首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
In the central Great Plains of North America, climate change predictions include increases in mean annual temperature of 1.5–5.5 °C by 2100. Ecosystem responses to increased temperatures are likely to be regulated by dominant plant species, such as the potential biofuel species Panicum virgatum (switchgrass) in the tallgrass prairie. To describe the potential physiological and whole‐plant responses of this species to future changes in air temperatures, we used louvered open‐sided chambers (louvered OSC; 1 × 1 m, adjustable height) to passively alter canopy temperature in native stands of P. virgatum growing in tallgrass prairie at varying topographic positions (upland/lowland). The altered temperature treatment decreased daily mean temperatures by 1 °C and maximum temperatures by 4 °C in May and June, lowered daytime stomatal conductance and transpiration, decreased tiller density, increased specific leaf area, and delayed flowering. Among topographic contrasts, aboveground biomass, flowering tiller density, and tiller weight were greater in lowland sites compared to upland sites, with no temperature treatment interactions. Differences in biomass production responded more to topography than the altered temperature treatment, as soil water status varied considerably between topographic positions. These results indicate that while water availability as a function of topography was a strong driver of plant biomass, many leaf‐level physiological processes were responsive to the small decreases in daily mean and maximum temperature, irrespective of landscape position. The varying responses of leaf‐level gas exchange and whole‐plant growth of P. virgatum in native stands to altered air temperature or topographic position illustrate that accurately forecasting yields for P. virgatum in mixed communities will require greater integration of physiological responses to simulated climate change (increased temperature) and resource availability over natural environmental gradients (soil moisture).  相似文献   

2.
Switchgrass (Panicum virgatum L.) is an important crop for bioenergy feedstock development. Switchgrass has two main ecotypes: the lowland ecotype being exclusively tetraploid (2n = 4x = 36) and the upland ecotype being mainly tetraploid and octaploid (2n = 8x = 72). Because there is a significant difference in ploidy, morphology, growth pattern, and zone of adaptation between and within the upland and lowland ecotypes, it is important to discriminate switchgrass plants belonging to different genetic pools. We used 55 simple sequence repeats (SSR) loci and six chloroplast sequences to identify patterns of variation between and within 18 switchgrass cultivars representing seven lowland and 11 upland cultivars from different geographic regions and of varying ploidy levels. We report consistent discrimination of switchgrass cultivars into ecotype membership and demonstrate unambiguous molecular differentiation among switchgrass ploidy levels using genetic markers. Also, SSR and chloroplast markers identified genetic pools related to the geographic origin of the 18 cultivars with respect to ecotype, ploidy, and geographical, and cultivar sources. SSR loci were highly informative for cultivar fingerprinting and to classify plants of unknown origin. This classification system is the first step toward developing switchgrass complementary gene pools that can be expected to provide a significant heterotic increase in biomass yield.  相似文献   

3.
The Soil and Water Assessment Tool (SWAT) is increasingly used to quantify h y drologic and water quality impacts of bioenergy production, but crop‐growth parameters for candidate perennial rhizomatous grasses (PRG) Miscanthus × giganteus and upland ecotypes of Panicum virgatum (switchgrass) are limited by the availability of field data. Crop‐growth parameter ranges and suggested values were developed in this study using agronomic and weather data collected at the Purdue University Water Quality Field Station in northwestern Indiana. During the process of parameterization, the comparison of measured data with conceptual representation of PRG growth in the model led to three changes in the SWAT 2009 code: the harvest algorithm was modified to maintain belowground biomass over winter, plant respiration was extended via modified‐DLAI to better reflect maturity and leaf senescence, and nutrient uptake algorithms were revised to respond to temperature, water, and nutrient stress. Parameter values and changes to the model resulted in simulated biomass yield and leaf area index consistent with reported values for the region. Code changes in the SWAT model improved nutrient storage during dormancy period and nitrogen and phosphorus uptake by both switchgrass and Miscanthus.  相似文献   

