首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We use observed patterns of species richness and composition of ant communities along a 1000 mm rainfall gradient in northern Australian savanna to assess the accuracy of species richness and turnover predictions derived from stacked species distribution models (S‐SDMs) and constrained by macroecological models (MEMs). We systematically sampled ants at 15 sites at 50 km intervals along the rainfall gradient in 2012 and 2013. Using the observed data, we created MEMs of species richness, composition and turnover. We built distribution models for 135 of the observed species using data from museum collections and online databases. We compared two approaches of stacking SDMs and three modelling algorithms to identify the most accurate way of predicting richness and composition. We then applied the same beta diversity metrics to compare the observed versus predicted patterns. Stacked SDMs consistently over‐predicted local species richness, and there was a mismatch between the observed pattern of richness estimated from the MEM, and the pattern predicted by S‐SDMs. The most accurate richness and turnover predictions occurred when the stacked models were rank‐ordered by their habitat suitability and constrained by the observed MEM richness predictions. In contrast with species richness, the predictions obtained by the MEM of community similarity, composition and turnover matched those predicted by the S‐SDMs. S‐SDMs regulated by MEMs may therefore be a useful tool in predicting compositional patterns despite being unreliable estimators of species richness. Our results highlight that the choice of species distribution model, the stacking method used, and underlying macroecological patterns all influence the accuracy of community assembly predictions derived from S‐SDMS.  相似文献   

2.
Species distribution models (SDMs) are broadly used to predict species distributions from available presence data. However, SDMs results have been criticized for several reasons mainly related to two basic characteristics of most SDMs: 1) general lack of reliable species absence information, 2) the frequent use of an arbitrary geographical extent (GE) or accessible area of the species. These impediments have motivated us to generate a procedure called niche of occurrence (NOO). NOO provides the probable distribution of species (realized niche) relying solely on partial information about presence of species. It operates within a natural geographical extent delimited by available observations and avoids using misleading thresholds to obtain binary presence–absence estimations when the species prevalence is unknown. In this study the main characteristics of NOO are presented, comparing its performance with other recognized and more complex SDMs by using virtual species to avoid the omnipresent error sources of real data sets.  相似文献   

3.
A large amount of data for inconspicuous taxa is stored in natural history collections; however, this information is often neglected for biodiversity patterns studies. Here, we evaluate the performance of direct interpolation of museum collections data, equivalent to the traditional approach used in bryophyte conservation planning, and stacked species distribution models (S‐SDMs) to produce reliable reconstructions of species richness patterns, given that differences between these methods have been insufficiently evaluated for inconspicuous taxa. Our objective was to contrast if species distribution models produce better inferences of diversity richness than simply selecting areas with the higher species numbers. As model species, we selected Iberian species of the genus Grimmia (Bryophyta), and we used four well‐collected areas to compare and validate the following models: 1) four Maxent richness models, each generated without the data from one of the four areas, and a reference model created using all of the data and 2) four richness models obtained through direct spatial interpolation, each generated without the data from one area, and a reference model created with all of the data. The correlations between the partial and reference Maxent models were higher in all cases (0.45 to 0.99), whereas the correlations between the spatial interpolation models were negative and weak (−0.3 to −0.06). Our results demonstrate for the first time that S‐SDMs offer a useful tool for identifying detailed richness patterns for inconspicuous taxa such as bryophytes and improving incomplete distributions by assessing the potential richness of under‐surveyed areas, filling major gaps in the available data. In addition, the proposed strategy would enhance the value of the vast number of specimens housed in biological collections.  相似文献   

