首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Kelp forests along temperate and polar coastlines represent some of most diverse and productive habitats on the Earth. Here, we synthesize information from >60 years of research on the structure and functioning of kelp forest habitats in European waters, with particular emphasis on the coasts of UK and Ireland, which represents an important biogeographic transition zone that is subjected to multiple threats and stressors. We collated existing data on kelp distribution and abundance and reanalyzed these data to describe the structure of kelp forests along a spatial gradient spanning more than 10° of latitude. We then examined ecological goods and services provided by kelp forests, including elevated secondary production, nutrient cycling, energy capture and flow, coastal defense, direct applications, and biodiversity repositories, before discussing current and future threats posed to kelp forests and identifying key knowledge gaps. Recent evidence unequivocally demonstrates that the structure of kelp forests in the NE Atlantic is changing in response to climate‐ and non‐climate‐related stressors, which will have major implications for the structure and functioning of coastal ecosystems. However, kelp‐dominated habitats along much of the NE Atlantic coastline have been chronically understudied over recent decades in comparison with other regions such as Australasia and North America. The paucity of field‐based research currently impedes our ability to conserve and manage these important ecosystems. Targeted observational and experimental research conducted over large spatial and temporal scales is urgently needed to address these knowledge gaps.  相似文献   

2.
Cycling of organic carbon in the ocean has the potential to mitigate or exacerbate global climate change, but major questions remain about the environmental controls on organic carbon flux in the coastal zone. Here, we used a field experiment distributed across 28° of latitude, and the entire range of 2 dominant kelp species in the northern hemisphere, to measure decomposition rates of kelp detritus on the seafloor in relation to local environmental factors. Detritus decomposition in both species were strongly related to ocean temperature and initial carbon content, with higher rates of biomass loss at lower latitudes with warmer temperatures. Our experiment showed slow overall decomposition and turnover of kelp detritus and modeling of coastal residence times at our study sites revealed that a significant portion of this production can remain intact long enough to reach deep marine sinks. The results suggest that decomposition of these kelp species could accelerate with ocean warming and that low-latitude kelp forests could experience the greatest increase in remineralization with a 9% to 42% reduced potential for transport to long-term ocean sinks under short-term (RCP4.5) and long-term (RCP8.5) warming scenarios. However, slow decomposition at high latitudes, where kelp abundance is predicted to expand, indicates potential for increasing kelp-carbon sinks in cooler (northern) regions. Our findings reveal an important latitudinal gradient in coastal ecosystem function that provides an improved capacity to predict the implications of ocean warming on carbon cycling. Broad-scale patterns in organic carbon decomposition revealed here can be used to identify hotspots of carbon sequestration potential and resolve relationships between carbon cycling processes and ocean climate at a global scale.

Cycling of organic carbon in the ocean has the potential to mitigate or exacerbate global climate change, but how is this influenced by the environment? A field experiment at 35 sites spanning 12 geographic regions allows measurement of decomposition rates and changes in carbon content of kelp detritus in coastal habitats, revealing a strong influence of an ocean-temperature gradient on decomposition.  相似文献   

3.
A high proportion of the kelp Laminaria hyperborea production is exported from kelp forests following seasonal storms or natural annual old blade loss. Transport of drifting kelp fragments can lead to temporary accumulations in benthic subtidal habitats. We investigated the degradation processes of L. hyperborea in a low subtidal sandy bottom ecosystem by setting up a 6-month cage experiment to simulate accumulations of kelp fragments on the seafloor. We monitored temporal changes in biomass, nutritional quality (C:N ratio), respiration, quantum efficiency of photosystem II (Fv/Fm), bacterial colonization, and chemical defense concentrations. Biomass decomposition started after 2 weeks and followed a classic negative exponential pattern, leading to 50% degradation after 8 weeks. The degradation process seemed to reach a critical step after 11 weeks, with an increase in respiration rate and phlorotannin concentration in the tissues. These results likely reflect an increase in bacterial activity and a weakening of the kelp cell wall. After 25 weeks of degradation, only 16% of the initial biomass persisted, but the remaining large fragments looked intact. Furthermore, photosystems were still responding to light stimuli, indicating that photosynthesis persisted over time. Reproductive tissues appeared on some fragments after 20 weeks of degradation, showing a capacity to maintain the reproductive function. Our results indicate that L. hyperborea fragments degrade slowly. As they maintain major physiological functions (photosynthesis, reproduction, etc.) and accumulate on adjacent ecosystems, they may play a long-term ecological role in coastal ecosystem dynamics.  相似文献   