4.
Switchgrass (Panicum virgatum L.) is a C4 grass with high biomass yield potential and is now a model species for the Bioenergy Feedstock Development Program. Two distinct ecotypes (e.g., upland and lowland) and a range of plant morphotypes (e.g., leafy and stemmy) have been observed in switchgrass. The objective of this study was to determine the influence of ecotype and morphotype on biomass feedstock quality. Leaf and stem tissues of leafy and stemmy morphotypes from both lowland and upland ecotypes were analyzed for key feedstock traits. The leaf : stem ratio of leafy morphotype was more than 40% higher than the stemmy morphotype in both upland and lowland ecotypes. Therefore, the stemmy morphotype has significant advantages over leafy morphotype during harvesting, storage, transportation and finally the feedstock quality. Remarkable differences in feedstock quality and mineral composition were observed in switchgrass genotypes with distinct ecotypic origins and variable plant morphotypes. Lignin, hemicelluloses and cellulose concentrations were higher in stems than in the leaves, while ash content was notably high in leaves. A higher concentration of potassium was found in the stems compared to the leaves. In contrast, calcium was higher and magnesium was generally higher in the leaves compared to stems. The upland genotypes demonstrated considerably higher lignin (14.4%) compared with lowland genotypes (12.4%), while hemicellulose was higher in lowland compared with upland. The stemmy type demonstrated slightly higher lignin compared with leafy types (P < 0.1). Differences between the ecotypes and morphotypes for key quality traits demonstrated the potential for improving feedstock composition of switchgrass through selection in breeding programs.  相似文献   

5.
Switchgrass (Panicum virgatum L.), a highly productive perennial grass, has been recommended as one potential source for cellulosic biofuel feedstocks. Previous studies indicate that planting perennial grasses (e.g., switchgrass) in high‐topographic‐relief cropland waterway buffers can improve local environmental conditions and sustainability. The main advantages of this land management practice include (i) reducing soil erosion and improving water quality because switchgrass requires less tillage, fertilizers, and pesticides; and (ii) improving regional ecosystem services (e.g., improving water infiltration, minimizing drought and flood impacts on production, and serving as carbon sinks). In this study, we mapped high‐topographic‐relief cropland waterway buffers with high switchgrass productivity potential that may be suitable for switchgrass development in the eastern Great Plains (EGP). The US Geological Survey (USGS) Compound Topographic Index map, National Land Cover Database 2011, USGS irrigation map, and a switchgrass biomass productivity map derived from a previous study were used to identify the switchgrass potential areas. Results show that about 16 342 km2 (c. 1.3% of the total study area) of cropland waterway buffers in the EGP are potentially suitable for switchgrass development. The total annual estimated switchgrass biomass production for these suitable areas is approximately 15 million metric tons. Results from this study provide useful information on EGP areas with good cellulosic switchgrass biomass production potential and synergistic substantial potential for improvement of ecosystem services.  相似文献   

6.
Biofuel made from conventional (e.g., maize (Zea mays L.)) and cellulosic crops (e.g., switchgrass (Panicum virgatum L.) and Miscanthus (Miscanthus × giganteus)) provides alternative energy to fossil fuels and has been considered to mitigate greenhouse gas emissions. To estimate the large‐scale carbon and nitrogen dynamics of these biofuel ecosystems, process‐based models are needed. Here, we developed an agroecosystem model (AgTEM) based on the Terrestrial Ecosystem Model for these ecosystems. The model was incorporated with biogeochemical and ecophysiological processes including crop phenology, biomass allocation, nitrification, and denitrification, as well as agronomic management of irrigation and fertilization. It was used to estimate crop yield, biomass, net carbon exchange, and nitrous oxide emissions at an ecosystem level. The model was first parameterized for maize, switchgrass, and Miscanthus ecosystems and then validated with field observation data. We found that AgTEM well reproduces the annual net primary production and nitrous oxide fluxes of most sites, with over 85% of total variation explained by the model. Local sensitivity analysis indicated that the model sensitivity varies among different ecosystems. Net primary production of maize is sensitive to temperature, precipitation, cloudiness, fertilizer, and irrigation and less sensitive to atmospheric CO2 concentrations. In contrast, the net primary production of switchgrass and Miscanthus is most sensitive to temperature among all factors. Nitrous oxide fluxes are sensitive to management in maize ecosystems, and sensitive to climate factors in cellulosic ecosystems. The developed model should help advance our understanding of carbon and nitrogen dynamics of these biofuel ecosystems at both site and regional levels.  相似文献   

