首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Aim

The Baltic Sea forms a unique regional sea with its salinity gradient ranging from marine to nearly freshwater conditions. It is one of the most environmentally impacted brackish seas worldwide, and the low biodiversity makes it particularly sensitive to anthropogenic pressures including climate change. We applied a novel combination of models to predict the fate of one of the dominant foundation species in the Baltic Sea, the bladder wrack Fucus vesiculosus.

Location

The Baltic Sea.

Methods

We used a species distribution model to predict climate change‐induced displacement of F. vesiculosus and combined these projections with a biophysical model of dispersal and connectivity to explore whether the dispersal rate of locally adapted genotypes may match estimated climate velocities to recolonize the receding salinity gradient. In addition, we used a population dynamic model to assess possible effects of habitat fragmentation.

Results

The species distribution model showed that the habitat of F. vesiculosus is expected to dramatically shrink, mainly caused by the predicted reduction of salinity. In addition, the dispersal rate of locally adapted genotypes may not keep pace with estimated climate velocities rendering the recolonization of the receding salinity gradient more difficult. A simplistic model of population dynamics also indicated that the risk of local extinction may increase due to future habitat fragmentation.

Main conclusions

Results point to a significant risk of locally adapted genotypes being unable to shift their ranges sufficiently fast considering the restricted dispersal and long generation time. The worst scenario is that F. vesiculosus may disappear from large parts of the Baltic Sea before the end of this century with large effects on the biodiversity and ecosystem functioning. We finally discuss how to reduce this risk through conservation actions, including assisted colonization and assisted evolution.  相似文献   

2.
The future distribution of river fishes will be jointly affected by climate and land use changes forcing species to move in space. However, little is known whether fish species will be able to keep pace with predicted climate and land use‐driven habitat shifts, in particular in fragmented river networks. In this study, we coupled species distribution models (stepwise boosted regression trees) of 17 fish species with species‐specific models of their dispersal (fish dispersal model FIDIMO) in the European River Elbe catchment. We quantified (i) the extent and direction (up‐ vs. downstream) of predicted habitat shifts under coupled “moderate” and “severe” climate and land use change scenarios for 2050, and (ii) the dispersal abilities of fishes to track predicted habitat shifts while explicitly considering movement barriers (e.g., weirs, dams). Our results revealed median net losses of suitable habitats of 24 and 94 river kilometers per species for the moderate and severe future scenarios, respectively. Predicted habitat gains and losses and the direction of habitat shifts were highly variable among species. Habitat gains were negatively related to fish body size, i.e., suitable habitats were projected to expand for smaller‐bodied fishes and to contract for larger‐bodied fishes. Moreover, habitats of lowland fish species were predicted to shift downstream, whereas those of headwater species showed upstream shifts. The dispersal model indicated that suitable habitats are likely to shift faster than species might disperse. In particular, smaller‐bodied fish (<200 mm) seem most vulnerable and least able to track future environmental change as their habitat shifted most and they are typically weaker dispersers. Furthermore, fishes and particularly larger‐bodied species might substantially be restricted by movement barriers to respond to predicted climate and land use changes, while smaller‐bodied species are rather restricted by their specific dispersal ability.  相似文献   

3.
Plants and animals have responded to past climate changes by migrating with habitable environments, sometimes shifting the boundaries of their geographic ranges by tens of kilometers per year or more. Species migrating in response to present climate conditions, however, must contend with landscapes fragmented by anthropogenic disturbance. We consider this problem in the context of wind-dispersed tree species. Mechanisms of long-distance seed dispersal make these species capable of rapid migration rates. Models of species-front migration suggest that even tree species with the capacity for long-distance dispersal will be unable to keep pace with future spatial changes in temperature gradients, exclusive of habitat fragmentation effects. Here we present a numerical model that captures the salient dynamics of migration by long-distance dispersal for a generic tree species. We then use the model to explore the possible effects of assisted colonization within a fragmented landscape under a simulated tree-planting scheme. Our results suggest that an assisted-colonization program could accelerate species-front migration rates enough to match the speed of climate change, but such a program would involve an environmental-sustainability intervention at a massive scale.  相似文献   

