotides between former severe heroin addicts in methadone maintenance treatment and control subjects will depend, in part, upon ethnicity. DNA methylation analysis of the μ-opioid receptor gene (OPRM1) promoter region was performed on African-Americans (118 cases, 80 controls) and Hispanics (142 cases, 61 controls) and these were compared with a similar Caucasian cohort from our earlier study. In controls, a higher methylation level was found in the African-Americans compared with the Hispanics or Caucasians. Significant experiment-wise differences in methylation levels were found at the −25 and +12 CpG sites in the controls among the three ethnicities. The overall methylation level of the CpG sites were significantly higher in the former heroin addicts when compared with the controls (point-wise P = 0.0457). However, in the African-Americans, the degree of methylation was significantly decreased experiment-wise in the former heroin addicts at the +12 CpG site (P = 0.0032, Bonferroni corrected general estimating equations). In Hispanics, the degree of methylation was increased in the former heroin addicts at the −25 (P < 0.001, experiment-wise), −14 (P = 0.001, experiment-wise), and +27 (P < 0.001, experiment-wise) CpG sites. These changes in methylation of the OPRM1 promoter region may lead to altered expression of the μ-opioid receptor gene in the lymphocytes of former heroin addicts who are stabilized in methadone maintenance treatment.  相似文献   

4.
Severely obese subjects with the metabolic syndrome (MS) have higher dipeptidyl peptidase‐4 (DPP4) expression in their visceral adipose tissue (VAT) compared to obese individuals without MS. We tested the hypothesis that methylation level of CpG sites in the DPP4 promoter CpG island in VAT was genotype‐dependent and associated with DPP4 mRNA abundance and MS‐related phenotypes. The VAT DNA was extracted in 92 severely obese premenopausal women undergoing biliopancreatic derivation for the treatment of obesity. Women were nondiabetic and none of them used medication to treat MS features. Cytosine methylation rates (%) of 102 CpG sites in the DPP4 CpG island were assessed by pyrosequencing of sodium bisulfite‐treated DNA. Methylation rates were >10% for CpG sites 94–102. Their mean methylation rate (%Meth94–102) was different between genotypes for DPP4 polymorphisms rs13015258 (P = 0.001), rs17848915 (P = 0.0004), and c.1926 G>A (P = 0.001). The %Meth94–102 correlated negatively with DPP4 mRNA abundance (r = ?0.25, P < 0.05) and positively with plasma high‐density lipoprotein (HDL) cholesterol concentrations (r = 0.22, P < 0.05), whereas DPP4 mRNA abundance correlated positively with plasma total‐/HDL‐cholesterol ratio (r = 0.25; P < 0.05). In the VAT of nondiabetic severely obese women, genotype‐dependent methylation levels of specific CpG sites in the DPP4 promoter CpG island were associated with DPP4 gene expression and variability in the plasma lipid profile. Higher DPP4 gene expression in VAT and its relationship with the plasma lipid profile may be explained by actually unknown DPP4 biological effect or, to another extent, may also be a marker of VAT inflammation known to be associated with metabolic disturbances.  相似文献   

5.
DNA methyltransferase1o (Dnmt1o), which is specific to oocyte and preimplantation embryo, plays a role in maintaining DNA methylation in mammalian cells. Here, we investigated the methylation status of CpGs sites in the Dnmt1o 5′‐flanking region in germ cells at different stages of oogenesis or spermatogenesis. The methylation levels of the CpG sites at the 5′‐flanking regions were hypermethylated in growing oocytes of all follicular stages, while the oocytes in meiotic metaphase II (MII) were demethylated. The methylation pattern within the CpGs sites in the 5′‐flanking region, however, was dramatically changed during spermatogenesis. We observed that there was significant non‐CpG methylation both in MII oocytes and spermatocytes. Although a low methylation level in non‐CpG sites was observed in primary and secondary oocytes, the CpA site of position 25 and CpT site of position 29 within the no‐CpG region in the 5′‐flanking region of Dnmt1o was highly methylated in MII oocytes. During spermatogenesis, the low degree of methylation at CpG sites in spermatocytes increased to a higher degree in sperm, while the high ratio of methylation in non‐CpG sites in spermatocytes decreased. Together, germ cells showed inverted methylation patterns between CpG and non‐CpG sites in the Dnmt1o 5′‐upstream region, and the methylation pattern during oogenesis did not drastically change, remaining generally hypomethylated at the MII stage. Mol. Reprod. Dev. 80: 212–222, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