4.
Coastal kelp forests produce substantial marine carbon due to high annual net primary production (NPP) rates, but upscaling of NPP estimates over time and space remains difficult. We investigated the impact of variable underwater photosynthetically active radiation (PAR) and photosynthetic parameters on photosynthetic oxygen production of Laminaria hyperborea, the dominant NE-Atlantic kelp species, throughout summer 2014. Collection depth of kelp had no effect on chlorophyll a content, pointing to a high photoacclimation potential of L. hyperborea towards incident light. However, chlorophyll a and photosynthesis versus irradiance parameters differed significantly along the blade gradient when normalized to fresh mass, potentially introducing large uncertainties in NPP upscaling to whole thalli. Therefore, we recommend a normalization to kelp tissue area, which is stable over the blade gradient. Continuous PAR measurements revealed a highly variable underwater light climate at our study site (Helgoland, North Sea) in summer 2014, reflected by PAR attenuation coefficients (Kd) between 0.28 and 0.87 m−1. Our data highlight the importance of continuous underwater light measurements or representative average values using a weighted Kd to account for large PAR variability in NPP calculations. Strong winds in August increased turbidity, resulting in a negative carbon balance at depths >3–4 m over several weeks, considerably impacting kelp productivity. Estimated daily summer NPP over all four depths was 1.48 ± 0.97 g C · m−2 seafloor · d−1 for the Helgolandic kelp forest, which is in the range of other kelp forests along European coastlines.  相似文献   

5.

Background  

Bacteria belonging to Planctomycetes display several unique morphological and genetic features and are found in a wide variety of habitats on earth. Their ecological roles in these habitats are still poorly understood. Planctomycetes have previously been detected throughout the year on surfaces of the kelp Laminaria hyperborea from southwestern Norway. We aimed to make a detailed investigation of the abundance and phylogenetic diversity of planctomycetes inhabiting these kelp surfaces.  相似文献   

6.
The mobile fauna associated with two sympatric kelp species with different holdfast morphology (Saccorhiza polyschides and Laminaria hyperborea) was compared to test for differences in the assemblage structure of holdfast-associated mobile epifauna. A total of 24,140 epifaunal individuals were counted from 30 holdfasts of each kelp species. Overall epifaunal abundances exceeded faunal abundances previously reported from holdfasts of other kelps. Three taxonomic groups, Amphipoda, Mollusca, and Polychaeta, accounted for ca. 85% of all individuals. Total abundances increased with the amount of habitat available, quantified either as the volume or the area provided by the holdfasts. The multivariate structure of the epifaunal assemblage did not differ between holdfasts of the two kelp species. However, epifaunal assemblages responded differentially to the habitat attributes provided by each type of kelp holdfast: multivariate variation in the assemblage structure of epifauna was mostly explained by holdfast area and volume for L. hyperborea, and by the surface-to-volume ratio for S. polyschides holdfasts. Therefore, the physical attributes of biogenic habitats, here kelp holdfasts that better predict patterns in the assemblage structure of associated fauna can differ according to their different physical morphology, even though the overall assemblage structure of associated fauna was similar.  相似文献   

7.
Coastal marine ecosystems are threatened by a range of anthropogenic stressors, operating at global, local, and temporal scales. We investigated the impact of marine heatwaves (MHWs) combined with decreased light availability over two seasons on the ecophysiological responses of three kelp species (Laminaria digitata, L. hyperborea, and L. ochroleuca). These species function as important habitat-forming foundation organisms in the northeast Atlantic and have distinct but overlapping latitudinal distributions and thermal niches. Under low-light conditions, summertime MHWs induced significant declines in biomass, blade surface area, and Fv/Fm values (a measure of photosynthetic efficiency) in the cool-water kelps L. digitata and L. hyperborea, albeit to varying degrees. Under high-light conditions, all species were largely resistant to simulated MHW activity. In springtime, MHWs had minimal impacts and in some cases promoted kelp performance, while reduced light availability resulted in lower growth rates. While some species were negatively affected by summer MHWs under low-light conditions (particularly L. digitata), they were generally resilient to MHWs under high-light conditions. As such, maintaining good environmental quality and water clarity may increase resilience of populations to summertime MHWs. Our study informs predictions of how habitat-forming foundation kelp species will be affected by interacting, concurrent stressors, typical of compound events that are intensifying under anthropogenic climate change.  相似文献   

