首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Increases in atmospheric CO2 levels and associated ocean changes are expected to have dramatic impacts on marine ecosystems. Although the Southern Ocean is experiencing some of the fastest rates of change, few studies have explored how Antarctic fishes may be affected by co‐occurring ocean changes, and even fewer have examined early life stages. To date, no studies have characterized potential trade‐offs in physiology and behavior in response to projected multiple climate change stressors (ocean acidification and warming) on Antarctic fishes. We exposed juvenile emerald rockcod Trematomus bernacchii to three PCO2 treatments (~450, ~850, and ~1,200 μatm PCO2) at two temperatures (?1 or 2°C). After 2, 7, 14, and 28 days, metrics of physiological performance including cardiorespiratory function (heart rate [fH] and ventilation rate [fV]), metabolic rate (), and cellular enzyme activity were measured. Behavioral responses, including scototaxis, activity, exploration, and escape response were assessed after 7 and 14 days. Elevated PCO2 independently had little impact on either physiology or behavior in juvenile rockcod, whereas warming resulted in significant changes across acclimation time. After 14 days, fH, fV and significantly increased with warming, but not with elevated PCO2. Increased physiological costs were accompanied by behavioral alterations including increased dark zone preference up to 14%, reduced activity by 12%, as well as reduced escape time suggesting potential trade‐offs in energetics. After 28 days, juvenile rockcod demonstrated a degree of temperature compensation as fV, , and cellular metabolism significantly decreased following the peak at 14 days; however, temperature compensation was only evident in the absence of elevated PCO2. Sustained increases in fV and after 28 days exposure to elevated PCO2 indicate additive (fV) and synergistic () interactions occurred in combination with warming. Stressor‐induced energetic trade‐offs in physiology and behavior may be an important mechanism leading to vulnerability of Antarctic fishes to future ocean change.  相似文献   

2.
The processes that occur at the micro‐scale site of calcification are fundamental to understanding the response of coral growth in a changing world. However, our mechanistic understanding of chemical processes driving calcification is still evolving. Here, we report the results of a long‐term in situ study of coral calcification rates, photo‐physiology, and calcifying fluid (cf) carbonate chemistry (using boron isotopes, elemental systematics, and Raman spectroscopy) for seven species (four genera) of symbiotic corals growing in their natural environments at tropical, subtropical, and temperate locations in Western Australia (latitudinal range of ~11°). We find that changes in net coral calcification rates are primarily driven by pHcf and carbonate ion concentration []cf in conjunction with temperature and DICcf. Coral pHcf varies with latitudinal and seasonal changes in temperature and works together with the seasonally varying DICcf to optimize []cf at species‐dependent levels. Our results indicate that corals shift their pHcf to adapt and/or acclimatize to their localized thermal regimes. This biological response is likely to have critical implications for predicting the future of coral reefs under CO2‐driven warming and acidification.  相似文献   

3.
Rising atmospheric CO2 concentrations is expected to stimulate photosynthesis and carbohydrate production, while inhibiting photorespiration. By contrast, nitrogen (N) concentrations in leaves generally tend to decline under elevated CO2 (eCO2), which may reduce the magnitude of photosynthetic enhancement. We tested two hypotheses as to why leaf N is reduced under eCO2: (a) A “dilution effect” caused by increased concentration of leaf carbohydrates; and (b) inhibited nitrate assimilation caused by reduced supply of reductant from photorespiration under eCO2. This second hypothesis is fully tested in the field for the first time here, using tall trees of a mature Eucalyptus forest exposed to Free‐Air CO2 Enrichment (EucFACE) for five years. Fully expanded young and mature leaves were both measured for net photosynthesis, photorespiration, total leaf N, nitrate () concentrations, carbohydrates and reductase activity to test these hypotheses. Foliar N concentrations declined by 8% under eCO2 in new leaves, while the fraction and total carbohydrate concentrations remained unchanged by CO2 treatment for either new or mature leaves. Photorespiration decreased 31% under eCO2 supplying less reductant, and in situ reductase activity was concurrently reduced (?34%) in eCO2, especially in new leaves during summer periods. Hence, assimilation was inhibited in leaves of E. tereticornis and the evidence did not support a significant dilution effect as a contributor to the observed reductions in leaf N concentration. This finding suggests that the reduction of reductase activity due to lower photorespiration in eCO2 can contribute to understanding how eCO2‐induced photosynthetic enhancement may be lower than previously expected. We suggest that large‐scale vegetation models simulating effects of eCO2 on N biogeochemistry include both mechanisms, especially where is major N source to the dominant vegetation and where leaf flushing and emergence occur in temperatures that promote high photorespiration rates.  相似文献   