7.
Growing cellulosic feedstock crops (e.g., switchgrass) for biofuel is more environmentally sustainable than corn‐based ethanol. Specifically, this practice can reduce soil erosion and water quality impairment from pesticides and fertilizer, improve ecosystem services and sustainability (e.g., serve as carbon sinks), and minimize impacts on global food supplies. The main goal of this study was to identify high‐risk marginal croplands that are potentially suitable for growing cellulosic feedstock crops (e.g., switchgrass) in the US Great Plains (GP). Satellite‐derived growing season Normalized Difference Vegetation Index, a switchgrass biomass productivity map obtained from a previous study, US Geological Survey (USGS) irrigation and crop masks, and US Department of Agriculture (USDA) crop indemnity maps for the GP were used in this study. Our hypothesis was that croplands with relatively low crop yield but high productivity potential for switchgrass may be suitable for converting to switchgrass. Areas with relatively low crop indemnity (crop indemnity <$2 157 068) were excluded from the suitable areas based on low probability of crop failures. Results show that approximately 650 000 ha of marginal croplands in the GP are potentially suitable for switchgrass development. The total estimated switchgrass biomass productivity gain from these suitable areas is about 5.9 million metric tons. Switchgrass can be cultivated in either lowland or upland regions in the GP depending on the local soil and environmental conditions. This study improves our understanding of ecosystem services and the sustainability of cropland systems in the GP. Results from this study provide useful information to land managers for making informed decisions regarding switchgrass development in the GP.  相似文献   

8.
9.
Switchgrass (Panicum virgatum L.), a US Department of Energy model species, is widely considered for US biomass energy production. While previous studies have demonstrated the effect of climate and management factors on biomass yield and chemical characteristics of switchgrass monocultures, information is lacking on the yield of switchgrass grown in combination with other species for biomass energy. Therefore, the objective of this quantitative review is to compare the effect of climate and management factors on the yield of switchgrass monocultures, as well as on mixtures of switchgrass, and other species. We examined all peer‐reviewed articles describing productivity of switchgrass and extracted dry matter yields, stand age, nitrogen fertilization (N), temperature (growing degree days), and precipitation/irrigation. Switchgrass yield was greater when grown in monocultures (10.9 t ha?1, n=324) than when grown in mixtures (4.4 t ha?1, n=85); yield in monocultures was also greater than the total yield of all species in the mixtures (6.9 t ha?1, n=90). The presence of legume species in mixtures increased switchgrass yield from 3.1 t ha?1 (n=65) to 8.9 t ha?1 (n=20). Total yield of switchgrass‐dominated mixtures with legumes reached 9.9 t ha?1 (n=25), which was not significantly different from the monoculture yield. The results demonstrated the potential of switchgrass for use as a biomass energy crop in both monocultures and mixtures across a wide geographic range. Monocultures, but not mixtures, showed a significant positive response to N and precipitation. The response to N for monocultures was consistent for newly established (stand age <3 years) and mature stands (stand age ≥3 years) and for lowland and upland ecotypes. In conclusion, these results suggest that fertilization with N will increase yield in monocultures, but not mixtures. For monocultures, N treatment need not be changed based on ecotype and stand age; and for mixtures, legumes should be included as an alternative N source.  相似文献   

10.
This study evaluates the effect of agronomic uncertainty on bioenergy crop production as well as endogenous commodity and biomass prices on the feedstock composition of cellulosic biofuels under a binding mandate in the United States. The county‐level simulation model focuses on both field crops (corn, soybean, and wheat) and biomass feedstocks (corn stover, wheat straw, switchgrass, and Miscanthus). In addition, pasture serves as a potential area for bioenergy crop production. The economic model is calibrated to 2022 in terms of yield, crop demand, and baseline prices and allocates land optimally among the alternative crops given the binding cellulosic biofuel mandate. The simulation scenarios differ in terms of bioenergy crop type (switchgrass and Miscanthus) and yield, biomass production inputs, and pasture availability. The cellulosic biofuel mandates range from 15 to 60 billion L. The results indicate that the 15 and 30 billion L mandates in the high production input scenarios for switchgrass and Miscanthus are covered entirely by agricultural residues. With the exception of the low production input for Miscanthus scenario, the share of agricultural residues is always over 50% for all other scenarios including the 60 billion L mandate. The largest proportion of agricultural land dedicated to either switchgrass or Miscanthus is found in the southern Plains and the southeast. Almost no bioenergy crops are grown in the Midwest across all scenarios. Changes in the prices for the three commodities are negligible for cellulosic ethanol mandates because most of the mandate is met with agricultural residues. The lessons learned are that (1) the share of agricultural residue in the feedstock mix is higher than previously estimated and (2) for a given mandate, the feedstock composition is relatively stable with the exception of one scenario.  相似文献   

