首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In modern microbial mats, hydrogen sulfide shows pronounced sulfur isotope (δ34S) variability over small spatial scales (~50‰ over <4 mm), providing information about microbial sulfur cycling within different ecological niches in the mat. In the geological record, the location of pyrite formation, overprinting from mat accretion, and post‐depositional alteration also affect both fine‐scale δ34S patterns and bulk δ34Spyrite values. We report μm‐scale δ34S patterns in Proterozoic samples with well‐preserved microbial mat textures. We show a well‐defined relationship between δ34S values and sulfide mineral grain size and type. Small pyrite grains (<25 μm) span a large range, tending toward high δ34S values (?54.5‰ to 11.7‰, mean: ?14.4‰). Larger pyrite grains (>25 μm) have low but equally variable δ34S values (?61.0‰ to ?10.5‰, mean: ?44.4‰). In one sample, larger sphalerite grains (>35 μm) have intermediate and essentially invariant δ34S values (?22.6‰ to ?15.6‰, mean: ?19.4‰). We suggest that different sulfide mineral populations reflect separate stages of formation. In the first stage, small pyrite grains form near the mat surface along a redox boundary where high rates of sulfate reduction, partial closed‐system sulfate consumption in microenvironments, and/or sulfide oxidation lead to high δ34S values. In another stage, large sphalerite grains with low δ34S values grow along the edges of pore spaces formed from desiccation of the mat. Large pyrite grains form deeper in the mat at slower sulfate reduction rates, leading to low δ34Ssulfide values. We do not see evidence for significant 34S‐enrichment in bulk pore water sulfide at depth in the mat due to closed‐system Rayleigh fractionation effects. On a local scale, Rayleigh fractionation influences the range of δ34S values measured for individual pyrite grains. Fine‐scale analyses of δ34Spyrite patterns can thus be used to extract environmental information from ancient microbial mats and aid in the interpretation of bulk δ34Spyrite records.  相似文献   

2.
Photosynthetic activity in carbonate‐rich benthic microbial mats located in saline, alkaline lakes on the Cariboo Plateau, B.C. resulted in pCO2 below equilibrium and δ13CDIC values up to +6.0‰ above predicted carbon dioxide (CO2) equilibrium values, representing a biosignature of photosynthesis. Mat‐associated δ13Ccarb values ranged from ~4 to 8‰ within any individual lake, with observations of both enrichments (up to 3.8‰) and depletions (up to 11.6‰) relative to the concurrent dissolved inorganic carbon (DIC). Seasonal and annual variations in δ13C values reflected the balance between photosynthetic 13C‐enrichment and heterotrophic inputs of 13C‐depleted DIC. Mat microelectrode profiles identified oxic zones where δ13Ccarb was within 0.2‰ of surface DIC overlying anoxic zones associated with sulphate reduction where δ13Ccarb was depleted by up to 5‰ relative to surface DIC reflecting inputs of 13C‐depleted DIC. δ13C values of sulphate reducing bacteria biomarker phospholipid fatty acids (PLFA) were depleted relative to the bulk organic matter by ~4‰, consistent with heterotrophic synthesis, while the majority of PLFA had larger offsets consistent with autotrophy. Mean δ13Corg values ranged from ?18.7 ± 0.1 to ?25.3 ± 1.0‰ with mean Δ13Cinorg‐org values ranging from 21.1 to 24.2‰, consistent with non‐CO2‐limited photosynthesis, suggesting that Precambrian δ13Corg values of ~?26‰ do not necessitate higher atmospheric CO2 concentrations. Rather, it is likely that the high DIC and carbonate content of these systems provide a non‐limiting carbon source allowing for expression of large photosynthetic offsets, in contrast to the smaller offsets observed in saline, organic‐rich and hot spring microbial mats.  相似文献   