4.
Many species have already shifted their distributions in response to recent climate change. Here, we aimed at predicting the future breeding distributions of European birds under climate, land‐use, and dispersal scenarios. We predicted current and future distributions of 409 species within an ensemble forecast framework using seven species distribution models (SDMs), five climate scenarios and three emission and land‐use scenarios. We then compared results from SDMs using climate‐only variables, habitat‐only variables or both climate and habitat variables. In order to account for a species’ dispersal abilities, we used natal dispersal estimates and developed a probabilistic method that produced a dispersal scenario intermediate between the null and full dispersal scenarios generally considered in such studies. We then compared results from all scenarios in terms of future predicted range changes, range shifts, and variations in species richness. Modeling accuracy was better with climate‐only variables than with habitat‐only variables, and better with both climate and habitat variables. Habitat models predicted smaller range shifts and smaller variations in range size and species richness than climate models. Using both climate and habitat variables, it was predicted that the range of 71% of the species would decrease by 2050, with a 335 km median shift. Predicted variations in species richness showed large decreases in the southern regions of Europe, as well as increases, mainly in Scandinavia and northern Russia. The partial dispersal scenario was significantly different from the full dispersal scenario for 25% of the species, resulting in the local reduction of the future predicted species richness of up to 10%. We concluded that the breeding range of most European birds will decrease in spite of dispersal abilities close to a full dispersal hypothesis, and that given the contrasted predictions obtained when modeling climate change only and land‐use change only, both scenarios must be taken into consideration.  相似文献   

5.
6.
Climatic niche conservatism, the tendency of species‐climate associations to remain unchanged across space and time, is pivotal for forecasting the spread of invasive species and biodiversity changes. Indeed, it represents one of the key assumptions underlying species distribution models (SDMs), the main tool currently available for predicting range shifts of species. However, to date, no comprehensive assessment of niche conservatism is available for the marine realm. We use the invasion by Indo‐Pacific tropical fishes into the Mediterranean Sea, the world's most invaded marine basin, to examine the conservatism of the climatic niche. We show that tropical invaders may spread far beyond their native niches and that SDMs do not predict their new distributions better than null models. Our results suggest that SDMs may underestimate the potential spread of invasive species and call for prudence in employing these models in order to forecast species invasion and their response to environmental change.  相似文献   

7.
The extent that biotic interactions and dispersal influence species ranges and diversity patterns across scales remains an open question. Answering this question requires framing an analysis on the frontier between species distribution modelling (SDM), which ignores biotic interactions and dispersal limitation, and community ecology, which provides specific predictions on community and meta‐community structure and resulting diversity patterns such as species richness and functional diversity. Using both empirical and simulated datasets, we tested whether predicted occurrences from fine‐resolution SDMs provide good estimates of community structure and diversity patterns at resolutions ranging from a resolution typical of studies within reserves (250 m) to that typical of a regional biodiversity study (5 km). For both datasets, we show that the imprint of biotic interactions and dispersal limitation quickly vanishes when spatial resolution is reduced, which demonstrates the value of SDMs for tracking the imprint of community assembly processes across scales.  相似文献   

8.

Questions

What are the most important drivers of plant species richness (gamma‐diversity) and species turnover (beta‐diversity) in the field layer of a forest edge? Does the tree and shrub species richness structure and complexity affect the richness of forest and grassland specialist species?

Location

Southeast Sweden.

Methods

We sampled 50 forest edges with different levels of structural complexity in agricultural landscapes. In each border we recorded trees, shrubs and herb layer species in a 50‐m transect parallel with the forest. We investigated species composition and species turnover in relation to the proportions of gaps in the border and the diversity of trees and shrubs.

Results

Total plant species richness in the field layer was mainly explained by the proportion of gaps to areas with full canopy cover and tree diversity. Increasing number of gaps promoted higher diversity of grassland specialist species within the field layer, resulting in open forest borders with the highest overall species richness. Gaps did however have a negative impact on forest species richness. Conversely, increasing forest species richness was positively related to tree diversity, but the number of grassland specialist species was negatively affected by tree diversity.

Conclusions

Managing forest borders, and therefore increasing the area of semi‐open habitats in fragmented agricultural landscapes, provides future opportunities to create a network of suitable habitats for both grassland and deciduous forest specialist species. Such measures therefore have the potential to increase functional connectivity and support dispersal of species in homogeneous forest/agricultural landscapes.  相似文献   

9.
10.

