共查询到8条相似文献,搜索用时 0 毫秒
1.
JONATHAN BENNIE EERO KUBIN ANDREW WILTSHIRE BRIAN HUNTLEY ROBERT BAXTER 《Global Change Biology》2010,16(5):1503-1514
The timing of spring bud‐burst and leaf development in temperate, boreal and Arctic trees and shrubs fluctuates from year to year, depending on meteorological conditions. Over several generations, the sensitivity of bud‐burst to meteorological conditions is subject to selection pressure. The timing of spring bud‐burst is considered to be under opposing evolutionary pressures; earlier bud‐burst increases the available growing season (capacity adaptation) but later bud‐burst decreases the risk of frost damage to actively growing parts (survival adaptation). The optimum trade‐off between these two forms of adaptation may be considered an evolutionarily stable strategy that maximizes the long‐term ecological fitness of a phenotype under a given climate. Rapid changes in climate, as predicted for this century, are likely to exceed the rate at which trees and shrubs can adapt through evolution or migration. Therefore the response of spring phenology will depend not only on future climatic conditions but also on the limits imposed by adaptation to current and historical climate. Using a dataset of bud‐burst dates from twenty‐nine sites in Finland for downy birch (Betula pubescens Ehrh.), we parameterize a simple thermal time bud‐burst model in which the critical temperature threshold for bud‐burst is a function of recent historical climatic conditions and reflects a trade‐off between capacity and survival adaptation. We validate this approach with independent data from eight independent sites outside Finland, and use the parameterized model to predict the response of bud‐burst to future climate scenarios in north‐west Europe. Current strategies for budburst are predicted to be suboptimal for future climates, with bud‐burst generally occurring earlier than the optimal strategy. Nevertheless, exposure to frost risk is predicted to decrease slightly and the growing season is predicted to increase considerably across most of the region. However, in high‐altitude maritime regions exposure to frost risk following bud‐burst is predicted to increase. 相似文献
2.
Tamara J. Zelikova Ruth A. Hufbauer Sasha C. Reed Timothy Wertin Christa Fettig Jayne Belnap 《Ecology and evolution》2013,3(5):1374-1387
How plant populations, communities, and ecosystems respond to climate change is a critical focus in ecology today. The responses of introduced species may be especially rapid. Current models that incorporate temperature and precipitation suggest that future Bromus tectorum invasion risk is low for the Colorado Plateau. With a field warming experiment at two sites in southeastern Utah, we tested this prediction over 4 years, measuring B. tectorum phenology, biomass, and reproduction. In a complimentary greenhouse study, we assessed whether changes in field B. tectorum biomass and reproductive output influence offspring performance. We found that following a wet winter and early spring, the timing of spring growth initiation, flowering, and summer senescence all advanced in warmed plots at both field sites and the shift in phenology was progressively larger with greater warming. Earlier green‐up and development was associated with increases in B. tectorum biomass and reproductive output, likely due early spring growth, when soil moisture was not limiting, and a lengthened growing season. Seeds collected from plants grown in warmed plots had higher biomass and germination rates and lower mortality than seeds from ambient plots. However, in the following two dry years, we observed no differences in phenology between warmed and ambient plots. In addition, warming had a generally negative effect on B. tectorum biomass and reproduction in dry years and this negative effect was significant in the plots that received the highest warming treatment. In contrast to models that predict negative responses of B. tectorum to warmer climate on the Colorado Plateau, the effects of warming were more nuanced, relied on background climate, and differed between the two field sites. Our results highlight the importance of considering the interacting effects of temperature, precipitation, and site‐specific characteristics such as soil texture, on plant demography and have direct implications for B. tectorum invasion dynamics on the Colorado Plateau. 相似文献
3.