3.
Eukaryotic steranes are typically absent or occur in very low concentrations in Precambrian sedimentary rocks. However, it is as yet unclear whether this may reflect low source inputs or a preservational bias. For instance, it has been proposed that eukaryotic lipids were profoundly degraded in benthic microbial mats that were ubiquitous prior to the advent of vertical bioturbation in the Cambrian (“mat‐seal effect”). It is therefore important to test the microbial turnover and degradation of eukaryotic steroids in real‐world microbial mats. Here we assessed steroid inventories in different layers of a microbial mat from a hypersaline lake on Kiritimati (Central Pacific). Various eukaryote‐derived C27‐C30 steroids were detected in all mat layers. These compounds most likely entered the mat system as unsaturated sterols from the water column or the topmost mat, and were progressively altered during burial in the deeper, anoxic mat layers over c. 103 years. This is reflected by increasing proportions of saturated sterols and sterenes, as well as the presence of thiosteranes in certain horizons. Sterol alteration can partly be assigned to microbial transformation but is also due to chemical reactions promoted by the reducing environment in the deeper mat layers. Notably, however, compounds with a sterane skeleton were similarly abundant in all mat layers and their absolute concentrations did not show any systematic decrease. The observed decrease of steroid/hopanoid ratios with depth may thus rather indicate a progressive “dilution” by lipids derived from heterotrophic bacteria. Further, pyrolysis revealed that steroids, in contrast to hopanoids, were not sequestered into non‐extractable organic matter. This may lead to a preservational bias against steroids during later stages of burial. Taken together, steroid preservation in the microbial mat is not only controlled by heterotrophic degradation, but rather reflects a complex interplay of taphonomic processes.  相似文献   

4.
Fossil microbiotas are rare in the early rock record, limiting the type of ecological information extractable from ancient microbialites. In the absence of body fossils, emphasis may instead be given to microbially derived features, such as microbialite growth patterns, microbial mat morphologies, and the presence of fossilized gas bubbles in lithified mats. The metabolic affinity of micro‐organisms associated with phosphatization may reveal important clues to the nature and accretion of apatite‐rich microbialites. Stromatolites from the 1.6 Ga Chitrakoot Formation (Semri Group, Vindhyan Supergroup) in central India contain abundant fossilized bubbles interspersed within fine‐grained in situ‐precipitated apatite mats with average δ13Corg indicative of carbon fixation by the Calvin cycle. In addition, the mats hold a synsedimentary fossil biota characteristic of cyanobacterial and rhodophyte morphotypes. Phosphatic oncoid cone‐like stromatolites from the Paleoproterozoic Aravalli Supergroup (Jhamarkotra Formation) comprise abundant mineralized bubbles enmeshed within tufted filamentous mat fabrics. Construction of these tufts is considered to be the result of filamentous bacteria gliding within microbial mats, and as fossilized bubbles within pristine mat laminae can be used as a proxy for oxygenic phototrophy, this provides a strong indication for cyanobacterial activity in the Aravalli mounds. We suggest that the activity of oxygenic phototrophs may have been significant for the formation of apatite in both Vindhyan and Aravalli stromatolites, mainly by concentrating phosphate and creating steep diurnal redox gradients within mat pore spaces, promoting apatite precipitation. The presence in the Indian stromatolites of alternating apatite‐carbonate lamina may result from local variations in pH and oxygen levels caused by photosynthesis–respiration in the mats. Altogether, this study presents new insights into the ecology of ancient phosphatic stromatolites and warrants further exploration into the role of oxygen‐producing biotas in the formation of Paleoproterozoic shallow‐basin phosphorites.  相似文献   