4.
Many species have already shifted their distributions in response to recent climate change. Here, we aimed at predicting the future breeding distributions of European birds under climate, land‐use, and dispersal scenarios. We predicted current and future distributions of 409 species within an ensemble forecast framework using seven species distribution models (SDMs), five climate scenarios and three emission and land‐use scenarios. We then compared results from SDMs using climate‐only variables, habitat‐only variables or both climate and habitat variables. In order to account for a species’ dispersal abilities, we used natal dispersal estimates and developed a probabilistic method that produced a dispersal scenario intermediate between the null and full dispersal scenarios generally considered in such studies. We then compared results from all scenarios in terms of future predicted range changes, range shifts, and variations in species richness. Modeling accuracy was better with climate‐only variables than with habitat‐only variables, and better with both climate and habitat variables. Habitat models predicted smaller range shifts and smaller variations in range size and species richness than climate models. Using both climate and habitat variables, it was predicted that the range of 71% of the species would decrease by 2050, with a 335 km median shift. Predicted variations in species richness showed large decreases in the southern regions of Europe, as well as increases, mainly in Scandinavia and northern Russia. The partial dispersal scenario was significantly different from the full dispersal scenario for 25% of the species, resulting in the local reduction of the future predicted species richness of up to 10%. We concluded that the breeding range of most European birds will decrease in spite of dispersal abilities close to a full dispersal hypothesis, and that given the contrasted predictions obtained when modeling climate change only and land‐use change only, both scenarios must be taken into consideration.  相似文献   

5.
Aim Species ranges have adapted during the Holocene to altering climate conditions, but it remains unclear if species will be able to keep pace with recent and future climate change. The goal of our study is to assess the influence of changing macroclimate, competition and habitat connectivity on the migration rates of 14 tree species. We also compare the projections of range shifts from species distribution models (SDMs) that incorporate realistic migration rates with classical models that assume no or unlimited migration. Location Europe. Methods We calibrated SDMs with species abundance data from 5768 forest plots from ICP Forest Level 1 in relation to climate, topography, soil and land‐use data to predict current and future tree distributions. To predict future species ranges from these models, we applied three migration scenarios: no migration, unlimited migration and realistic migration. The migration rates for the SDMs incorporating realistic migration were estimated according to macroclimate, inter‐specific competition and habitat connectivity from simulation experiments with a spatially explicit process model (TreeMig). From these relationships, we then developed a migration cost surface to constrain the predicted distributions of the SDMs. Results The distributions of early‐successional species during the 21st century predicted by SDMs that incorporate realistic migration matched quite well with the unlimited migration assumption (mean migration rate over Europe for A1fi/GRAS climate and land‐use change scenario 156.7 ± 79.1 m year?1 and for B1/SEDG 164.3 ± 84.2 m year?1). The predicted distributions of mid‐ to late‐successional species matched better with the no migration assumption (A1fi/GRAS, 15.2 ± 24.5 m year?1 and B1/SEDG, 16.0 ± 25.6 m year?1). Inter‐specific competition, which is higher under favourable growing conditions, reduced range shift velocity more than did adverse macroclimatic conditions (i.e. very cold or dry climate). Habitat fragmentation also led to considerable time lags in range shifts. Main conclusions Migration rates depend on species traits, competition, spatial habitat configuration and climatic conditions. As a result, re‐adjustments of species ranges to climate and land‐use change are complex and very individualistic, yet still quite predictable. Early‐successional species track climate change almost instantaneously while mid‐ to late‐ successional species were predicted to migrate very slowly.  相似文献   

6.
7.
Andean plant species are predicted to shift their distributions, or ‘migrate,’ upslope in response to future warming. The impacts of these shifts on species' population sizes and their abilities to persist in the face of climate change will depend on many factors including the distribution of individuals within species' ranges, the ability of species to migrate and remain at equilibrium with climate, and patterns of human land‐use. Human land‐use may be especially important in the Andes where anthropogenic activities above tree line may create a hard barrier to upward migrations, imperiling high‐elevation Andean biodiversity. In order to better understand how climate change may impact the Andean biodiversity hotspot, we predict the distributional responses of hundreds of plant species to changes in temperature incorporating population density distributions, migration rates, and patterns of human land‐use. We show that plant species from high Andean forests may increase their population sizes if able to migrate onto the expansive land areas above current tree line. However, if the pace of climate change exceeds species' abilities to migrate, all species will experience large population losses and consequently may face high risk of extinction. Using intermediate migration rates consistent with those observed for the region, most species are still predicted to experience population declines. Under a business‐as‐usual land‐use scenario, we find that all species will experience large population losses regardless of migration rate. The effect of human land‐use is most pronounced for high‐elevation species that switch from predicted increases in population sizes to predicted decreases. The overriding influence of land‐use on the predicted responses of Andean species to climate change can be viewed as encouraging since there is still time to initiate conservation programs that limit disturbances and/or facilitate the upward migration and persistence of Andean plant species.  相似文献   

8.
9.