Stefan Engels Andrew S. Medeiros Yarrow Axford Stephen J. Brooks Oliver Heiri Tomi P. Luoto Larisa Nazarova David F. Porinchu Roberto Quinlan Angela E. Self 《Global Change Biology》2020,26(3):1155-1169
Anthropogenic activities have led to a global decline in biodiversity, and monitoring studies indicate that both insect communities and wetland ecosystems are particularly affected. However, there is a need for long‐term data (over centennial or millennial timescales) to better understand natural community dynamics and the processes that govern the observed trends. Chironomids (Insecta: Diptera: Chironomidae) are often the most abundant insects in lake ecosystems, sensitive to environmental change, and, because their larval exoskeleton head capsules preserve well in lake sediments, they provide a unique record of insect community dynamics through time. Here, we provide the results of a metadata analysis of chironomid diversity across a range of spatial and temporal scales. First, we analyse spatial trends in chironomid diversity using Northern Hemispheric data sets overall consisting of 837 lakes. Our results indicate that in most of our data sets, summer temperature (Tjul) is strongly associated with spatial trends in modern‐day chironomid diversity. We observe a strong increase in chironomid alpha diversity with increasing Tjul in regions with present‐day Tjul between 2.5 and 14°C. In some areas with Tjul > 14°C, chironomid diversity stabilizes or declines. Second, we demonstrate that the direction and amplitude of change in alpha diversity in a compilation of subfossil chironomid records spanning the last glacial–interglacial transition (~15,000–11,000 years ago) are similar to those observed in our modern data. A compilation of Holocene records shows that during phases when the amplitude of temperature change was small, site‐specific factors had a greater influence on the chironomid fauna obscuring the chironomid diversity–temperature relationship. Our results imply expected overall chironomid diversity increases in colder regions such as the Arctic under sustained global warming, but with complex and not necessarily predictable responses for individual sites. 相似文献
4.
5.
Kevin R. Ford Constance A. Harrington J. Bradley St. Clair 《Global Change Biology》2017,23(8):3348-3362
The phenology of diameter‐growth cessation in trees will likely play a key role in mediating species and ecosystem responses to climate change. A common expectation is that warming will delay cessation, but the environmental and genetic influences on this process are poorly understood. We modeled the effects of temperature, photoperiod, and seed‐source climate on diameter‐growth‐cessation timing in coast Douglas‐fir (an ecologically and economically vital tree) using high‐frequency growth measurements across broad environmental gradients for a range of genotypes from different seed sources. Our model suggests that cool temperatures or short photoperiods can induce cessation in autumn. At cool locations (high latitude and elevation), cessation seems to be induced primarily by low temperatures in early autumn (under relatively long photoperiods), so warming will likely delay cessation and extend the growing season. But at warm locations (low latitude or elevation), cessation seems to be induced primarily by short photoperiods later in autumn, so warming will likely lead to only slight extensions of the growing season, reflecting photoperiod limitations on phenological shifts. Trees from seed sources experiencing frequent frosts in autumn or early winter tended to cease growth earlier in the autumn, potentially as an adaptation to avoid frost. Thus, gene flow into populations in warm locations with little frost will likely have limited potential to delay mean cessation dates because these populations already cease growth relatively late. In addition, data from an abnormal heat wave suggested that very high temperatures during long photoperiods in early summer might also induce cessation. Climate change could make these conditions more common in warm locations, leading to much earlier cessation. Thus, photoperiod cues, patterns of genetic variation, and summer heat waves could limit the capacity of coast Douglas‐fir to extend its growing season in response to climate change in the warm parts of its range. 相似文献
6.
Carlos Carroll David R. Roberts Julia L. Michalak Joshua J. Lawler Scott E. Nielsen Diana Stralberg Andreas Hamann Brad H. Mcrae Tongli Wang 《Global Change Biology》2017,23(11):4508-4520
As most regions of the earth transition to altered climatic conditions, new methods are needed to identify refugia and other areas whose conservation would facilitate persistence of biodiversity under climate change. We compared several common approaches to conservation planning focused on climate resilience over a broad range of ecological settings across North America and evaluated how commonalities in the priority areas identified by different methods varied with regional context and spatial scale. Our results indicate that priority areas based on different environmental diversity metrics differed substantially from each other and from priorities based on spatiotemporal metrics such as climatic velocity. Refugia identified by diversity or velocity metrics were not strongly associated with the current protected area system, suggesting the need for additional conservation measures including protection of refugia. Despite the inherent uncertainties in predicting future climate, we found that variation among climatic velocities derived from different general circulation models and emissions pathways was less than the variation among the suite of environmental diversity metrics. To address uncertainty created by this variation, planners can combine priorities identified by alternative metrics at a single resolution and downweight areas of high variation between metrics. Alternately, coarse‐resolution velocity metrics can be combined with fine‐resolution diversity metrics in order to leverage the respective strengths of the two groups of metrics as tools for identification of potential macro‐ and microrefugia that in combination maximize both transient and long‐term resilience to climate change. Planners should compare and integrate approaches that span a range of model complexity and spatial scale to match the range of ecological and physical processes influencing persistence of biodiversity and identify a conservation network resilient to threats operating at multiple scales. 相似文献
7.