Objectives

Species Distribution Models (SDMs) are used to produce predictions of potential Leguminosae diversity in West Central Africa. Those predictions are evaluated subsequently using expert opinion. The established methodology of combining all SDMs is refined to assess species diversity within five defined vegetation types. Potential species diversity is thus predicted for each vegetation type respectively. The primary aim of the new methodology is to define, in more detail, areas of species richness for conservation planning.

Methodology

Using Maxent, SDMs based on a suite of 14 environmental predictors were generated for 185 West Central African Leguminosae species, each categorised according to one of five vegetation types: Afromontane, coastal, non-flooded forest, open formations, or riverine forest. The relative contribution of each environmental variable was compared between different vegetation types using a nonparametric Kruskal-Wallis analysis followed by a post-hoc Kruskal-Wallis Paired Comparison contrast. Legume species diversity patterns were explored initially using the typical method of stacking all SDMs. Subsequently, five different ensemble models were generated by partitioning SDMs according to vegetation category. Ecological modelers worked with legume specialists to improve data integrity and integrate expert opinion in the interpretation of individual species models and potential species richness predictions for different vegetation types.

Results/Conclusions

Of the 14 environmental predictors used, five showed no difference in their relative contribution to the different vegetation models. Of the nine discriminating variables, the majority were related to temperature variation. The set of variables that played a major role in the Afromontane species diversity model differed significantly from the sets of variables of greatest relative important in other vegetation categories. The traditional approach of stacking all SDMs indicated overall centers of diversity in the region but the maps indicating potential species richness by vegetation type offered more detailed information on which conservation efforts can be focused.  相似文献   

11.

Aim

Species richness is a measure of biodiversity often used in spatial conservation assessments and mapped by summing species distribution maps. Commission errors inherent those maps influence richness patterns and conservation assessments. We sought to further the understanding of the sensitivity of hotspot delineation methods and conservation assessments to commission errors, and choice of threshold for hotspot delineation.

Location

United States.

Methods

We created range maps and 30‐m and 1‐km resolution habitat maps for terrestrial vertebrates in the United States and generated species richness maps with each dataset. With the richness maps and the GAP Protected Areas Dataset, we created species richness hotspot maps and calculated the proportion of hotspots within protected areas; calculating protection under a range of thresholds for defining hotspots. Our method allowed us to identify the influence of commission errors by comparing hotspot maps.

Results

Commission errors from coarse spatial grain data and lack of porosity in the range data inflated richness estimates and altered their spatial patterns. Coincidence of hotspots from different data types was low. The 30‐m hotspots were spatially dispersed, and some were very long distances from the hotspots mapped with coarser data. Estimates of protection were low for each of the taxa. The relationship between estimates of hotspot protection and threshold choice was nonlinear and inconsistent among data types (habitat and range) and grain size (30‐m and 1‐km).

Main conclusions

Coarse mapping methods and grain sizes can introduce commission errors into species distribution data that could result in misidentifications of the regions where hotspots occur and affect estimates of hotspot protection. Hotspot conservation assessments are also sensitive to choice of threshold for hotspot delineation. There is value in developing species distribution maps with high resolution and low rates of commission error for conservation assessments.  相似文献   

12.

Aim

To demonstrate a new and more general model of the species–area relationship that builds on traditional models, but includes the provision that richness may vary independently of island area on relatively small islands (the small island effect).

Location

We analysed species–area patterns for a broad diversity of insular biotas from aquatic and terrestrial archipelagoes.

Methods

We used breakpoint or piecewise regression methods by adding an additional term (the breakpoint transformation) to traditional species–area models. The resultant, more general, species–area model has three readily interpretable, biologically relevant parameters: (1) the upper limit of the small island effect (SIE), (2) an estimate of richness for relatively small islands and (3) the slope of the species–area relationship (in semi‐log or log–log space) for relatively large islands.