Aim

To assess how habitat loss and climate change interact in affecting the range dynamics of species and to quantify how predicted range dynamics depend on demographic properties of species and the severity of environmental change.

Location

South African Cape Floristic Region.

Methods

We use data‐driven demographic models to assess the impacts of past habitat loss and future climate change on range size, range filing and abundances of eight species of woody plants (Proteaceae). The species‐specific models employ a hybrid approach that simulates population dynamics and long‐distance dispersal on top of expected spatio‐temporal dynamics of suitable habitat.

Results

Climate change was mainly predicted to reduce range size and range filling (because of a combination of strong habitat shifts with low migration ability). In contrast, habitat loss mostly decreased mean local abundance. For most species and response measures, the combination of habitat loss and climate change had the most severe effect. Yet, this combined effect was mostly smaller than expected from adding or multiplying effects of the individual environmental drivers. This seems to be because climate change shifts suitable habitats to regions less affected by habitat loss. Interspecific variation in range size responses depended mostly on the severity of environmental change, whereas responses in range filling and local abundance depended mostly on demographic properties of species. While most surviving populations concentrated in areas that remain climatically suitable, refugia for multiple species were overestimated by simply overlying habitat models and ignoring demography.

Main conclusions

Demographic models of range dynamics can simultaneously predict the response of range size, abundance and range filling to multiple drivers of environmental change. Demographic knowledge is particularly needed to predict abundance responses and to identify areas that can serve as biodiversity refugia under climate change. These findings highlight the need for data‐driven, demographic assessments in conservation biogeography.
  相似文献   

10.

Aim

Rarity and geographic aspects of species distributions mediate their vulnerability to global change. We explore the relationships between species rarity and geography and their exposure to climate and land use change in a biodiversity hotspot.

Location

California, USA.

Taxa

One hundred and six terrestrial plants.

Methods

We estimated four rarity traits: range size, niche breadth, number of habitat patches, and patch isolation; and three geographic traits: mean elevation, topographic heterogeneity, and distance to coast. We used species distribution models to measure species exposure—predicted change in continuous habitat suitability within currently occupied habitat—under climate and land use change scenarios. Using regression models, decision-tree models and variance partitioning, we assessed the relationships between species rarity, geography, and exposure to climate and land use change.

Results

Rarity, geography and greenhouse gas emissions scenario explained >35% of variance in climate change exposure and >61% for land use change exposure. While rarity traits (range size and number of habitat patches) were most important for explaining species exposure to climate change, geographic traits (elevation and topographic heterogeneity) were more strongly associated with species' exposure to land use change.

Main conclusions

Species with restricted range sizes and low topographic heterogeneity across their distributions were predicted to be the most exposed to climate change, while species at low elevations were the most exposed to habitat loss via land use change. However, even some broadly distributed species were projected to lose >70% of their currently suitable habitat due to climate and land use change if they are in geographically vulnerable areas, emphasizing the need to consider both species rarity traits and geography in vulnerability assessments.  相似文献   

11.
The dispersal capabilities of intertidal organisms may represent a key factor to their survival in the face of global warming, as species that cannot adapt to the various effects of climate change will have to migrate to track suitable habitat. Although species with pelagic larval phases might be expected to have a greater capacity for dispersal than those with benthic larvae, interspecies comparisons have shown that this is not always the case. Consequently, population genetic approaches are being increasingly used to gain insights into dispersal through studying patterns of gene flow. In the present study, we used nuclear single‐nucleotide polymorphisms (SNPs) and mitochondrial DNA (mtDNA) sequencing to elucidate fine‐scale patterns of genetic variation between populations of the Black Katy Chiton, Katharina tunicata, separated by 15–150 km in south‐west Vancouver Island. Both the nuclear and mitochondrial data sets revealed no genetic differentiation between the populations studied, and an isolation‐with‐migration analysis indicated extensive local‐scale gene flow, suggesting an absence of barriers to dispersal. Population demographic analysis also revealed long‐term population stability through previous periods of climate change associated with the Pleistocene glaciations. Together, the findings of the present study suggest that this high potential for dispersal may allow K. tunicata to respond to current global warming by tracking suitable habitat, consistent with its long‐term demographic stability through previous changes in the Earth's climate. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 106 , 589–597.  相似文献   

12.