5.
Modern laminated photosynthetic microbial mats are ideal environments to study how microbial activity creates and modifies carbon and sulfur isotopic signatures prior to lithification. Laminated microbial mats from a hypersaline lagoon (Guerrero Negro, Baja California, Mexico) maintained in a flume in a greenhouse at NASA Ames Research Center were sampled for δ13C of organic material and carbonate to assess the impact of carbon fixation (e.g., photosynthesis) and decomposition (e.g., bacterial respiration) on δ13C signatures. In the photic zone, the δ13Corg signature records a complex relationship between the activities of cyanobacteria under variable conditions of CO2 limitation with a significant contribution from green sulfur bacteria using the reductive TCA cycle for carbon fixation. Carbonate is present in some layers of the mat, associated with high concentrations of bacteriochlorophyll e (characteristic of green sulfur bacteria) and exhibits δ13C signatures similar to DIC in the overlying water column (?2.0‰), with small but variable decreases consistent with localized heterotrophic activity from sulfate‐reducing bacteria (SRB). Model results indicate respiration rates in the upper 12 mm of the mat alter in situ pH and concentrations to create both phototrophic CO2 limitation and carbonate supersaturation, leading to local precipitation of carbonate minerals. The measured activity of SRB with depth suggests they variably contribute to decomposition in the mat dependent on organic substrate concentrations. Millimeter‐scale variability in the δ13Corg signature beneath the photic zone in the mat is a result of shifting dominance between cyanobacteria and green sulfur bacteria with the aggregate signature overprinted by heterotrophic reworking by SRB and methanogens. These observations highlight the impact of sedimentary microbial processes on δ13Corg signatures; these processes need to be considered when attempting to relate observed isotopic signatures in ancient sedimentary strata to conditions in the overlying water column at the time of deposition and associated inferences about carbon cycling.  相似文献   

6.
The present study investigated the influence of abiotic conditions on microbial mat communities from Shark Bay, a World Heritage area well known for a diverse range of extant mats presenting structural similarities with ancient stromatolites. The distributions and stable carbon isotopic values of lipid biomarkers [aliphatic hydrocarbons and polar lipid fatty acids (PLFAs)] and bulk carbon and nitrogen isotope values of biomass were analysed in four different types of mats along a tidal flat gradient to characterize the microbial communities and systematically investigate the relationship of the above parameters with water depth. Cyanobacteria were dominant in all mats, as demonstrated by the presence of diagnostic hydrocarbons (e.g. n‐C17 and n‐C17:1). Several subtle but important differences in lipid composition across the littoral gradient were, however, evident. For instance, the shallower mats contained a higher diatom contribution, concordant with previous mat studies from other locations (e.g. Antarctica). Conversely, the organic matter (OM) of the deeper mats showed evidence for a higher seagrass contribution [high C/N, 13C‐depleted long‐chain n‐alkanes]. The morphological structure of the mats may have influenced CO2 diffusion leading to more 13C‐enriched lipids in the shallow mats. Alternatively, changes in CO2 fixation pathways, such as increase in the acetyl COA‐pathway by sulphate‐reducing bacteria, could have also caused the observed shifts in δ13C values of the mats. In addition, three smooth mats from different Shark Bay sites were analysed to investigate potential functional relationship of the microbial communities with differing salinity levels. The C25:1 HBI was identified in the high salinity mat only and a lower abundance of PLFAs associated with diatoms was observed in the less saline mats, suggesting a higher abundance of diatoms at the most saline site. Furthermore, it appeared that the most and least saline mats were dominated by autotrophic biomass using different CO2 fixation pathways.  相似文献   

7.
Green nonsulfur-like bacteria (GNSLB) in Yellowstone hot spring microbial mats have been extensively studied and are thought to operate both as photoheterotrophs and photoautotrophs. Here we studied the occurrence and carbon metabolisms of GNSLB by analyzing the distribution and isotopic composition of their characteristic wax ester lipids in four Californian and Nevada hot spring microbial mats at a range of temperatures (37–96°C). The distribution of wax esters varied strongly with temperature. At temperatures between 50–60°C the wax ester composition in each of the four hot spring microbial mats was dominated by C30 to C36 wax esters, consisting of mixtures of C15-C18 n-alkyl and branched fatty acids and alcohols, typical for GNSLB. Stable carbon isotopic analysis showed that these wax esters were only depleted by 5 to 10‰ compared to dissolved inorganic carbon in the overlying water, suggesting that these GNSLB were mainly autotrophic. However, analysis of different depth layers of one microbial mat showed that these GNSLB wax esters were increasingly depleted in 13C with depth, suggesting that photoautotrophy mainly occurred in the top layer of the mat. 13C-depleted C36-C44 wax esters were found in one hot spring at high temperatures (77–96°C) and are likely derived from allochtonous plant waxes. At several lower temperature sites (35–40°C) the wax esters were predominantly composed of C28, C30 and C32 wax esters consisting of mixtures of C14-C16 fatty acids and n-alkanols and were depleted in 13C by 15–20‰ relative to dissolved inorganic carbon, suggesting they may be derived from heterotrophic organisms. Our results indicate that autotrophic GNSLB occur widely in hot springs and that diverse groups of organisms contribute to the pool of wax ester lipids in hot spring environments.  相似文献   