6.
Tumor necrosis factor‐α (TNF‐α) is a proinflammatory cytokine which is commonly elevated in obese subjects and whose promoter is susceptible to be regulated by cytosine methylation. The aim of this research was to analyze whether epigenetic regulation of human TNF‐α promoter by cytosine methylation could be involved in the predisposition to lose body weight after following a balanced hypocaloric diet. Twenty‐four patients (12 women/12 men) with excessive body weight‐for‐height (BMI: 30.5 ± 0.32 kg/m2; age: 34 ± 4 years old) followed an 8‐week energy‐restricted diet. Blood mononuclear cell DNA, isolated before the nutritional intervention, was treated with bisulfite and a region of TNF‐α gene promoter (from ?360 to +50 bp) was sequenced. Obese men with successful weight loss (≥5% of initial body weight) showed lower levels of total TNF‐α promoter methylation (r = 0.74; P = 0.021), especially in the positions ?170 bp (r = 0.75, P = 0.005) and ?120 bp (r = 0.70, P = 0.011). Baseline TNF‐α circulating levels were positively associated with total promoter methylation (r = 0.84, P = 0.005) and methylation at position ?245 bp (r = 0.75, P = 0.020). TNF‐α promoter methylation could be a good inflammation marker predicting the hypocaloric diet‐induced weight‐loss, and constitutes a first step toward personalized nutrition based on epigenetic criteria.  相似文献   

7.
Secondary sexual trait expression can be influenced by fixed individual factors (such as genetic quality) as well as by dynamic factors (such as age and environmentally induced gene expression) that may be associated with variation in condition or quality. In particular, melanin‐based traits are known to relate to condition and there is a well‐characterized genetic pathway underpinning their expression. However, the mechanisms linking variable trait expression to genetic quality remain unclear. One plausible mechanism is that genetic quality could influence trait expression via differential methylation and differential gene expression. We therefore conducted a pilot study examining DNA methylation at a candidate gene (agouti‐related neuropeptide: AgRP) in the black grouse Lyrurus tetrix. We specifically tested whether CpG methylation covaries with age and multilocus heterozygosity (a proxy of genetic quality) and from there whether the expression of a melanin‐based ornament (ultraviolet‐blue chroma) correlates with DNA methylation. Consistent with expectations, we found clear evidence for age‐ and heterozygosity‐specific patterns of DNA methylation, with two CpG sites showing the greatest DNA methylation in highly heterozygous males at their peak age of reproduction. Furthermore, DNA methylation at three CpG sites was significantly positively correlated with ultraviolet‐blue chroma. Ours is the first study to our knowledge to document age‐ and quality‐dependent variation in DNA methylation and to show that dynamic sexual trait expression across the lifespan of an organism is associated with patterns of DNA methylation. Although we cannot demonstrate causality, our work provides empirical support for a mechanism that could potentially link key individual factors to variation in sexual trait expression in a wild vertebrate.  相似文献   

8.
《Epigenetics》2013,8(11):1473-1484
In utero smoke exposure has been shown to have detrimental effects on lung function and to be associated with persistent wheezing and asthma in children. One potential mechanism of IUS effects could be alterations in DNA methylation, which may have life-long implications. The goal of this study was to examine the association between DNA methylation and nicotine exposure in fetal lung and placental tissue in early development; nicotine exposure in this analysis represents a likely surrogate for in-utero smoke. We performed an epigenome-wide analysis of DNA methylation in fetal lung tissue (n = 85, 41 smoke exposed (48%), 44 controls) and the corresponding placental tissue samples (n = 80, 39 smoke exposed (49%), 41 controls) using the Illumina HumanMethylation450 BeadChip array. Differential methylation analyses were conducted to evaluate the variation associated with nicotine exposure. The most significant CpG sites in the fetal lung analysis mapped to the PKP3 (P = 2.94 × 10?03), ANKRD33B (P = 3.12 × 10?03), CNTD2 (P = 4.9 × 10?03) and DPP10 (P = 5.43 × 10?03) genes. In the placental methylome, the most significant CpG sites mapped to the GTF2H2C and GTF2H2D genes (P = 2.87 × 10?06 ? 3.48 × 10?05). One hundred and one unique CpG sites with P-values < 0.05 were concordant between lung and placental tissue analyses. Gene Set Enrichment Analysis demonstrated enrichment of specific disorders, such as asthma and immune disorders. Our findings demonstrate an association between in utero nicotine exposure and variable DNA methylation in fetal lung and placental tissues, suggesting a role for DNA methylation variation in the fetal origins of chronic diseases.  相似文献   