Question

Natural reforestation is an important component of climate mitigation and adaptation, but the ecological processes promoting or constraining it are poorly understood. In this study we employ a stand reconstruction approach (which uses ages of extant trees to estimate year of establishment for each individual tree) to test for general trait-based effects on tree species arrival order in post-agricultural forest successions.

Location

Naturally reforesting post-agricultural landscapes throughout New Zealand.

Methods

Ages were obtained for 2434 individuals spanning 30 tree species across a nationwide network of 128 plots in 14 naturally reforesting post-agricultural sites. These ages were used to calculate individual-level arrival times (relative to the oldest individual in each plot). We estimated species-level arrival times by fitting linear mixed-effects (LME) regressions (with species identity as the fixed effect, and plots nested within sites as the random effects) to individual arrival time data. We used back-casting (where arrival time data are used to document individual-level presence in plots through time) to track annual changes in species abundance and community-weighted mean (CWM) trait values. We used standardised major axis (SMA) regressions to examine the effect of traits related to resource use strategy, herbivory avoidance, seed dispersal and disturbance response on species-level arrival times. We used LME regressions to test for changes in CWM trait values with stand age.

Results

The earliest-arriving species had traits associated with herbivory avoidance, were abiotically dispersed and had short predicted dispersal distances. There was no evidence that traits linked to resource use strategy or disturbance response affected species arrival times. Every significant species-level relationship was recovered in community-level LME analyses.

Conclusions

Our findings suggest that mammalian herbivore control and enhancement of biotic (bird) seed dispersal may be key management interventions in realising the full climate mitigation and adaptation potential of natural reforestation in post-agricultural landscapes.  相似文献   

13.
Aim To incorporate dispersal through stream networks into models predicting the future distribution of a native, freshwater fish given climate change scenarios. Location Sweden. Methods We used logistic regression to fit climate and habitat data to observed pike (Esox lucius Linnaeus) distributions in 13,476 lakes. We used GIS to map dispersal pathways through streams. Lakes either (1) contained pike or were downstream from pike lakes, (2) were upstream from pike lakes, but downstream from natural dispersal barriers, or (3) were isolated from streams or were upstream from natural dispersal barriers. We then used climate projections to model future distributions of pike and compared our results with and without including dispersal. Results Given climate and habitat, pike were predicted present in all of 99,249 Swedish lakes by 2100. After accounting for dispersal barriers, we only predicted pike presence in 31,538 lakes. Dispersal barriers most strongly limited pike invasion in mountainous regions, but low connectivity also characterized some relatively flat regions. Main conclusions The dendritic network structure of streams and interconnected lakes makes a two‐dimensional representation of the landscape unsuitable for predicting range shifts of many freshwater organisms. If dispersal through stream networks is not accounted for, predictions of future fish distributions in a warmer climate might grossly overestimate range expansions of warm and cool‐water fishes and underestimate range contractions of cold‐water fishes. Dispersal through stream networks can be modelled in any region for which a digital elevation model and species occurrence data are available.  相似文献   

14.
Climate change will redistribute the global biodiversity in the Anthropocene. As climates change, species might move from one place to another, due to local extinctions and colonization of new environments. However, the existence of permeable migratory routes precedes faunal migrations in fragmented landscapes. Here, we investigate how dispersal will affect the outcome of climate change on the distribution of Amazon's primate species. We modeled the distribution of 80 Amazon primate species, using ecological niche models, and projected their potential distribution on scenarios of climate change. Then, we imposed landscape restrictions to primate dispersal, derived from a natural biogeographical barrier to primates (the main tributaries of the Amazon river) and an anthropogenic constraint to the migration of many canopy‐dependent animals (deforested areas). We also highlighted potential conflict zones, i.e. regions of high migration potential but predicted to be deforested. Species response to climate change varied across dispersal limitation scenarios. If species could occupy all newly suitable climate, almost 70% of species could expand ranges. Including dispersal barriers (natural and anthropogenic), however, led to range expansion in only less than 20% of the studied species. When species were not allowed to migrate, all of them lost an average of 90% of the suitable area, suggesting that climate may become unsuitable within their present distributions. All Amazon primate species may need to move as climate changes to avoid deleterious effects of exposure to non‐analog climates. The effect of climate change on the distribution of Amazon primates will ultimately depend on whether landscape permeability will allow climate‐driven faunal migrations. The network of protected areas in the Amazon could work as ‘stepping stones’ but most are outside important migratory routes. Therefore, protecting important dispersal corridors is foremost to allow effective migrations of the Amazon fauna in face of climate change and deforestation.  相似文献   

15.