11.
Information on heritability and predicted gains from selection for increased biomass yield for ethanol production in switchgrass is limited and may vary among breeding populations. The purpose of this study was to estimate heritability and predicted gains from selection for higher biomass yield within a lowland ecotype switchgrass population, Southern Lowland 93 (SL‐93), and two upland ecotype switchgrass populations, Southern Upland Northern Upland Early Maturing (SNU‐EM) and Southern Upland Northern Upland Late Maturing (SNU‐LM). Narrow‐sense heritabilities (hn2) for biomass yield in each of the three populations were estimated via progeny–parent regression analysis. Half‐sib (HS) progeny families from 130 randomly selected plants from the SL‐93 population were evaluated for biomass yield in replicated trials in 2002 and 2003. Clonal parent plants were evaluated for biomass yield in separate environments to provide unbiased hn2 estimates from progeny–parent regression. Yield differences were highly significant among SL‐93 HS progenies within and over years. For the SL‐93 population, hn2 estimates were 0.13 and 0.12 based on individual plant and phenotypic family mean (PFM) selection, respectively. Predicted genetic gains (ΔG) per selection cycle were 0.15 kg dry matter (dm) plant?1 and 0.10 kg dm plant?1 for PFM and individual plant selection methods, respectively. For the SNU‐EM and SNU‐LM populations, year and year × HS family effects were highly significant (P < 0.01) and the HS family effect over years was nonsignificant (P < 0.05). However, HS family effects were highly significant within respective years (P < 0.01). Estimates of hn2 for the SNU‐EM and SNU‐LM populations based on PFM and individual plant selection were similar, ranging from 0.44 to 0.47; ΔG per selection cycle ranged from 0.22 to 0.33 kg dm plant?1. The magnitudes of the estimates of additive genetic variation suggest that selection for higher biomass yield should be possible. The substantial effect of environment on biomass yields in the upland populations and the failure of families to respond similarly over years stress the importance of adequately testing biomass yield over years to assess yield.  相似文献   

12.
Abstract The effect of the duration of waterlogging on the pre‐dawn water potential, gas exchange, biomass accumulation and survival was investigated on four species, Leptospermum scoparium (Forst et Forst.f.), Acacia melanoxylon (R. Br.), Eucalyptus obliqua (L’Herit) and Nothofagus cunninghamii (Hook.). These species co‐occur, but are restricted to particular microsites. The three waterlogging treatments applied to potted seedlings were: four cycles of 15 days, two cycles of 30 days or one 60‐day cycle, followed by an equal period in freely drained conditions. Water potential, gas exchange, biomass accumulation and survival were not significantly affected by the duration of waterlogging in L. scoparium or A. melanoxylon. With increased waterlogging duration, N. cunninghamii had progressively decreased survival, had less biomass accumulation in all waterlogging treatments and more negative water potential after the 60‐day waterlogging cycle. In contrast, E. obliqua had low survival under the 15‐day waterlogging cycle treatment, although survival, biomass accumulation and maximum net photosynthesis were decreased by all waterlogging cycle treatments. Water potential was significantly lower (more negative) in E. obliqua than other species after the 30‐ and 60‐day waterlogging cycle treatments only. When exposed to oxygen deficit in hypoxic nutrient culture for 5 days, L. scoparium had 100% survival and maximum net photosynthesis was not affected. Acacia melanoxylon had 80% survival and decreased photosynthesis from 2 days of exposure onwards. Nothofagus cunninghamii and E. obliqua had 70% and 30% survival, respectively, and their photosynthesis was significantly depressed after 1 day of exposure to hypoxic conditions. Relative tolerance of the species examined to waterlogging and hypoxia was consistent with adaptation to conditions of seasonal variation in water table height and soil oxygenation concentration observed at the microsites occupied by the respective species. The results indicate that duration of waterlogging may be a major determinant in the microsite distribution of the co‐occurring species investigated.  相似文献   