Shankar Panthi Ze‐Xin Fan Peter van der Sleen Pieter A. Zuidema 《Global Change Biology》2020,26(3):1778-1794
High‐elevation forests are experiencing high rates of warming, in combination with CO2 rise and (sometimes) drying trends. In these montane systems, the effects of environmental changes on tree growth are also modified by elevation itself, thus complicating our ability to predict effects of future climate change. Tree‐ring analysis along an elevation gradient allows quantifying effects of gradual and annual environmental changes. Here, we study long‐term physiological (ratio of internal to ambient CO2, i.e., Ci/Ca and intrinsic water‐use efficiency, iWUE) and growth responses (tree‐ring width) of Himalayan fir (Abies spectabilis) trees in response to warming, drying, and CO2 rise. Our study was conducted along elevational gradients in a dry and a wet region in the central Himalaya. We combined dendrochronology and stable carbon isotopes (δ13C) to quantify long‐term trends in Ci/Ca ratio and iWUE (δ13C‐derived), growth (mixed‐effects models), and evaluate climate sensitivity (correlations). We found that iWUE increased over time at all elevations, with stronger increase in the dry region. Climate–growth relations showed growth‐limiting effects of spring moisture (dry region) and summer temperature (wet region), and negative effects of temperature (dry region). We found negative growth trends at lower elevations (dry and wet regions), suggesting that continental‐scale warming and regional drying reduced tree growth. This interpretation is supported by δ13C‐derived long‐term physiological responses, which are consistent with responses to reduced moisture and increased vapor pressure deficit. At high elevations (wet region), we found positive growth trends, suggesting that warming has favored tree growth in regions where temperature most strongly limits growth. At lower elevations (dry and wet regions), the positive effects of CO2 rise did not mitigate the negative effects of warming and drying on tree growth. Our results raise concerns on the productivity of Himalayan fir forests at low and middle (<3,300 m) elevations as climate change progresses. 相似文献
8.
Fengyan Yi Zhaoren Wang Carol C. Baskin Jerry M. Baskin Ruhan Ye Hailian Sun Yuanyuan Zhang Xuehua Ye Guofang Liu Xuejun Yang Zhenying Huang 《Ecology and evolution》2019,9(4):2149-2159
Investigating how seed germination of multiple species in an ecosystem responds to environmental conditions is crucial for understanding the mechanisms for community structure and biodiversity maintenance. However, knowledge of seed germination response of species to environmental conditions is still scarce at the community level. We hypothesized that responses of seed germination to environmental conditions differ among species at the community level, and that germination response is not correlated with seed size. To test this hypothesis, we determined the response of seed germination of 20 common species in the Siziwang Desert Steppe, China, to seasonal temperature regimes (representing April, May, June, and July) and drought stress (0, ?0.003, ?0.027, ?0.155, and ?0.87 MPa). Seed germination percentage increased with increasing temperature regime, but Allium ramosum, Allium tenuissimum, Artemisia annua, Artemisia mongolica, Artemisia scoparia, Artemisia sieversiana, Bassia dasyphylla, Kochia prastrata, and Neopallasia pectinata germinated to >60% in the lowest temperature regime (April). Germination decreased with increasing water stress, but Allium ramosum, Artemisia annua, Artemisia scoparia, Bassia dasyphylla, Heteropappus altaicus, Kochia prastrata, Neopallasia pectinata, and Potentilla tanacetifolia germinated to near 60% at ?0.87 MPa. Among these eight species, germination of six was tolerant to both temperature and water stress. Mean germination percentage in the four temperature regimes and the five water potentials was not significantly correlated with seed mass or seed area, which were highly correlated. Our results suggest that the species‐specific germination responses to environmental conditions are important in structuring the desert steppe community and have implications for predicting community structure under climate change. Thus, the predicted warmer and dryer climate will favor germination of drought‐tolerant species, resulting in altered proportions of germinants of different species and subsequently change in community composition of the desert steppe. 相似文献