Questions

What are the most important drivers of plant species richness (gamma‐diversity) and species turnover (beta‐diversity) in the field layer of a forest edge? Does the tree and shrub species richness structure and complexity affect the richness of forest and grassland specialist species?

Location

Southeast Sweden.

Methods

We sampled 50 forest edges with different levels of structural complexity in agricultural landscapes. In each border we recorded trees, shrubs and herb layer species in a 50‐m transect parallel with the forest. We investigated species composition and species turnover in relation to the proportions of gaps in the border and the diversity of trees and shrubs.

Results

Total plant species richness in the field layer was mainly explained by the proportion of gaps to areas with full canopy cover and tree diversity. Increasing number of gaps promoted higher diversity of grassland specialist species within the field layer, resulting in open forest borders with the highest overall species richness. Gaps did however have a negative impact on forest species richness. Conversely, increasing forest species richness was positively related to tree diversity, but the number of grassland specialist species was negatively affected by tree diversity.

Conclusions

Managing forest borders, and therefore increasing the area of semi‐open habitats in fragmented agricultural landscapes, provides future opportunities to create a network of suitable habitats for both grassland and deciduous forest specialist species. Such measures therefore have the potential to increase functional connectivity and support dispersal of species in homogeneous forest/agricultural landscapes.  相似文献   

16.

Aim

Climate and land use changes are two major pervasive and growing global causes of rapid changes in the distribution patterns of biodiversity, challenging the future effectiveness of protected areas (PAs), which were mainly designed based on a static view of biodiversity. Therefore, evaluating the effectiveness of protected areas for protecting the species threatened by climate and land use change is critical for future biodiversity conservation.

Location

China.

Methods

Here, using distributions of 200 Chinese Theaceae species and ensemble species distribution models, we identified species threatened by future climate and land use change (i.e. species with predicted loss of suitable habitat ≥30%) under scenarios incorporating climate change, land use change and dispersal. We then estimate the richness distribution patterns of threatened species and identify priority conservation areas and conservation gaps of the current PA network.

Results

Our results suggest that 36.30%–51.85% of Theaceae species will be threatened by future climate and land use conditions and that although the threatened species are mainly distributed at low latitudes in China under both current and future periods, the mean richness of the threatened species per grid cell will decline by 0.826–3.188 species by the 2070s. Moreover, we found that these priority conservation areas are highly fragmented and that the current PA network only covers 14.21%–20.87% of the ‘areas worth exploring’ and 6.91%–7.91% of the ‘areas worth attention’.

Main Conclusions

Our findings highlight the necessity of establishing new protected areas and ecological corridors in priority conservation areas to protect the threatened species. Moreover, our findings also highlight the importance of taking into consideration the potential threatened species under future climate and land use conditions when designating priority areas for biodiversity conservation.  相似文献   

17.

Aim

Climate and land use change are among the most important threatening processes driving biodiversity loss, especially in the tropics. Although the potential impacts of each threat have been widely studied in isolation, few studies have assessed the impacts of climate and land cover change in combination. Here, we evaluate the exposure of a large mammalian clade, bats, to multiple scenarios of environmental change and dispersal to understand potential consequences for biodiversity conservation.

Location

Mexico.

Methods

We used ensemble species distribution models to forecast changes in environmental suitability for 130 bat species that occur in Mexico by 2050s under four dispersal assumptions and four combined climate and land use change scenarios. We identified regions with the strongest projected impacts for each scenario and assessed the overlap across scenarios.

Results

The combined effects of climate and land use change will cause an average reduction in environmental suitability for 51% of the species across their range, regardless of scenario. Overall, species show a mean decrease in environmental suitability in at least 46% of their current range in all scenarios of change and dispersal. Climate scenarios had a higher impact on species environmental suitability than land use scenarios. There was a spatial overlap of 43% across the four environmental change scenarios for the regions projected to have the strongest impacts.