13.
Ma Y  An Y  Shui J  Sun Z 《Plant science》2011,181(6):638-643
In the study, the growth traits, photosynthesis and morphology characteristics of several cultivars of switchgrass (Panicum virgatum L.) have been assessed the yield potential and adaptability in diverse environments (Yangling, Dingbian of Shaanxi province, Guyuan of Ningxia) on the Loess Plateau of China. Alamo was the best adapted switchgrass cultivar for biomass production in Yangling with dry matter (DM) yields of 44.22 t/ha; Illinois USA and Cave-in-Rock grown at Guyuan had DM yield of 10.59 t/ha and 9.36 t/ha, respectively. Similarly, Cave-in-Rock in Dingbian performed better than others except the lowland cultivars (Alamo and Kanlow), which could not overcome cold stress at Guyuan and Dingbian. Moreover, Cave-in-Rock and Nebraska 28 has the highest photosynthesis rate which reflects its high productivity. Nebraska 28 and Pathfinder shown strong drought tolerance due to their higher WUE. It appears that the upland cultivars with high ploidy (e.g. 8n) would have better establishment than lowland varieties there. Optimal mown management seems to enhance the growth and productivity of switchgrass. Morphological characteristics were further studied using light-and scanning electron microscopy (SEM). Silica particles, vacuole size and other traits in switchgrass tissues (stem, leaf and root), as well as trichomes (leaf) showed that Cave-in-Rock and Pathfinder had larger stoma area, up to 824.4 μm2 and 770.1 μm2, respectively. Silica particle length was the longest in Pathfinder and shortest in Cave-in-Rock. There was a highest density of silica particles in cv. Forestberg, and lowest in Cave-in-Rock and Pathfinder. The morphological characters seemed to be associated with their ploidy levels and the arid habitat from which they were selected. Therefore, if switchgrass is to be introduced and extended on the Loess Plateau of China, Cave-in-Rock and other upland cultivars with a high chromosome ploidy might be optimal choices for biomass plants.  相似文献   

14.
The ability of the biomass crop Miscanthus (Miscanthus × giganteus Greef and Deuter ex Hodkinson and Renvoize) to support larval development for both United States and European populations of the western corn rootworm, Diabrotica virgifera virgifera LeConte, suggests an avenue for interactions with corn (Zea mays L.). To provide context to survival of D. v. virgifera on Miscanthus, adult activity and oviposition of Diabrotica spp. were monitored in central Illinois in 2010–2011 in Miscanthus, corn and switchgrass (Panicum virgatum L.). For D. v. virgifera, vial traps within corn plots captured 3–10 times as many adults as in Miscanthus or switchgrass, while soil samples showed females laid approximately 10 times as many eggs in corn as in the perennial grasses. Adult southern corn rootworms, Diabrotica undecimpunctata howardi Barber, were the most abundant species in 2010 and clearly preferred switchgrass as an adult habitat, with vial traps in switchgrass capturing 5–10 times as many D. u. howardi as those in corn or Miscanthus. Based on the small production areas for Miscanthus and switchgrass (and low use of both by D. v. virgifera), it seems likely that there are no current impacts of these perennial grasses on pest status of Diabrotica spp. in corn or other crops. However, adaptations by Diabrotica spp. to pest management practices suggest they could be a source for interactions between biomass and food or feed crops. Early‐season soil samples did not recover eggs of D. u. howardi, but their use of switchgrass as an adult habitat suggests additional research in areas where switchgrass may be grown near peanuts, alfalfa or other hosts may be needed. Also, investigation of other candidate bioenergy crops known to support Diabrotica spp. larval development is needed to better understand the possible effects of a changing agricultural landscape on corn rootworms.  相似文献   