8.
Marine molluscs constitute the second largest marine fishery and are often caught in coastal and estuarine habitats. Temperature is increasing in these habitats at a rate greater than predicted, especially in warming “hotspots”. This warming is accompanied by hypoxia in a duo of stressors that threatens coastal mollusc fisheries and aquaculture. Collapses of the northern bay scallop (Argopecten irradians irradians) fisheries on the Atlantic coast of the USA are likely to be driven by rapid rates of coastal warming and may provide an ominous glimpse into the prospects of other coastal mollusc fisheries in climate warming hotspots.  相似文献   

9.
Ongoing changes along the northeastern Atlantic coastline provide an opportunity to explore the influence of climate change and multitrophic interactions on the recovery of kelp. Here, vast areas of sea urchin‐dominated barren grounds have shifted back to kelp forests, in parallel with changes in sea temperature and predator abundances. We have compiled data from studies covering more than 1,500‐km coastline in northern Norway. The dataset has been used to identify regional patterns in kelp recovery and sea urchin recruitment, and to relate these to abiotic and biotic factors, including structurally complex substrates functioning as refuge for sea urchins. The study area covers a latitudinal gradient of temperature and different levels of predator pressure from the edible crab (Cancer pagurus) and the red king crab (Paralithodes camtschaticus). The population development of these two sea urchin predators and a possible predator on crabs, the coastal cod (Gadus morhua), were analyzed. In the southernmost and warmest region, kelp forests recovery and sea urchin recruitment are mainly low, although sea urchins might also be locally abundant. Further north, sea urchin barrens still dominate, and juvenile sea urchin densities are high. In the northernmost and cold region, kelp forests are recovering, despite high recruitment and densities of sea urchins. Here, sea urchins were found only in refuge habitats, whereas kelp recovery occurred mainly on open bedrock. The ocean warming, the increase in the abundance of edible crab in the south, and the increase in invasive red king crab in the north may explain the observed changes in kelp recovery and sea urchin distribution. The expansion of both crab species coincided with a population decline in the top‐predator coastal cod. The role of key species (sea urchins, kelp, cod, and crabs) and processes involved in structuring the community are hypothesized in a conceptual model, and the knowledge behind the suggested links and interactions is explored.  相似文献   

10.
The kelp Laminaria hyperborea forms large forests and houses a numerous and diverse fauna, especially in the kelp holdfast and stipe epiphytes. Kelp harvesting creates cleared areas and fragmentizes the kelp forest. We investigated the dispersal ability of kelp fauna to cleared, harvested areas by studying their colonization pattern to artificial substrata (kelp mimics) exposed for a short (3 days) and longer time period (35 days) at different sites within the kelp forest (one site) and at a cleared area (two sites). Most of the kelp fauna (111 species) showed a rapid dispersal and colonized the artificial substrata within the cleared area. The similarity of the faunal community in the mimics with the natural kelp holdfast community increased with the length of the exposure period. During the experiments, 87% of the mobile species in the kelp plants were found in the kelp mimics, indicating good dispersal for slow-moving animals like gastropods, polychaetes and tube-building crustaceans. Relating the frequency of the different faunal groups in the untrawled kelp forest to their frequency in the kelp mimics, showed gastropods, amphipods and decapods to have relatively high dispersal rates, whereas isopods, bivalves, polychaetes and tanaids showed a lower dispersal rate than expected. Amphipods dispersed as juveniles and adults. No significant differences were found between the faunal composition and number of species in the mimics placed inside the kelp forest and in the cleared area. Remaining holdfasts and pebbles were identified as refuges/alternative habitats in the harvested area, and may together with the nearest kelp vegetation, serve as sources for colonization to new substrata. The high dispersal ability of most of the kelp fauna provides maintenance of the faunal composition of disturbed habitats and ensures colonization of recovering algal habitats regardless of reproduction strategy.  相似文献   