9.
The normal‐weight obese (NWO) syndrome was identified in women whose body weight (BW) and BMI are normal but whose fat mass (FM) is >30%. In these subjects, an early inflammatory status has been demonstrated. The aim was to verify whether oxidative stress occurs in NWO. Sixty age‐matched white Italian women were studied and subdivided as follows: 20 normal‐weight individuals (NW) (BMI <25 kg/m2; FM% <30%); 20 NWO (BMI <25 kg/m2; FM% >30%); 20 preobese‐obese (OB) (BMI >25 kg/m2; FM% >30%). Anthropometric, body composition (by dual‐energy X‐ray absorptiometry) variables, plasma levels of some cytokines, reduced glutathione (GSH), lipid hydroperoxide (LOOH), nitric oxide (NO) metabolites (NO2?/NO3?), antioxidant nonproteic capacity (ANPC) were measured and compared between groups. Glucose and lipid metabolism parameters were assessed. GSH and NO2?/NO3? levels resulted lower in OB and NWO compared to NW (P < 0.01). LOOH levels resulted higher in OB and NWO (P < 0.01). ANPC in NWO was lower than NW but higher with respect to OB (P < 0.01). Correlation analysis revealed strong associations between GSH levels and BW, BMI, FM% (R = ?0.45, at least P < 0.05); waist circumference (W) (R = ?0.33, P < 0.05); FFM% (R = 0.45, P < 0.01); IL‐1α, IL‐6, IL‐10, IL‐15 (R = ?0.39, ?0.33, ?0.36 ?0.34, respectively, P < 0.05); triglycerides (R = ?0.416, P < 0.05). LOOH levels were negatively related to FFM% (R = ?0.413, P < 0.05) and positively to FM%, IL‐15, TNF‐α, insulin, total cholesterol, low‐density lipoprotein cholesterol, and triglycerides (R = 0.408, R = 0.502, R = 0.341, R = 0.412, R = 0.4036, R = 0.405, R = 0.405, respectively, P < 0.05). The study clearly indicates that NWO, besides being in early inflammatory status, are contextually exposed to an oxidative stress related to metabolic abnormalities occurring in obesity.  相似文献   

10.
Epigenetic regulation of imprinted genes during embryonic development is influenced by the prenatal environment. Our aim was to examine the effect of maternal emotional stress and cortisol levels during pregnancy on methylation of imprinted genes, insulin‐like growth factor 2 (IGF2) and guanine nucleotide‐binding protein, alpha stimulating extra‐large (GNASXL), using umbilical cord blood DNA. Maternal depressed mood (Edinburgh Depression Scale; EDS), pregnancy‐related anxiety questionnaire (PRAQ) and cortisol day profiles were assessed throughout pregnancy. At birth, a cord blood sample (n = 80) was taken to study DNA methylation of IGF2 DMR0 (differentially methylated region), IGF2 anti‐sense (IGF2AS) and GNASXL using Sequenom Epi TYPER. Linear mixed models were used to examine the relationship between DNA methylation and maternal stress, while correcting for confounders. We also studied the association of DNA methylation with the child ponderal index at birth. We found a cytosine–guanine dinucleotide (CpG)‐specific association of PRAQ subscales with IGF2 DMR0 (CpG5, P < 0.0001) and GNASXL (CpG11, P = 0.0003), while IGF2AS was associated with maternal EDS scores (CpG33, P = 0.0003) and cortisol levels (CpG33, P = 0.0006; CpG37‐38, P = 0.0005). However, there was no association of methylation with ponderal index at birth. In conclusion, maternal stress during pregnancy, as defined by cortisol measurements, EDS and PRAQ scores, is associated with DNA methylation of imprinted genes IGF2 and GNASXL. Our results provide further evidence that prenatal adversity can influence imprinted gene methylation, although future studies are needed to unravel the exact mechanisms.  相似文献   