Results

The SIE, albeit of varying magnitude depending on the biotas in question, appeared to be a relatively common feature of the data sets we studied. The upper limit of the SIE tended to be highest for species groups with relatively high resource requirements and low dispersal abilities, and for biotas of more isolated archipelagoes.

Main conclusions

The breakpoint species–area model can be used to test for the significance, and to explore patterns of variation in small island effects, and to estimate slopes of the species–area (semi‐log or log–log) relationship after adjusting for SIE. Moreover, the breakpoint species–area model can be expanded to investigate three fundamentally different realms of the species–area relationship: (1) small islands where species richness varies independent of area, but with idiosyncratic differences among islands and with catastrophic events such as hurricanes, (2) islands beyond the upper limit of SIE where richness varies in a more deterministic and predictable manner with island area and associated, ecological factors and (3) islands large enough to provide the internal geographical isolation (large rivers, mountains and other barriers within islands) necessary for in situ speciation.
  相似文献   

13.
14.
A better understanding of the factors that mould ecological community structure is required to accurately predict community composition and to anticipate threats to ecosystems due to global changes. We tested how well stacked climate‐based species distribution models (S‐SDMs) could predict butterfly communities in a mountain region. It has been suggested that climate is the main force driving butterfly distribution and community structure in mountain environments, and that, as a consequence, climate‐based S‐SDMs should yield unbiased predictions. In contrast to this expectation, at lower altitudes, climate‐based S‐SDMs overpredicted butterfly species richness at sites with low plant species richness and underpredicted species richness at sites with high plant species richness. According to two indices of composition accuracy, the Sorensen index and a matching coefficient considering both absences and presences, S‐SDMs were more accurate in plant‐rich grasslands. Butterflies display strong and often specialised trophic interactions with plants. At lower altitudes, where land use is more intense, considering climate alone without accounting for land use influences on grassland plant richness leads to erroneous predictions of butterfly presences and absences. In contrast, at higher altitudes, where climate is the main force filtering communities, there were fewer differences between observed and predicted butterfly richness. At high altitudes, even if stochastic processes decrease the accuracy of predictions of presence, climate‐based S‐SDMs are able to better filter out butterfly species that are unable to cope with severe climatic conditions, providing more accurate predictions of absences. Our results suggest that predictions should account for plants in disturbed habitats at lower altitudes but that stochastic processes and heterogeneity at high altitudes may limit prediction success of climate‐based S‐SDMs.  相似文献   

15.
Species distribution models (SDMs) have traditionally been founded on the assumption that species distributions are in equilibrium with environmental conditions and that these species–environment relationships can be used to estimate species responses to environmental changes. Insight into the validity of this assumption can be obtained from comparing the performance of correlative species distribution models with more complex hybrid approaches, i.e. correlative and process‐based models that explicitly include ecological processes, thereby accounting for mismatches between habitat suitability and species occupancy patterns. Here we compared the ability of correlative SDMs and hybrid models, which can accommodate non‐equilibrium situations arising from dispersal constraints, to reproduce the distribution dynamics of the ortolan bunting Emberiza hortulana in highly dynamic, early successional, fire driven Mediterranean landscapes. Whereas, habitat availability was derived from a correlative statistical SDM, occupancy was modeled using a hybrid approach combining a grid‐based, spatially‐explicit population model that explicitly included bird dispersal with the correlative model. We compared species occupancy patterns under the equilibrium assumption and different scenarios of species dispersal capabilities. To evaluate the predictive capability of the different models, we used independent species data collected in areas affected to different degree by fires. In accordance with the view that disturbance leads to a disparity between the suitable habitat and the occupancy patterns of the ortolan bunting, our results indicated that hybrid modeling approaches were superior to correlative models in predicting species spatial dynamics. Furthermore, hybrid models that incorporated short dispersal distances were more likely to reproduce the observed changes in ortolan bunting distribution patterns, suggesting that dispersal plays a key role in limiting the colonization of recently burnt areas. We conclude that SDMs used in a dynamic context can be significantly improved by using combined hybrid modeling approaches that explicitly account for interactions between key ecological constraints such as dispersal and habitat suitability that drive species response to environmental changes.  相似文献   