4.
Improving the accuracy of estimates of forest carbon exchange is a central priority for understanding ecosystem response to increased atmospheric CO2 levels and improving carbon cycle modelling. However, the spatially continuous parameterization of photosynthetic capacity (Vcmax) at global scales and appropriate temporal intervals within terrestrial biosphere models (TBMs) remains unresolved. This research investigates the use of biochemical parameters for modelling leaf photosynthetic capacity within a deciduous forest. Particular attention is given to the impacts of seasonality on both leaf biophysical variables and physiological processes, and their interdependent relationships. Four deciduous tree species were sampled across three growing seasons (2013–2015), approximately every 10 days for leaf chlorophyll content (ChlLeaf) and canopy structure. Leaf nitrogen (NArea) was also measured during 2014. Leaf photosynthesis was measured during 2014–2015 using a Li‐6400 gas‐exchange system, with A‐Ci curves to model Vcmax. Results showed that seasonality and variations between species resulted in weak relationships between Vcmax normalized to 25°C () and NArea (R2 = 0.62, < 0.001), whereas ChlLeaf demonstrated a much stronger correlation with (R2 = 0.78, < 0.001). The relationship between ChlLeaf and NArea was also weak (R2 = 0.47, < 0.001), possibly due to the dynamic partitioning of nitrogen, between and within photosynthetic and nonphotosynthetic fractions. The spatial and temporal variability of was mapped using Landsat TM/ETM satellite data across the forest site, using physical models to derive ChlLeaf. TBMs largely treat photosynthetic parameters as either fixed constants or varying according to leaf nitrogen content. This research challenges assumptions that simple NArea– relationships can reliably be used to constrain photosynthetic capacity in TBMs, even within the same plant functional type. It is suggested that ChlLeaf provides a more accurate, direct proxy for and is also more easily retrievable from satellite data. These results have important implications for carbon modelling within deciduous ecosystems.  相似文献   

5.
The terrestrial biosphere plays a critical role in mitigating climate change by absorbing anthropogenic CO2 emissions through photosynthesis. The rate of photosynthesis is determined jointly by environmental variables and the intrinsic photosynthetic capacity of plants (i.e. maximum carboxylation rate; ). A lack of an effective means to derive spatially and temporally explicit has long hampered efforts towards estimating global photosynthesis accurately. Recent work suggests that leaf chlorophyll content (Chlleaf) is strongly related to , since Chlleaf and are both correlated with photosynthetic nitrogen content. We used medium resolution satellite images to derive spatially and temporally explicit Chlleaf, which we then used to parameterize within a terrestrial biosphere model. Modelled photosynthesis estimates were evaluated against measured photosynthesis at 124 eddy covariance sites. The inclusion of Chlleaf in a terrestrial biosphere model improved the spatial and temporal variability of photosynthesis estimates, reducing biases at eddy covariance sites by 8% on average, with the largest improvements occurring for croplands (21% bias reduction) and deciduous forests (15% bias reduction). At the global scale, the inclusion of Chlleaf reduced terrestrial photosynthesis estimates by 9 PgC/year and improved the correlations with a reconstructed solar‐induced fluorescence product and a gridded photosynthesis product upscaled from tower measurements. We found positive impacts of Chlleaf on modelled photosynthesis for deciduous forests, croplands, grasslands, savannas and wetlands, but mixed impacts for shrublands and evergreen broadleaf forests and negative impacts for evergreen needleleaf forests and mixed forests. Our results highlight the potential of Chlleaf to reduce the uncertainty of global photosynthesis but identify challenges for incorporating Chlleaf in future terrestrial biosphere models.  相似文献   