11.
Epigenome-wide DNA methylation association studies have identified highly replicable genomic loci sensitive to maternal smoking during gestation. The role of inter-individual genetic variation in influencing DNA methylation, leading to the possibility of confounding or bias of such associations, has not been assessed. We investigated whether the DNA methylation levels at the top 10 CpG sites previously associated with exposure to maternal smoking during gestation were associated with individual genetic variation at the genome-wide level. Genome-wide association tests between DNA methylation at the top 10 candidate CpG and genome-wide SNPs were performed in 736 case and control participants of the California Childhood Leukemia Study. Three of the strongest maternal-smoking sensitive CpG sites in newborns were significantly associated with SNPs located proximal to each gene: cg18146737 in the GFI1 gene with rs141819830 (P = 8.2×10?44), cg05575921 in the AHRR gene with rs148405299 (P = 5.3×10?10), and cg12803068 in the MYO1G gene with rs61087368 (P = 1.3×10?18). For the GFI1 CpG cg18146737, the underlying genetic variation at rs141819830 confounded the association between maternal smoking and DNA methylation in our data (the regression coefficient changed from ?0.02 [P = 0.139] to ?0.03 [P = 0.015] after including the genotype). Our results suggest that further studies using DNA methylation at cg18146737, cg05575921, or cg12803068 that aim to assess exposure to maternal smoking during gestation should include genotype at the corresponding SNP. New methods are required for adequate and routine inclusion of genotypic influence on DNA methylation in epigenome-wide association studies to control for potential confounding.  相似文献   

12.
13.
The prokaryotic CpG‐specific DNA methylase from Spiroplasma, SssI methylase, has been extensively used to methylate plasmid DNA in vitro to investigate the effects of methylation in vertebrate systems. Currently available methods to produce CpG‐methylated plasmid DNA have certain limitations and cannot generate large quantities of methylated DNA without cost or problems of purity. Here we describe an approach in which the SssI methylase gene has been introduced into the Escherichia coli bacterial genome under the control of an inducible promoter. Plasmid DNA propagated in this bacterium under conditions which induce the methylase gene result in significant (> 90%) CpG methylation. Methylated DNA produced by this approach behaves similarly to methylated DNA produced in vitro using the purified methylase. The approach is scalable allowing for the production of milligram quantities of methylated plasmid DNA.  相似文献   

14.
15.
Genome‐wide association studies (GWAS) of alcohol dependence (AD) have reliably identified variation within alcohol metabolizing genes (eg, ADH1B) but have inconsistently located other signals, which may be partially attributable to symptom heterogeneity underlying the disorder. We conducted GWAS of DSM‐IV AD (primary analysis), DSM‐IV AD criterion count (secondary analysis), and individual dependence criteria (tertiary analysis) among 7418 (1121 families) European American (EA) individuals from the Collaborative Study on the Genetics of Alcoholism (COGA). Trans‐ancestral meta‐analyses combined these results with data from 3175 (585 families) African‐American (AA) individuals from COGA. In the EA GWAS, three loci were genome‐wide significant: rs1229984 in ADH1B for AD criterion count (P = 4.16E?11) and Desire to cut drinking (P = 1.21E?11); rs188227250 (chromosome 8, Drinking more than intended, P = 6.72E?09); rs1912461 (chromosome 15, Time spent drinking, P = 1.77E?08). In the trans‐ancestral meta‐analysis, rs1229984 was associated with multiple phenotypes and two additional loci were genome‐wide significant: rs61826952 (chromosome 1, DSM‐IV AD, P = 8.42E?11); rs7597960 (chromosome 2, Time spent drinking, P = 1.22E?08). Associations with rs1229984 and rs18822750 were replicated in independent datasets. Polygenic risk scores derived from the EA GWAS of AD predicted AD in two EA datasets (P < .01; 0.61%‐1.82% of variance). Identified novel variants (ie, rs1912461, rs61826952) were associated with differential central evoked theta power (loss ? gain; P = .0037) and reward‐related ventral striatum reactivity (P = .008), respectively. This study suggests that studying individual criteria may unveil new insights into the genetic etiology of AD liability.  相似文献   