11.
Sediment cores were collected from an area off the west coast of Norway, where a well-established kelp community made up mainly of Laminaria hyperborea is found. Chemical analyses of the sectioned sediment cores were made, which included organic carbon, carbohydrates and phenols. These were used to collate the sediments in order to establish whether the different sites had a common origin and if this was kelp-related. The organic matter content in the surface sediments appears to be related to the water depth, which determines the degree of perturbation at the sediment-water boundary and hence the sedimentation of the organic matter. The relation between carbohydrates and phenols in the sediment appears to indicate a common origin. However, the carbohydrate and phenol content in the sediment organic fraction appears to closely resemble (to be analogous) to that of the kelp Laminaria hyperborea. Although there are some diagenetic and decomposition changes in the subsurface (historical) organic matter (that may alter its findings), this study provides good evidence that the deposits were supplied by the kelp forest in the region. The sedimentation and export of kelp-derived material is of particular significance in terms of benthic ecology and production and may also play a significant role in the global carbon budget.  相似文献   

12.
Kelps are dominant primary producers in temperate coastal ecosystems. Large amounts of kelp biomass can be exported to the seafloor during the algal growth cycle or following storms, creating new ecological niches for the associated microbiota. Here, we investigated the bacterial community associated with the kelp Laminaria hyperborea during its accumulation and degradation on the seafloor. Kelp tissue, seawater and sediment were sampled during a 6-month in situ experiment simulating kelp detritus accumulation. Evaluation of the epiphytic bacterial community abundance, structure, taxonomic composition and predicted functional profiles evidenced a biphasic succession. Initially, dominant genera (Hellea, Litorimonas, Granulosicoccus) showed a rapid and drastic decrease in sequence abundance, probably outcompeted by algal polysaccharide-degraders such as Bacteroidia members which responded within 4 weeks. Acidimicrobiia, especially members of the Sva0996 marine group, colonized the degrading kelp biomass after 11 weeks. These secondary colonizers could act as opportunistic scavenger bacteria assimilating substrates exposed by early degraders. In parallel, kelp accumulation modified bacterial communities in the underlying sediment, notably favouring anaerobic taxa potentially involved in the sulfur and nitrogen cycles. Overall, this study provides insights into the bacterial degradation of algal biomass in situ, an important link in coastal trophic chains.  相似文献   

13.
Seaweed and seagrass communities in the northeast Atlantic have been profoundly impacted by humans, and the rate of change is accelerating rapidly due to runaway CO2 emissions and mounting pressures on coastlines associated with human population growth and increased consumption of finite resources. Here, we predict how rapid warming and acidification are likely to affect benthic flora and coastal ecosystems of the northeast Atlantic in this century, based on global evidence from the literature as interpreted by the collective knowledge of the authorship. We predict that warming will kill off kelp forests in the south and that ocean acidification will remove maerl habitat in the north. Seagrasses will proliferate, and associated epiphytes switch from calcified algae to diatoms and filamentous species. Invasive species will thrive in niches liberated by loss of native species and spread via exponential development of artificial marine structures. Combined impacts of seawater warming, ocean acidification, and increased storminess may replace structurally diverse seaweed canopies, with associated calcified and noncalcified flora, with simple habitats dominated by noncalcified, turf‐forming seaweeds.  相似文献   