6.
Rising atmospheric CO2 concentrations are expected to increase nitrous oxide (N2O) emissions from soils via changes in microbial nitrogen (N) transformations. Several studies have shown that N2O emission increases under elevated atmospheric CO2 (eCO2), but the underlying processes are not yet fully understood. Here, we present results showing changes in soil N transformation dynamics from the Giessen Free Air CO2 Enrichment (GiFACE): a permanent grassland that has been exposed to eCO2, +20% relative to ambient concentrations (aCO2), for 15 years. We applied in the field an ammonium‐nitrate fertilizer solution, in which either ammonium () or nitrate () was labelled with 15N. The simultaneous gross N transformation rates were analysed with a 15N tracing model and a solver method. The results confirmed that after 15 years of eCO2 the N2O emissions under eCO2 were still more than twofold higher than under aCO2. The tracing model results indicated that plant uptake of did not differ between treatments, but uptake of was significantly reduced under eCO2. However, the and availability increased slightly under eCO2. The N2O isotopic signature indicated that under eCO2 the sources of the additional emissions, 8,407 μg N2O–N/m2 during the first 58 days after labelling, were associated with reduction (+2.0%), oxidation (+11.1%) and organic N oxidation (+86.9%). We presume that increased plant growth and root exudation under eCO2 provided an additional source of bioavailable supply of energy that triggered as a priming effect the stimulation of microbial soil organic matter (SOM) mineralization and fostered the activity of the bacterial nitrite reductase. The resulting increase in incomplete denitrification and therefore an increased N2O:N2 emission ratio, explains the doubling of N2O emissions. If this occurs over a wide area of grasslands in the future, this positive feedback reaction may significantly accelerate climate change.  相似文献   

7.
Increasing atmospheric reactive nitrogen (N) deposition due to human activities could change N cycling in terrestrial ecosystems. However, the differences between the fates of deposited and are still not fully understood. Here, we investigated the fates of deposited and , respectively, via the application of 15NH4NO3 and NH415NO3 in a temperate forest ecosystem. Results showed that at 410 days after tracer application, most was immobilized in litter layer (50 ± 2%), while a considerable amount of penetrated into 0–5 cm mineral soil (42 ± 2%), indicating that litter layer and 0–5 cm mineral soil were the major N sinks of and , respectively. Broad‐leaved trees assimilated more 15N under NH415NO3 treatment compared to under 15NH4NO3 treatment, indicating their preference for –N. At 410 days after tracer application, 16 ± 4% added 15N was found in aboveground biomass under treatment, which was twice more than that under treatment (6 ± 1%). At the same time, approximately 80% added 15N was recovered in soil and plants under both treatments, which suggested that this forest had high potential for retention of deposited N. These results provided evidence that there were great differences between the fates of deposited and , which could help us better understand the mechanisms and capability of forest ecosystems as a sink of reactive nitrogen.  相似文献   

8.
Temperature is a crucial factor in determining the rates of ecosystem processes, for example, leaf respiration (R) – the flux of plant respired CO2 from leaves to the atmosphere. Generally, R increases exponentially with temperature and formulations such as the Arrhenius equation are widely used in earth system models. However, experimental observations have shown a consequential and consistent departure from an exponential increase in R. What are the principles that underlie these observed patterns? Here, we demonstrate that macromolecular rate theory (MMRT), based on transition state theory (TST) for enzyme‐catalyzed kinetics, provides a thermodynamic explanation for the observed departure and the convergent temperature response of R using a global database. Three meaningful parameters emerge from MMRT analysis: the temperature at which the rate of respiration would theoretically reach a maximum (the optimum temperature, Topt), the temperature at which the respiration rate is most sensitive to changes in temperature (the inflection temperature, Tinf) and the overall curvature of the log(rate) versus temperature plot (the change in heat capacity for the system, ). On average, the highest potential enzyme‐catalyzed rates of respiratory enzymes for R are predicted to occur at 67.0 ± 1.2°C and the maximum temperature sensitivity at 41.4 ± 0.7°C from MMRT. The average curvature (average negative ) was ?1.2 ± 0.1 kJ mol?1 K?1. Interestingly, Topt, Tinf and appear insignificantly different across biomes and plant functional types, suggesting that thermal response of respiratory enzymes in leaves could be conserved. The derived parameters from MMRT can serve as thermal traits for plant leaves that represent the collective temperature response of metabolic respiratory enzymes and could be useful to understand regulations of R under a warmer climate. MMRT extends the classic TST to enzyme‐catalyzed reactions and provides an accurate and mechanistic model for the short‐term temperature response of R around the globe.  相似文献   