8.
Organic carbon rich rocks in the c. 2.0 Ga Zaonega Formation (ZF), Karelia, Russia, preserve isotopic characteristics of a Paleoproterozoic ecosystem and record some of the oldest known oil generation and migration. Isotopic data derived from drill core material from the ZF show a shift in δ13Corg from c. ?25‰ in the lower part of the succession to c. ?40‰ in the upper part. This stratigraphic shift is a primary feature and cannot be explained by oil migration, maturation effects, or metamorphic overprints. The shift toward 13C‐depleted organic matter (δ13Corg < ?25‰) broadly coincides with lithological evidence for the generation of oil and gas in the underlying sediments and seepage onto the sea floor. We propose that the availability of thermogenic CH4 triggered the activity of methanotrophic organisms, resulting in the production of anomalously 13C‐depleted biomass. The stratigraphic shift in δ13Corg records the change from CO2‐fixing autotrophic biomass to biomass containing a significant contribution from methanotrophy. It has been suggested recently that this shift in δ13Corg reflects global forcing and progressive oxidation of the Earth. However, the lithologic indication for local thermogenic CH4, sourced within the oil field, is consistent with basinal methanotrophy. This indicates that regional/basinal processes can also explain the δ13Corg negative isotopic shift observed in the ZF.  相似文献   

9.
The diversification of macro‐organisms over the last 500 million years often coincided with the development of new environmental niches. Microbial diversification over the last 4 billion years likely followed similar patterns. However, linkages between environmental settings and microbial ecology have so far not been described from the ancient rock record. In this study, we investigated carbon, nitrogen, and molybdenum isotopes, and iron speciation in five non‐marine stratigraphic units of the Neoarchean Fortescue Group, Western Australia, that are similar in age (2.78–2.72 Ga) but differ in their hydro‐geologic setting. Our data suggest that the felsic‐dominated and hydrologically open lakes of the Bellary and Hardey formations were probably dominated by methanogenesis (δ13Corg = ?38.7 ± 4.2‰) and biologic N2 fixation (δ15Nbulk =?0.6 ± 1.0‰), whereas the Mt. Roe, Tumbiana and Kylena Formations, with more mafic siliciclastic sediments, preserve evidence of methanotrophy (δ13Corg as low as ?57.4‰, δ13Ccarb as low as ?9.2‰) and NH3 loss under alkaline conditions. Evidence of oxygenic photosynthesis is recorded only in the closed evaporitic Tumbiana lakes marked by abundant stromatolites, limited evidence of Fe and S cycling, fractionated Mo isotopes (δ98/95Mo = +0.4 ± 0.4‰), and the widest range in δ13Corg (?57‰ to ?15‰), suggesting oxidative processes and multiple carbon fixation pathways. Methanotrophy in the three mafic settings was probably coupled to a combination of oxidants, including O2 and SO42‐. Overall, our results may indicate that early microbial evolution on the Precambrian Earth was in part influenced by geological parameters. We speculate that expanding habitats, such as those linked to continental growth, may have been an important factor in the evolution of life.  相似文献   