14.
The combination of ocean warming and acidification brings an uncertain future to kelp forests that occupy the warmest parts of their range. These forests are not only subject to the direct negative effects of ocean climate change, but also to a combination of unknown indirect effects associated with changing ecological landscapes. Here, we used mesocosm experiments to test the direct effects of ocean warming and acidification on kelp biomass and photosynthetic health, as well as climate‐driven disparities in indirect effects involving key consumers (urchins and rock lobsters) and competitors (algal turf). Elevated water temperature directly reduced kelp biomass, while their turf‐forming competitors expanded in response to ocean acidification and declining kelp canopy. Elevated temperatures also increased growth of urchins and, concurrently, the rate at which they thinned kelp canopy. Rock lobsters, which are renowned for keeping urchin populations in check, indirectly intensified negative pressures on kelp by reducing their consumption of urchins in response to elevated temperature. Overall, these results suggest that kelp forests situated towards the low‐latitude margins of their distribution will need to adapt to ocean warming in order to persist in the future. What is less certain is how such adaptation in kelps can occur in the face of intensifying consumptive (via ocean warming) and competitive (via ocean acidification) pressures that affect key ecological interactions associated with their persistence. If such indirect effects counter adaptation to changing climate, they may erode the stability of kelp forests and increase the probability of regime shifts from complex habitat‐forming species to more simple habitats dominated by algal turfs.  相似文献   

15.
This paper describes the macroflora and macrofauna associated with two bull kelp species,Laminaria hyperborea andL. digitata, at the island of Helgoland, North Sea. During a study period of seven months (March–September 1987), 29 macroflora species and 125 macrofauna species were found. The dominant taxonomic groups were Polychaeta (25 species), Bryozoa (17), Amphipoda (14), Hydrozoa (10) and Ascidiae (8). The species maximum was in July. In general,L. hyperborea was preferred as a substrate for settlement toL. digitata. Composition of the communities associated with kelp changed during the season according to exposure to wave action, and according to location on the kelp thallus. The rhizoid community of both kelps bore more species at exposed locations. Wave-exposedL. digitata lacked obvious faunal settlement on both phylloid and cauloid. Phylloid and cauloid ofL. hyperborea were chosen as an attractive substrate at both sheltered and wave-exposed locations, showing an association of encrusting bryozoan and hydrozoan colonies.  相似文献   

16.
Kelp forests worldwide are known as hotspots for macroscopic biodiversity and primary production, yet very little is known about the biodiversity and roles of microorganisms in these ecosystems. Secondary production by heterotrophic bacteria associated to kelp is important in the food web as a link between kelp primary production and kelp forest consumers. The aim of this study was to investigate the relationship between bacterial diversity and two important processes in this ecosystem; bacterial secondary production and primary succession on kelp surfaces. To address this, kelp, Laminaria hyperborea, from southwestern Norway was sampled at different geographical locations and during an annual cycle. Pyrosequencing (454-sequencing) of amplicons of the 16S rRNA gene of bacteria was used to study bacterial diversity. Incorporation of tritiated thymidine was used as a measure of bacterial production. Our data show that bacterial diversity (richness and evenness) increases with the age of the kelp surface, which corresponds to the primary succession of its bacterial communities. Higher evenness of bacterial operational taxonomical units (OTUs) is linked to higher bacterial production. Owing to the dominance of a few abundant OTUs, kelp surface biofilm communities may be characterized as low-diversity habitats. This is the first detailed study of kelp-associated bacterial communities using high-throughput sequencing and it extends current knowledge on microbial community assembly and dynamics on living surfaces.  相似文献   

17.
Kelps are important providers and constituents of marine ecological niches, the coastal kelp forests. Kelp species have differing distribution ranges, but mainly thrive in temperate and arctic regions. Although the principal factors determining biogeographic distribution ranges are known, genomics could provide additional answers to this question. We sequenced DNA from two Laminaria species with contrasting distribution ranges, Laminaria digitata and Laminaria solidungula. Laminaria digitata is found in the Northern Atlantic with a southern boundary in Brittany (France) or Massachusetts (USA) and a northern boundary in the Arctic, whereas L. solidungula is endemic to the Arctic only. From the raw reads of DNA, we reconstructed both chloroplast genomes and annotated them. A concatenated data set of all available brown algae chloroplast sequences was used for the calculation of a robust phylogeny, and sequence variations were analyzed. The two Laminaria chloroplast genomes are collinear to previously analyzed kelp chloroplast genomes with important exceptions. Rearrangements at the inverted repeat regions led to the pseudogenization of ycf37 in L. solidungula, a gene possibly required under high light conditions. This defunct gene might be one of the reasons why the habitat range of L. solidungula is restricted to lowlight sublittoral sites in the Arctic. The inheritance pattern of single nucleotide polymorphisms suggests incomplete lineage sorting of chloroplast genomes in kelp species. Our analysis of kelp chloroplast genomes shows that not only evolutionary information could be gleaned from sequence data. Concomitantly, those sequences can also tell us something about the ecological conditions which are required for species well‐being.  相似文献   