Main conclusions

Combined effects of future environmental change may result in substantial declines in environmental suitability for Mexican bats even under optimistic scenarios. This study highlights the vulnerability of megadiverse regions and an indicator taxon to human disturbance. The consideration of combined threats can make an important difference in how we react to changes to conserve our biodiversity as they pose different challenges.
  相似文献   

18.
Aim Understanding the history of the mesic‐adapted plant species of eastern British Columbia and northern Idaho, disjunct from their main coastal distribution, may suggest how biotas reorganize in the face of climate change and dispersal barriers. For different species, current evidence supports establishment of the disjunction via an inland glacial refugium, via recent dispersal from the coast, or via a combination of both. In this study, the modern distributions of the coastal‐disjunct vascular plants are analysed with respect to modern climate to examine how refugia and/or dispersal limitation control regional patterns in species richness. Location North‐west North America. Methods The distributions of nine tree and 58 understorey species with a coastal‐disjunct pattern were compiled on a 50‐km grid. The relationship between species richness and an estimate of available moisture was calculated separately for formerly glaciated and unglaciated portions of the coastal and inland regions. Growth habit and dispersal mode were assessed as possible explanatory variables for species distributions. Results Species richness shows a strong relationship to climate in coastal‐unglaciated areas but no relationship to climate in inland‐glaciated areas. In inland‐glaciated areas, richness is c. 70% lower than that expected from climate. Species with animal‐dispersed seeds occupy a larger portion of coastal and inland regions than species with less dispersal potential. Main conclusions Modern patterns of diversity are consistent with both refugia and dispersal processes in establishing the coastal‐disjunct pattern. The inland glacial refugium is marked by locally high diversity and several co‐distributed endemics. In the inland‐glaciated area, dispersal limitation has constrained diversity despite the nearby refugia. Onset of mesic climate within only the last 3000 years and the low dispersal capacity of many species in the refugium may explain this pattern. This study suggests that vascular plant species will face significant challenges responding to climate change on fragmented landscapes.  相似文献   

19.
Given the rapidly growing human population in mediterranean-climate systems, land use may pose a more immediate threat to biodiversity than climate change this century, yet few studies address the relative future impacts of both drivers. We assess spatial and temporal patterns of projected 21st century land use and climate change on California sage scrub (CSS), a plant association of considerable diversity and threatened status in the mediterranean-climate California Floristic Province. Using a species distribution modeling approach combined with spatially-explicit land use projections, we model habitat loss for 20 dominant shrub species under unlimited and no dispersal scenarios at two time intervals (early and late century) in two ecoregions in California (Central Coast and South Coast). Overall, projected climate change impacts were highly variable across CSS species and heavily dependent on dispersal assumptions. Projected anthropogenic land use drove greater relative habitat losses compared to projected climate change in many species. This pattern was only significant under assumptions of unlimited dispersal, however, where considerable climate-driven habitat gains offset some concurrent climate-driven habitat losses. Additionally, some of the habitat gained with projected climate change overlapped with projected land use. Most species showed potential northern habitat expansion and southern habitat contraction due to projected climate change, resulting in sharply contrasting patterns of impact between Central and South Coast Ecoregions. In the Central Coast, dispersal could play an important role moderating losses from both climate change and land use. In contrast, high geographic overlap in habitat losses driven by projected climate change and projected land use in the South Coast underscores the potential for compounding negative impacts of both drivers. Limiting habitat conversion may be a broadly beneficial strategy under climate change. We emphasize the importance of addressing both drivers in conservation and resource management planning.  相似文献   

20.
The east‐coast free‐tailed bat Mormopterus norfolkensis Gray, 1839 is a threatened insectivorous bat that is poorly known and as such conservation management strategies are only broadly prescribed. Insectivorous bats that use human‐modified landscapes are often adapted to foraging in open microhabitats. However, few studies have explored whether open‐adapted bats select landscapes with more of these microhabitat features. We compared three morphologically similar and sympatric, molossid bats (genus Mormopterus) with different conservation status in terms of their association with vegetation, climate, landform and land‐use attributes at landscape and local habitat element scales. We predicted that these species would use similar landscape types, with semi‐cleared and low density urban landscapes used more than forested and heavily cleared landscapes. Additionally, we explored which environmental variables best explained the occurrence of each species by constructing post‐hoc models and habitat suitability maps. Contrary to predictions, we found that the three species varied in their habitat use with no one landscape type used more extensively than other types. Overall, M. norfolkensis was more likely to occur in low‐lying, non‐urban, riparian habitats with little vegetation cover. Mormopterus species 2 occupied similar habitats, but was more tolerant of urban landscapes. In contrast, Mormopterus species 4 occurred more often in cleared than forested landscapes, particularly dry landscapes with little vegetation cover. The extensive use of coastal floodplains by the threatened M. norfolkensis is significant because these habitats are under increasing pressure from human land‐uses and the predicted increase in urbanization is likely to further reduce the amount of suitable habitat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号