10.
While numerous studies have examined modern hypersaline ecosystems, their equivalents in the geologic past, particularly in the Precambrian, are poorly understood. In this study, biomarkers from ~820 million year (Ma)‐old evaporites from the Gillen Formation of the mid‐Neoproterozoic Bitter Springs Group, central Australia, are investigated to elucidate the antiquity and paleoecology of halophiles. The sediments were composed of alternating laminae of dolomitized microbial mats and up to 90% anhydrite. Solvent extraction of these samples yielded thermally well‐preserved hydrocarbon biomarkers. The regularly branched C25 isoprenoid 2,6,10,14,18‐pentamethylicosane, the tail‐to‐tail linked C30 isoprenoid squalane, and breakdown products of the head‐to‐head linked C40 isoprenoid biphytane, were particularly abundant in the most anhydrite‐rich sediments and mark the oldest current evidence for halophilic archaea. Linear correlations between isoprenoid concentrations (normalized to n‐alkanes) and the anhydrite/dolomite ratio reveal microbial consortia that fluctuated with changing salinity levels. Halophilic archaea were the dominant organisms during periods of high salinity and gypsum precipitation, while bacteria were prevalent during stages of carbonate formation. The irregularly branched C25 isoprenoid 2,6,10,15,19‐pentamethylicosane (PMI), with a central tail‐to‐tail link, was also abundant during periods of elevated salinity, highlighting the activity of methanogens. By contrast, the irregularly branched C20 isoprenoid 2,6,11,15‐tetramethylhexadecane (crocetane) was more common in dolomite‐rich facies, revealing that an alternate group of archaea was active during less saline periods. Elevated concentrations of isotopically depleted heptadecane (n‐C17) revealed the presence of cyanobacteria under all salinity regimes. The combination of biomarkers in the mid‐Neoproterozoic Gillen Formation resembles lipid compositions from modern hypersaline cyanobacterial mats, pointing to a community composition that remained broadly constant since at least the Neoproterozoic. However, as a major contrast to most modern hypersaline environments, the Gillen evaporites did not yield any evidence for algae or other eukaryotes.  相似文献   

11.
Stromatolites composed of apatite occur in post‐Lomagundi–Jatuli successions (late Palaeoproterozoic) and suggest the emergence of novel types of biomineralization at that time. The microscopic and nanoscopic petrology of organic matter in stromatolitic phosphorites might provide insights into the suite of diagenetic processes that formed these types of stromatolites. Correlated geochemical micro‐analyses of the organic matter could also yield molecular, elemental and isotopic compositions and thus insights into the role of specific micro‐organisms among these communities. Here, we report on the occurrence of nanoscopic disseminated organic matter in the Palaeoproterozoic stromatolitic phosphorite from the Aravalli Supergroup of north‐west India. Organic petrography by micro‐Raman and Transmission Electron Microscopy demonstrates syngeneity of the organic matter. Total organic carbon contents of these stromatolitic phosphorite columns are between 0.05 and 3.0 wt% and have a large range of δ13Corg values with an average of ?18.5‰ (1σ = 4.5‰). δ15N values of decarbonated rock powders are between ?1.2 and +2.7‰. These isotopic compositions point to the important role of biological N2‐fixation and CO2‐fixation by the pentose phosphate pathway consistent with a population of cyanobacteria. Microscopic spheroidal grains of apatite (MSGA) occur in association with calcite microspar in microbial mats from stromatolite columns and with chert in the core of diagenetic apatite rosettes. Organic matter extracted from the stromatolitic phosphorites contains a range of molecular functional group (e.g. carboxylic acid, alcohol, and aliphatic hydrocarbons) as well as nitrile and nitro groups as determined from C‐ and N‐XANES spectra. The presence of organic nitrogen was independently confirmed by a CN? peak detected by ToF‐SIMS. Nanoscale petrography and geochemistry allow for a refinement of the formation model for the accretion and phototrophic growth of stromatolites. The original microbial biomass is inferred to have been dominated by cyanobacteria, which might be an important contributor of organic matter in shallow‐marine phosphorites.  相似文献   