16.
17.
DNA methylation is an important biological regulatory mechanism that changes gene expression without altering the DNA sequence. Increasing studies have revealed that DNA methylation data play a vital role in the field of oncology. However, the methylation site signature in triple‐negative breast cancer (TNBC) remains unknown. In our research, we analysed 158 TNBC samples and 98 noncancerous samples from The Cancer Genome Atlas (TCGA) in three phases. In the discovery phase, 86 CpGs were identified by univariate Cox proportional hazards regression (CPHR) analyses to be significantly correlated with overall survival (P < 0.01). In the training phase, these candidate CpGs were further narrowed down to a 15‐CpG‐based signature by conducting least absolute shrinkage and selector operator (LASSO) Cox regression in the training set. In the validation phase, the 15‐CpG‐based signature was verified using two different internal sets and one external validation set. Furthermore, a nomogram comprising the CpG‐based signature and TNM stage was generated to predict the 1‐, 3‐ and 5‐year overall survival in the primary set, and it showed excellent performance in the three validation sets (concordance indexes: 0.924, 0.974 and 0.637). This study showed that our nomogram has a precise predictive effect on the prognosis of TNBC and can potentially be implemented for clinical treatment and diagnosis.  相似文献   

18.
19.
Boar taint (BT) is an offensive flavor observed in non‐castrated male pigs that reduces the carcass price. Surgical castration effectively avoids the taint but is associated with animal welfare concerns. The functional annotation of farm animal genomes for understanding the biology of complex traits can be used in the selection of breeding animals to achieve favorable phenotypic outcomes. The characterization of pig epigenomes/methylation changes between animals with high and low BT and genome‐wide epigenetic markers that can predict BT are lacking. Reduced representation bisulfite sequencing of DNA methylation patterns based on next‐generation sequencing is an efficient technology to identify candidate epigenetic biomarkers associated with BT. Three different BT levels were analyzed using reduced representation bisulfite sequencing data to calculate the methylation levels of cytosine and guanine dinucleotide (CpG) sites. The co‐analysis of differentially methylated CpG sites identified by this study and differentially expressed genes identified by a previous study found 32 significant co‐located genes. The joint analysis of GO terms and pathways revealed that methylation and gene expression of seven candidate genes were associated with BT; in particular, FASN plays a key role in fatty acid biosynthesis, and PEMT might be involved in estrogen regulation and the development of BT. This study is the first to report the genome‐wide DNA methylation profiles of BT in pigs using next‐generation sequencing and summarize candidate genes associated with epigenetic markers of BT, which could contribute to the understanding of the functional biology of BT traits and selective breeding of pigs against BT based on epigenetic biomarkers.  相似文献   

20.
Shin CM  Kim N  Jung Y  Park JH  Kang GH  Park WY  Kim JS  Jung HC  Song IS 《Helicobacter》2011,16(3):179-188
Background and Aims: To determine genome‐wide DNA methylation profiles induced by Helicobacter pylori (H. pylori) infection and to identify methylation markers in H. pylori‐induced gastric carcinogenesis. Methods: Gastric mucosae obtained from controls (n = 20) and patients with gastric cancer (n = 28) were included. A wide panel of CpG sites in cancer‐related genes (1505 CpG sites in 807 genes) was analyzed using Illumina bead array technology. Validation of the results of Illumina bead array technique was performed using methylation‐specific PCR method for four genes (MOS, DCC, CRK, and PTPN6). Results: The Illumina bead array showed that a total of 359 CpG sites (269 genes) were identified as differentially methylated by H. pylori infection (p < .0001). The correlation between methylation‐specific PCR and bead array analysis was significant (p < .0001, Spearman coefficient = 0.5054). Methylation profiles in noncancerous gastric mucosae of the patients with gastric cancer showed quite distinct patterns according to the presence or absence of the current H. pylori infection; however, 10 CpG sites were identified to be hypermethylated and three hypomethylated in association with the presence of gastric cancer regardless of H. pylori infection (p < .01). Conclusions: Genome‐wide methylation profiles showed a number of genes differentially methylated by H. pylori infection. Methylation profiles in noncancerous gastric mucosae from the patients with gastric cancer can be affected by H. pylori‐induced gastritis. Differentially methylated CpG sites in this study needs to be validated in a larger population using quantitative methylation‐specific PCR method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号