15.
Switchgrass, a potential biofuel crop, is a genetically diverse species with phenotypic plasticity enabling it to grow in a range of environments. Two primary divergent ecotypes, uplands and lowlands, exhibit trait combinations representative of acquisitive and conservative growth allocation strategies, respectively. Whether these ecotypes respond differently to various types of environmental drivers remains unclear but is crucial to understanding how switchgrass varieties will respond to climate change. We grew two upland, two lowland, and two intermediate/hybrid cultivars of switchgrass at three sites along a latitudinal gradient in the central United States. Over a 4-year period, we measured plant functional traits and biomass yields and evaluated genotype-by-environment (G × E) interaction effects by analyzing switchgrass responses to soil and climate variables. We found substantial evidence of G × E interactions on biomass yield, primarily due to deviations in the response of the southern lowland cultivar Alamo, which produced more biomass in hotter and drier environments relative to other cultivars. While lowland cultivars had the highest potential for yield, their yields were more variable year-to-year compared to other cultivars, suggesting greater sensitivity to environmental perturbations. Models comparing soil and climate principal components as explanatory variables revealed soil properties, especially nutrients, to be most effective at predicting switchgrass biomass yield. Also, positive correlations between biomass yield and conservative plant traits, such as high stem mass and tiller height,  became stronger at lower latitudes where the climate is hotter and drier, regardless of ecotype. Lowland cultivars, however, showed a greater predisposition to exhibit these conservative traits. These results suggest switchgrass trait allocation trade-offs that prioritize aboveground biomass production are more tightly associated in hot, dry environments and that lowland cultivars may exhibit a more specialized strategy relative to other cultivars. Altogether, this research provides essential knowledge for improving the viability of switchgrass as a biofuel crop.  相似文献   

16.
This study was aimed to evaluate anatomical responses to waterlogging of mangrove seedlings (Avicennia marina (Forsk.) Vierh.) grown in experimentally simulated semidiurnal tides. The following treatments were used: 0, 2, 4, 6, 8, 10 and 12 h submergence period with two daily tidal cycles. With increasing waterlogging duration, the leaf thickness, mesophyll thickness, palisade parenchyma thickness, palisade–spongy ratio and hypodermis thickness decreased, but the mesophyll to leaf thickness ratio, stem and pith diameter, and cortex thickness increased. The tangential vessel diameter, vessel wall thickness in stem and leaf and fiber wall thickness in stem showed a similar tendency in response to waterlogging, remaining constant between 0 and 4 h waterlogging duration, but decreasing with more prolonged waterlogging. When the waterlogging duration exceeded 4 h, no sclerenchyma cells in leaves or gelatinous fibers in stems were observed. The response of these leaf and stem features indicated that water transport and mechanical support could remain relatively stable in the 0–4 h waterlogging duration, but they would be negatively influenced by longer flooding. Tissues for gas exchange were stimulated by waterlogging, while the functions of water storage, photosynthesis, mesophyll conductance were weakened with increasing waterlogging.  相似文献   

17.
Switchgrass (Panicum virgatum L.) is a perennial lignocellulosic crop that has gained large interest as a feedstock for advanced biofuels. Using an eddy covariance system, we monitored the net ecosystem gas exchange in a 5‐ha rainfed switchgrass crop located in the Po River Valley for four consecutive years after land‐use change from annual food crops. Switchgrass absorbed 58.2 Mg CO2 ha?1 year?1 (GPP—gross primary production), of which 24.5 (42%) were fixed by the ecosystem (NEE—net ecosystem exchange). Cumulated NEE was negative (i.e. C sink) even in the establishment year when biomass and canopy photosynthesis are considerably lower compared to the following years. Taking into account the last 3 years only (postestablishment years), mean NEE was ?26.9 Mg CO2 ha?1 year?1. When discounted of the removed switchgrass biomass, ecosystem CO2 absorption was still high and corresponded to ?8.4 Mg CO2 ha?1 year?1. The estimation of the life cycle global warming effect made switchgrass an even greater sink (?12.4 Mg CO2 ha?1 year?1), thanks to the credits obtained with fossil fuels displacement. Water use efficiency (WUE), that is the ratio of NEE to the water used by the crop as the flux of transpiration (ET), corresponded to 1.6 mg C g?1 of H2O, meaning that, on average, 170 m3 of water was needed to fix 1 Mg of CO2. Again, considering only the postestablishment years, WUE was 1.7 mg C g?1 of H2O. In the end, about half of annual precipitation was used by the crop every year. We conclude that switchgrass can be a valuable crop to capture significant amount of atmospheric CO2 while preserving water reserves and estimated that its potential large‐scale deployment in the Mediterranean could lead to an annual greenhouse gas emission reduction up to 0.33% for the EU.  相似文献   