12.
The work presents the results of investigation of microbial and biogeochemical processes at the water-sediment interface in the samples of three Caspian Sea profiles obtained during the 39th cruise of RV “Rift” in May–June 2012. The decrease in suspended Corg content from the surface to the bottom resulted from the activity of aerobic heterotrophic microorganisms. Autotrophic methanogenesis occurred in anoxic water of deep-sea depressions, where methane concentrations were up to 2.2–3.75 μL CH4 L?1, which was an order of magnitude higher than in the aerobic water column (0.04–0.32 μL CH4 L?1). Methanogenesis was accompanied by a considerable decrease in δ13C of suspended Corg (?26 to ?30‰). The numbers of microbial cells in the water column varied from 40 to 3200 × 103 cells mL?1. The results of microbiological and biogeochemical investigation demonstrated that, in spite of the absence of connection with the ocean and other specific features, the Caspian Sea has the characteristics of a typical marine basin.  相似文献   

13.
Lake Vanda is a cold nonturbulent, perennially ice‐covered lake in the valleys of southern Victoria Land, Antarctica. Observations made and samples collected under the 3.5 m ice in 1980 by SCUBA divers reveal that an extensive benthic microbial mat dominated by the filamentous blue‐green algae (cyanobacteria) Phormidium frigidum and Lyngbya martensiana is growing there. As is the case in other Antarctic lakes investigated by us thus far, the mat in Lake Vanda traps and binds sediment and precipitates calcite and is undisturbed by grazers and burrowers. Therefore, stromatolitic laminae are being generated. Unlike the other Antarctic lakes investigated in this region, Lake Vanda has (a) an ice cover and water that transmits significantly more light; (b) an ice cover that is permeable to gases and aeolian sediment; (c) no zone of lift‐off mat where photosynthetically generated oxygen would render the mat buoyant and cause it to separate from the substrate and float away; and (d) mat that has a distinctive pinnacle macrostructure. Although the laminae being laid down by the Lake Vanda mat do not retain the cone and ridge morphology of the living mat, the pinnacle macrostructure of the mat is similar to the Precambrian Conophyton stromatolites as well as microbial structures forming in Yellowstone hot springs, freshwater marshes in the Bahamas, and hypersaline intertidal mats in Baja California, Mexico, and Shark Bay, Australia. This suggests (a) Conophyton‐like structures similar to those abundant during the Precambrian can form under widely varying environmental conditions and (b) high latitudes should not be overlooked as sites of formation of ancient stromatolites.  相似文献   

14.
Microbial mats that inhabit gypsum deposits in ponds at Guerrero Negro, Baja California Sur, Mexico, developed distinct pigmented horizons that provided an opportunity to examine the fixation and flow of carbon through a trophic structure and, in conjunction with previous phylogenetic analyses, to assess the diagenetic fates of molecular δ13C biosignatures. The δ13C values of individual biomarker lipids, total carbon, and total organic carbon (TOC) were determined for each of the following horizons: tan‐orange (TO) at the surface, green (G), purple (P), and olive‐black (OB) at the bottom. δ13C of individual fatty acids from intact polar lipids (IPFA) in TO were similar to δ13C of dissolved inorganic carbon (DIC) in the overlying water column, indicating limited discrimination by cyanobacteria during CO2 fixation. δ13CTOC of the underlying G was 3‰ greater than that of TO. The most δ13C‐depleted acetogenic lipids in the upper horizons were the cyanobacterial biomarkers C17 n‐alkanes and polyunsaturated fatty acids. Bishomohopanol was 4 to 7‰ enriched, relative to alkanes and intact polar fatty acids (IPFA), respectively. Acyclic C20 isoprenoids were depleted by 14‰ relative to bishomohopanol. Significantly, ?[δ13CTOC ? δ13C∑IPFA] increased from 6.9‰ in TO to 14.7‰ in OB. This major trend might indicate that 13C‐enriched residual organic matter accumulated at depth. The permanently anoxic P horizon was dominated by anoxygenic phototrophs and sulfate‐reducing bacteria. P hosted an active sulfur‐dependent microbial community. IPFA and bishomohopanol were 13C‐depleted relative to upper crust by 7 and 4‰, respectively, and C20 isoprenoids were somewhat 13C‐enriched. Synthesis of alkanes in P was evidenced only by 13C‐depleted n‐octadecane and 8‐methylhexadecane. In OB, the marked increase of total inorganic carbon δ13C (δ13CTIC) of >6‰ perhaps indicated terminal mineralization. This δ13CTIC increase is consistent with degradation of the osmolyte glycine betaine by methylotrophic methanogens and loss of 13C‐depleted methane from the mat.  相似文献   