9.
Acid deposition arising from sulphur (S) and nitrogen (N) emissions from fossil fuel combustion and agriculture has contributed to the acidification of terrestrial ecosystems in many regions globally. However, in Europe and North America, S deposition has greatly decreased in recent decades due to emissions controls. In this study, we assessed the response of soil solution chemistry in mineral horizons of European forests to these changes. Trends in pH, acid neutralizing capacity (ANC), major ions, total aluminium (Altot) and dissolved organic carbon were determined for the period 1995–2012. Plots with at least 10 years of observations from the ICP Forests monitoring network were used. Trends were assessed for the upper mineral soil (10–20 cm, 104 plots) and subsoil (40–80 cm, 162 plots). There was a large decrease in the concentration of sulphate () in soil solution; over a 10‐year period (2000–2010), decreased by 52% at 10–20 cm and 40% at 40–80 cm. Nitrate was unchanged at 10–20 cm but decreased at 40–80 cm. The decrease in acid anions was accompanied by a large and significant decrease in the concentration of the nutrient base cations: calcium, magnesium and potassium (Bc = Ca2+ + Mg2+ + K+) and Altot over the entire dataset. The response of soil solution acidity was nonuniform. At 10–20 cm, ANC increased in acid‐sensitive soils (base saturation ≤10%) indicating a recovery, but ANC decreased in soils with base saturation >10%. At 40–80 cm, ANC remained unchanged in acid‐sensitive soils (base saturation ≤20%,  ≤ 4.5) and decreased in better‐buffered soils (base saturation >20%,  > 4.5). In addition, the molar ratio of Bc to Altot either did not change or decreased. The results suggest a long‐time lag between emission abatement and changes in soil solution acidity and underline the importance of long‐term monitoring in evaluating ecosystem response to decreases in deposition.  相似文献   

10.
Climate change will alter both the amount and pattern of precipitation and soil water availability, which will directly affect plant growth and nutrient acquisition, and potentially, ecosystem functions like nutrient cycling and losses as well. Given their role in facilitating plant nutrient acquisition and water stress resistance, arbuscular mycorrhizal (AM) fungi may modulate the effects of changing water availability on plants and ecosystem functions. The well‐characterized mycorrhizal tomato (Solanum lycopersicum L.) genotype 76R (referred to as MYC+) and the mutant mycorrhiza‐defective tomato genotype rmc were grown in microcosms in a glasshouse experiment manipulating both the pattern and amount of water supply in unsterilized field soil. Following 4 weeks of differing water regimes, we tested how AM fungi affected plant productivity and nutrient acquisition, short‐term interception of a 15 NH 4 + pulse, and inorganic nitrogen (N) leaching from microcosms. AM fungi enhanced plant nutrient acquisition with both lower and more variable water availability, for instance increasing plant P uptake more with a pulsed water supply compared to a regular supply and increasing shoot N concentration more when lower water amounts were applied. Although uptake of the short‐term 15 NH 4 + pulse was higher in rmc plants, possibly due to higher N demand, AM fungi subtly modulated NO 3 ? leaching, decreasing losses by 54% at low and high water levels in the regular water regime, with small absolute amounts of NO 3 ? leached (<1 kg N/ha). Since this study shows that AM fungi will likely be an important moderator of plant and ecosystem responses to adverse effects of more variable precipitation, management strategies that bolster AM fungal communities may in turn create systems that are more resilient to these changes.  相似文献   