16.
Aim The extent of the study area (geographical background, GB) can strongly affect the results of species distribution models (SDMs), but as yet we lack objective and practicable criteria for delimiting the appropriate GB. We propose an approach to this problem using trend surface analysis (TSA) and provide an assessment of the effects of varying GB extent on the performance of SDMs for four species. Location Mainland Spain. Methods Using data for four well known wild ungulate species and different GBs delimited with a TSA, we assessed the effects of GB extent on the predictive performance of SDMs: specifically on model calibration (Miller’s statistic) and discrimination (area under the curve of the receiver operating characteristic plot, AUC; sensitivity and specificity), and on the tendency of the models to predict environmental potential when they are projected beyond their training area. Results In the training area, discrimination significantly increased and calibration decreased as the GB was enlarged. In contrast, as GB was enlarged, both discriminatory power and calibration decreased when assessed in the core area of the species distributions. When models trained using small GBs were projected beyond their training area, they showed a tendency to predict higher environmental potential for the species than those models trained using large GBs. Main conclusions By restricting GB extent using a geographical criterion, model performance in the core area of the species distribution can be significantly improved. Large GBs make models demonstrate high discriminatory power but are barely informative. By delimiting GB using a geographical criterion, the effect of historical events on model parameterization may be reduced. Thus purely environmental models are obtained that, when projected onto a new scenario, depict the potential distribution of the species. We therefore recommend the use of TSA in geographically delimiting the GB for use in SDMs.  相似文献   

17.
Identifying the species most vulnerable to extinction as a result of climate change is a necessary first step in mitigating biodiversity decline. Species distribution modeling (SDM) is a commonly used tool to assess potential climate change impacts on distributions of species. We use SDMs to predict geographic ranges for 243 birds of Australian tropical savannas, and to project changes in species richness and ranges under a future climate scenario between 1990 and 2080. Realistic predictions require recognition of the variability in species capacity to track climatically suitable environments. Here we assess the effect of dispersal on model results by using three approaches: full dispersal, no dispersal and a partial-dispersal scenario permitting species to track climate change at a rate of 30 km per decade. As expected, the projected distributions and richness patterns are highly sensitive to the dispersal scenario. Projected future range sizes decreased for 66% of species if full dispersal was assumed, but for 89% of species when no dispersal was assumed. However, realistic future predictions should not assume a single dispersal scenario for all species and as such, we assigned each species to the most appropriate dispersal category based on individual mobility and habitat specificity; this permitted the best estimates of where species will be in the future. Under this "realistic" dispersal scenario, projected ranges sizes decreased for 67% of species but showed that migratory and tropical-endemic birds are predicted to benefit from climate change with increasing distributional area. Richness hotspots of tropical savanna birds are expected to move, increasing in southern savannas and southward along the east coast of Australia, but decreasing in the arid zone. Understanding the complexity of effects of climate change on species' range sizes by incorporating dispersal capacities is a crucial step toward developing adaptation policies for the conservation of vulnerable species.  相似文献   

18.

Aim

Diversity dynamics remain controversial. Here, we examine these dynamics, together with the ecological factors governing them, across mammalian clades of different ages and sizes, representing different phylogenetic scales. Specifically, we investigate whether the dynamics are bounded or unbounded, biotically or abiotically regulated, stochastic or ecologically deterministic.

Location

Worldwide.

Time period

150 Myr.

Major taxa studied

Mammals.

Methods

Integrating the newest phylogenetic and distributional data by means of several distinct methods, we study the ecology of mammalian diversification within a predictive framework, inspired by classic theory. Specifically, we evaluate the effects of several classes of factors, including climate, topography, geographical area, rates of climatic‐niche evolution, and regional coexistence between related and unrelated species. Next, we determine whether the relative effects of these factors change systematically across clades representing different phylogenetic scales.