15.
Jelly-like microbial mat samples were collected from benthic surfaces at the St. Petersburg methane seep located in Central Baikal. The concentrations of certain ions, specifically chloride, bromide, sulphate, acetate, iron, calcium, and magnesium, were 2–40 times higher in the microbial mats than those in the pore and bottom water. A large number of diatom valves, cyanobacteria, and filamentous, rod-shaped and coccal microorganisms were found in the samples of bacterial mats using light, epifluorescence and scanning microscopy.Comparative analysis of a 16S rRNA gene fragment demonstrated the presence of bacteria and archaea belonging to the following classes and phyla: Betaproteobacteria, Gammaproteobacteria, Deltaproteobacteria, Verrucomicrobia, Cytophaga-Flavobacteria-Bacteroidetes, Cyanobacteria, and Euryarchaeota. The chemical composition and phylogenetic structure of the microbial community showed that the life activity of the mat occurs due to methane and its derivatives involved. Values of δ13C for the microbial mats varied from ?73.6‰ to ?65.8‰ and for animals from ?68.9‰ to ?36.6‰. Functional genes of the sequential methane oxidation (pmoA and mxaF) and different species of methanotrophic bacteria inhabiting cold ecosystems were recorded in the total DNA. Like in other psychroactive communities, the destruction of organic substances forming formed as a result of methanotrophy, terminates at the stage of acetate formation in the microbial mats of Lake Baikal (1,400 m depth). Its further transformation is limited by hydrogen content and carried out in the subsurface layers of sediments.  相似文献   

16.
We investigated bacterial and archaeal communities along an ice‐fed surficial hot spring at Kverkfjöll volcano—a partially ice‐covered basaltic volcano at Vatnajökull glacier, Iceland, using biomolecular (16S rRNA, apsA, mcrA, amoA, nifH genes) and stable isotope techniques. The hot spring environment is characterized by high temperatures and low dissolved oxygen concentrations at the source (68°C and <1 mg/L (±0.1%)) changing to lower temperatures and higher dissolved oxygen downstream (34.7°C and 5.9 mg/L), with sulfate the dominant anion (225 mg/L at the source). Sediments are comprised of detrital basalt, low‐temperature alteration phases and pyrite, with <0.4 wt. % total organic carbon (TOC). 16S rRNA gene profiles reveal that organisms affiliated with Hydrogenobaculum (54%–87% bacterial population) and Thermoproteales (35%–63% archaeal population) dominate the micro‐oxic hot spring source, while sulfur‐oxidizing archaea (Sulfolobales, 57%–82%), and putative sulfur‐oxidizing and heterotrophic bacterial groups dominate oxic downstream environments. The δ13Corg (‰ V‐PDB) values for sediment TOC and microbial biomass range from ?9.4‰ at the spring's source decreasing to ?12.6‰ downstream. A reverse effect isotope fractionation of ~3‰ between sediment sulfide (δ34S ~0‰) and dissolved water sulfate (δ34S +3.2‰), and δ18O values of ~ ?5.3‰ suggest pyrite forms abiogenically from volcanic sulfide, followed by abiogenic and microbial oxidation. These environments represent an unexplored surficial geothermal environment analogous to transient volcanogenic habitats during putative “snowball Earth” scenarios and volcano–ice geothermal environments on Mars.  相似文献   