18.
The French monitoring network, REseau BENThique (REBENT), was launched by the Ministry of the Environment in 2003 following the 1999 Erika oil spill. REBENT aimed to acquire baseline knowledge of coastal benthic habitat distributions with a special focus on biological diversity. This study analyzed data from 38 subtidal rocky reef sites collected by a single diving team of marine biologists along the coast of Brittany from 2004 to 2010. At each site, the depth limits of the algal belts were determined between 0 and ?40 m Chart Datum (CD); the flora and fauna compositions and abundances were sampled at ?3 and ?8 m CD. A total of 364 taxa (156 flora and 208 fauna), belonging to 12 phyla, were identified. The results showed that the depth limit and density of kelp beds increased as water turbidity decreased; moreover, several changes in community structure could be related to water turbidity and temperature. Thus, northern and southern Brittany showed strong differences in diversity and structure of the dominant kelp species (Laminaria hyperborea and Saccorhiza polyschides). The results from this kelp habitat composition survey (dominant kelp species and indicator species) provided important information for local pressure assessments, like increases in turbidity. The data also provided a reference that could be useful for detecting changes in coastal water temperatures due to global warming.  相似文献   

19.
Dwarf shrubs are a dominant plant type across many regions of the Earth and have hence a large impact on carbon and nutrient cycling rates. Climate change impacts on dwarf shrubs have been extensively studied in the Northern Hemisphere, and there appears to be large variability in response between ecosystem types and regions. In the Southern Hemisphere, less data are available despite dwarf shrub vegetation being a dominant feature of southern South America and mountainous regions of the Southern Hemisphere. Here, we present the response of an Empetrum rubrum dwarf shrub and a Poa grass community to 12 years of experimental climate manipulation achieved using open top chambers on the Falkland Islands, a cold temperate island group in the South Atlantic. The dwarf shrub and grass vegetation did not change significantly in cover, biomass or species richness over the 12 years period in response to climate warming scenarios of up to 1°C reflecting annual warming levels predicted in this region for the coming decades. The soil microarthropod community, however, responded with declines in abundance (37%) under warming conditions in the grass community, but no such changes were observed in the dwarf shrub community. Overall, our data indicate that dwarf shrub communities are resistant to the levels of climate warming predicted over the coming decades in the southern South America region and will, therefore, remain a dominant driver of local ecosystem properties.  相似文献   

20.
Climate warming and drying is associated with increased wildfire disturbance and the emergence of megafires in North American boreal forests. Changes to the fire regime are expected to strongly increase combustion emissions of carbon (C) which could alter regional C balance and positively feedback to climate warming. In order to accurately estimate C emissions and thereby better predict future climate feedbacks, there is a need to understand the major sources of heterogeneity that impact C emissions at different scales. Here, we examined 211 field plots in boreal forests dominated by black spruce (Picea mariana) or jack pine (Pinus banksiana) of the Northwest Territories (NWT), Canada after an unprecedentedly large area burned in 2014. We assessed both aboveground and soil organic layer (SOL) combustion, with the goal of determining the major drivers in total C emissions, as well as to develop a high spatial resolution model to scale emissions in a relatively understudied region of the boreal forest. On average, 3.35 kg C m?2 was combusted and almost 90% of this was from SOL combustion. Our results indicate that black spruce stands located at landscape positions with intermediate drainage contribute the most to C emissions. Indices associated with fire weather and date of burn did not impact emissions, which we attribute to the extreme fire weather over a short period of time. Using these results, we estimated a total of 94.3 Tg C emitted from 2.85 Mha of burned area across the entire 2014 NWT fire complex, which offsets almost 50% of mean annual net ecosystem production in terrestrial ecosystems of Canada. Our study also highlights the need for fine‐scale estimates of burned area that represent small water bodies and regionally specific calibrations of combustion that account for spatial heterogeneity in order to accurately model emissions at the continental scale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号