Results

We find that young clades diversify at approximately constant rates, medium‐sized clades show diversification slowdowns, and large clades are mostly saturated, suggesting that diversification dynamics change as clades grow and accumulate species. We further find that diversification slowdowns intensify with the degree of regional coexistence between related species, presumably because increased competition for regional resources suppresses the diversification process. The richness at which clades eventually saturate depends on climate; clades residing in tropical climates saturate at low richness, implying that niches become progressively densely packed towards the tropics.

Main conclusions

The diversification process is influenced by a variety of ecological factors, whose relative effects change across phylogenetic scales, producing scale‐dependent dynamics. Different segments of the same phylogeny might therefore support seemingly conflicting results (bounded or unbounded, biotically or abiotically regulated, stochastic or ecologically deterministic diversification), which might have contributed to several outstanding controversies in the field. These conflicts can be reconciled, however, when accounting for phylogenetic scale, which might, in turn, produce a more integrated understanding of global diversity dynamics.  相似文献   

19.
Weak climatic associations among British plant distributions   总被引:1,自引:0,他引:1  
Aim Species distribution models (SDMs) are used to infer niche responses and predict climate change‐induced range shifts. However, their power to distinguish real and chance associations between spatially autocorrelated distribution and environmental data at continental scales has been questioned. Here this is investigated at a regional (10 km) scale by modelling the distributions of 100 plant species native to the UK. Location UK. Methods SDMs fitted using real climate data were compared with those utilizing simulated climate gradients. The simulated gradients preserve the exact values and spatial structure of the real ones, but have no causal relationships with any species and so represent an appropriate null model. SDMs were fitted as generalized linear models (GLMs) or by the Random Forest machine‐learning algorithm and were either non‐spatial or included spatially explicit trend surfaces or autocovariates as predictors. Results Species distributions were significantly but erroneously related to the simulated gradients in 86% of cases (P < 0.05 in likelihood‐ratio tests of GLMs), with the highest error for strongly autocorrelated species and gradients and when species occupied 50% of sites. Even more false effects were found when curvilinear responses were modelled, and this was not adequately mitigated in the spatially explicit models. Non‐spatial SDMs based on simulated climate data suggested that 70–80% of the apparent explanatory power of the real data could be attributable to its spatial structure. Furthermore, the niche component of spatially explicit SDMs did not significantly contribute to model fit in most species. Main conclusions Spatial structure in the climate, rather than functional relationships with species distributions, may account for much of the apparent fit and predictive power of SDMs. Failure to account for this means that the evidence for climatic limitation of species distributions may have been overstated. As such, predicted regional‐ and national‐scale impacts of climate change based on the analysis of static distribution snapshots will require re‐evaluation.  相似文献   

20.
Aim The role of dispersal in structuring biodiversity across spatial scales is controversial. If dispersal controls regional and local community assembly, it should also affect the degree of spatial species turnover as well as the extent to which regional communities are represented in local communities. Here we provide the first integrated assessment of relationships between dispersal ability and local‐to‐regional spatial aspects of species diversity across a large geographical area. Location Northern Eurasia. Methods Using a cross‐scale analysis covering local (0.64 m2) to continental (the Eurasian Arctic biome) scales, we compared slope parameters of the dissimilarity‐to‐distance relationship in species composition and the local‐to‐regional relationship in species richness among three plant‐like groups that differ in dispersal ability: lichens with the highest dispersal ability; mosses and moss allies with intermediate dispersal ability; and seed plants with the lowest dispersal ability. Results Diversity patterns generally differed between the three groups according to their dispersal ability, even after controlling for niche‐based processes. Increasing dispersal ability is linked to decreasing spatial species turnover and an increasing ratio of local to regional species richness. All comparisons supported our expectations, except for the slope of the local‐to‐regional relationship in species richness for mosses and moss allies which was not significantly steeper than that of seed plants. Main conclusions The negative link between dispersal ability and spatial species turnover and the corresponding positive link between dispersal ability and the ratio of local‐to‐regional species richness support the idea that dispersal affects community structure and diversity patterns across spatial scales.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号