17.
18.
Ambient inclusion trails (AITs) are tubular microstructures thought to form when a microscopic mineral crystal is propelled through a fine‐grained rock matrix. Here, we report a new occurrence of AITs from a fossilized microbial mat within the 1878‐Ma Gunflint Formation, at Current River, Ontario. The AITs are 1–15 μm in diameter, have pyrite as the propelled crystal, are infilled with chlorite and have been propelled through a microquartz (chert) or chlorite matrix. AITs most commonly originate at the boundary between pyrite‐ and chlorite‐rich laminae and chert‐filled fenestrae, with pyrite crystals propelled into the fenestrae. A subset of AITs originate within the fenestrae, rooted either within the chert or within patches of chlorite. Sulphur isotope data (34S/32S) obtained in situ from AIT pyrite have a δ34S of ?8.5 to +8.0 ‰, indicating a maximum of ~30 ‰ fractionation from Palaeoproterozoic seawater sulphate (δ34S ≈ +20 ‰). Organic carbon is common both at the outer margins of the fenestrae and in patches of chlorite where most AITs originate, and can be found in smaller quantities further along some AITs towards the terminal pyrite grain. We infer that pyrite crystals now found within the AITs formed via the action of heterotrophic sulphate‐reducing bacteria during early diagenesis within the microbial mat, as pore waters were becoming depleted in seawater sulphate. Gases derived from this process such as CO2 and H2S were partially trapped within the microbial mat, helping produce birds‐eye fenestrae, while rapid microquartz precipitation closed porosity. We propose that propulsion of the pyrite crystals to form AITs was driven by two complementary mechanisms during burial and low‐grade metamorphism: firstly, thermal decomposition of residual organic material providing CO2, and potentially CH4, as propulsive gases, plus organic acids to locally dissolve the microquartz matrix; and secondly, reactions involving clay minerals that potentially led to enhanced quartz solubility, plus increases in fluid and/or gas pressure during chlorite formation, with chlorite then infilling the AITs. This latter mechanism is novel and represents a possible way to generate AITs in environments lacking organic material.  相似文献   

19.
Ring‐like structures, 2.0–4.8 cm in diameter, observed in photosynthetic microbial mats on the Wadden Sea island Schiermonnikoog (the Netherlands) showed to be the result of the fungus Emericellopsis sp. degrading the photoautotrophic top layer of the mat. The mats were predominantly composed of cyanobacteria and diatoms, with large densities of bacteria and viruses both in the top photosynthetic layer and in the underlying sediment. The fungal attack cleared the photosynthetic layer; however, no significant effect of the fungal lysis on the bacterial and viral abundances could be detected. Fungal‐mediated degradation of the major photoautotrophs could be reproduced by inoculation of non‐infected mat with isolated Emericellopsis sp., and with an infected ring sector. Diatoms were the first re‐colonizers followed closely by cyanobacteria that after about 5 days dominated the space. The study demonstrated that the fungus Emericellopsis sp. efficiently degraded a photoautotrophic microbial mat, with potential implications for mat community composition, spatial structure and productivity.  相似文献   

20.
The role of dissolved oxygen as a principal electron acceptor for microbial metabolism was investigated within Fe(III)‐oxide microbial mats that form in acidic geothermal springs of Yellowstone National Park (USA). Specific goals of the study were to measure and model dissolved oxygen profiles within high‐temperature (65–75°C) acidic (pH = 2.7–3.8) Fe(III)‐oxide microbial mats, and correlate the abundance of aerobic, iron‐oxidizing Metallosphaera yellowstonensis organisms and mRNA gene expression levels to Fe(II)‐oxidizing habitats shown to consume oxygen. In situ oxygen microprofiles were obtained perpendicular to the direction of convective flow across the aqueous phase/Fe(III)‐oxide microbial mat interface using oxygen microsensors. Dissolved oxygen concentrations dropped from ~ 50–60 μM in the bulk‐fluid/mat surface to below detection (< 0.3 μM) at a depth of ~ 700 μm (~ 10% of the total mat depth). Net areal oxygen fluxes into the microbial mats were estimated to range from 1.4–1.6 × 10?4 μmol cm?2 s?1. Dimensionless parameters were used to model dissolved oxygen profiles and establish that mass transfer rates limit the oxygen consumption. A zone of higher dissolved oxygen at the mat surface promotes Fe(III)‐oxide biomineralization, which was supported using molecular analysis of Metallosphaera yellowstonensis 16S rRNA gene copy numbers and mRNA expression of haem Cu oxidases (FoxA) associated with Fe(II)‐oxidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号