18.
In 2010, the parasitic fungus Austropuccinia psidii (myrtle rust) was detected in Australia. Austropuccinia psidii infects immature growth of myrtaceous species. Many of Australia’s myrtaceous species occur within fire‐prone vegetation communities and have the capacity to resprout after fire. Therefore, it is likely that new post‐fire growth may be vulnerable to Apsidii infection, causing subsequent flow‐on effects to species’ persistence and community dynamics. The aim of this study was to test the impacts of Apsidii on native Australian Myrtaceae species after fire. We grew eight native susceptible species in a glasshouse experiment before burning them and inoculating the resprouting new growth of half the plants with A. psidii. We assessed the effect of Apsidii on the architecture, growth and biomass allocation of our study species. Although general patterns were observed across species, results were found to be species‐specific. Austropuccinia psidii significantly reduced the height of two of the eight species (Callistemon citrinus and Eucalyptus moluccana), but none of the species had increased branching. As expected, specific leaf area was lower (9%) in inoculated plants – although only significant for C. citrinus and E. dalrympleana – and leaf biomass was greater (15%), but significant for Angophora costata only. Finally, biomass allocation did not significantly differ between infection treatments. We can conclude that the effect of A. psidii infection on fire‐damaged plants has significant impacts on plants at the species level, which may have flow‐on effects at the community level, especially after repeated infections. Furthermore, these impacts may be exacerbated in the future under climate change, as the predicted increase in frequency and intensity of fires across Australia will result in more frequent new growth availability, providing more opportunities for A. psidii infection.  相似文献   

19.
Close coordination between leaf gas exchange and maximal hydraulic supply has been reported across diverse plant life forms. However, it has also been suggested that this relationship may become weak or break down completely within the angiosperms. We examined coordination between hydraulic, leaf vein, and gas‐exchange traits across a diverse group of 35 evergreen Australian angiosperms, spanning a large range in leaf structure and habitat. Leaf‐specific conductance was calculated from petiole vessel anatomy and was also measured directly using the rehydration technique. Leaf vein density (thought to be a determinant of gas exchange rate), maximal stomatal conductance, and net CO2 assimilation rate were also measured for most species (n = 19–35). Vein density was not correlated with leaf‐specific conductance (either calculated or measured), stomatal conductance, nor maximal net CO2 assimilation, with r2 values ranging from 0.00 to 0.11, P values from 0.909 to 0.102, and n values from 19 to 35 in all cases. Leaf‐specific conductance calculated from petiole anatomy was weakly correlated with maximal stomatal conductance (r2 = 0.16; P = 0.022; n = 32), whereas the direct measurement of leaf‐specific conductance was weakly correlated with net maximal CO2 assimilation (r2 = 0.21; P = 0.005; n = 35). Calculated leaf‐specific conductance, xylem ultrastructure, and leaf vein density do not appear to be reliable proxy traits for assessing differences in rates of gas exchange or growth across diverse sets of evergreen angiosperms.  相似文献   

20.
Hou  Xincun  Hu  Xu  Yue  Yuesen  Guo  Qiang  Zhao  Chunqiao  Fan  Xifeng  Wu  Juying 《Plant Ecology》2021,222(11):1239-1250

Interactions between weeds and crops often occur by resource competition or allelopathy. However, it is still unknown how local weed species influence artificially introduced switchgrass. In this study, four experiments were conducted to evaluate the inhibitory effects of redroot pigweed (Amaranthus retroflexus) and crabgrass (Digitaria sanguinalis) on germination and growth of the lowland tetraploid switchgrass cultivar ‘Alamo’ (Panicum virgatum cv. Alamo). Switchgrass germination was significantly inhibited in Petri dishes, with 48.1% and 33.9% inhibitions on germination rate by redroot pigweed and crabgrass root aqueous extracts, respectively, at 0.1 g mL?1 concentration. Significant inhibitory effects on switchgrass seedling biomass were observed at 5:5 ratio with redroot pigweed and crabgrass in glass jars, with 61.6% and 53.4% inhibitions on plant biomass, respectively. Under the same root segregation, redroot pigweed had a stronger inhibitory effect on switchgrass seedling growth than crabgrass. Growth of transplanted switchgrass seedlings was significantly inhibited by local weeds in the field, with 46.2% and 11.7% inhibitions on shoot biomass during the first and second growing seasons, respectively. However, no significant growth reduction in switchgrass was detected in the third growing season. These findings further our understanding of weed–crop interactions and could help develop weeds management strategies with ecological security.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号