11.
The existence of a large-biomass carbon (C) sink in Northern Hemisphere extra-tropical ecosystems (NHee) is well-established, but the relative contribution of different potential drivers remains highly uncertain. Here we isolated the historical role of carbon dioxide (CO2) fertilization by integrating estimates from 24 CO2-enrichment experiments, an ensemble of 10 dynamic global vegetation models (DGVMs) and two observation-based biomass datasets. Application of the emergent constraint technique revealed that DGVMs underestimated the historical response of plant biomass to increasing [CO2] in forests ( β Forest Mod ) but overestimated the response in grasslands ( β Grass Mod ) since the 1850s. Combining the constrained β Forest Mod (0.86 ± 0.28 kg C m−2 [100 ppm]−1) with observed forest biomass changes derived from inventories and satellites, we identified that CO2 fertilization alone accounted for more than half (54 ± 18% and 64 ± 21%, respectively) of the increase in biomass C storage since the 1990s. Our results indicate that CO2 fertilization dominated the forest biomass C sink over the past decades, and provide an essential step toward better understanding the key role of forests in land-based policies for mitigating climate change.  相似文献   

12.
The response of soil carbon dynamics to climate and land‐use change will affect both the future climate and the quality of ecosystems. Deep soil carbon (>20 cm) is the primary component of the soil carbon pool, but the dynamics of deep soil carbon remain poorly understood. Therefore, radiocarbon activity (C), which is a function of the age of carbon, may help to understand the rates of soil carbon biodegradation and stabilization. We analyzed the published C contents in 122 profiles of mineral soil that were well distributed in most of the large world biomes, except for the boreal zone. With a multivariate extension of a linear mixed‐effects model whose inference was based on the parallel combination of two algorithms, the expectation–maximization (EM) and the Metropolis–Hasting algorithms, we expressed soil C profiles as a four‐parameter function of depth. The four‐parameter model produced insightful predictions of soil C as dependent on depth, soil type, climate, vegetation, land‐use and date of sampling (). Further analysis with the model showed that the age of topsoil carbon was primarily affected by climate and cultivation. By contrast, the age of deep soil carbon was affected more by soil taxa than by climate and thus illustrated the strong dependence of soil carbon dynamics on other pedologic traits such as clay content and mineralogy.  相似文献   

13.
Loblolly pine trees (Pinus taeda L.) occupy more than 20% of the forested area in the southern United States, represent more than 50% of the standing pine volume in this region, and remove from the atmosphere about 500 g C m per year through net ecosystem exchange. Hence, their significance as a major regional carbon sink can hardly be disputed. What is disputed is whether the proliferation of young plantations replacing old forest in the southern United States will alter key aspects of the hydrologic cycle, including convective rainfall, which is the focus of the present work. Ecosystem fluxes of sensible () and latent heat (LE) and large‐scale, slowly evolving free atmospheric temperature and water vapor content are known to be first‐order controls on the formation of convective clouds in the atmospheric boundary layer. These controlling processes are here described by a zero‐order analytical model aimed at assessing how plantations of different ages may regulate the persistence and transition of the atmospheric system between cloudy and cloudless conditions. Using the analytical model together with field observations, the roles of ecosystem and LE on convective cloud formation are explored relative to the entrainment of heat and moisture from the free atmosphere. Our results demonstrate that cloudy–cloudless regimes at the land surface are regulated by a nonlinear relation between the Bowen ratio and root‐zone soil water content, suggesting that young/mature pines ecosystems have the ability to recirculate available water (through rainfall predisposition mechanisms). Such nonlinearity was not detected in a much older pine stand, suggesting a higher tolerance to drought but a limited control on boundary layer dynamics. These results enable the generation of hypotheses about the impacts on convective cloud formation driven by afforestation/deforestation and groundwater depletion projected to increase following increased human population in the southeastern United States.  相似文献   

14.
Tropical and subtropical forest biomes are a main hotspot for the global nitrogen (N) cycle. Yet, our understanding of global soil N cycle patterns and drivers and their response to N deposition in these biomes remains elusive. By a meta-analysis of 2426-single and 161-paired observations from 89 published 15 N pool dilution and tracing studies, we found that gross N mineralization (GNM), immobilization of ammonium ( I NH 4 ) and nitrate ( I NO 3 ), and dissimilatory nitrate reduction to ammonium (DNRA) were significantly higher in tropical forests than in subtropical forests. Soil N cycle was conservative in tropical forests with ratios of gross nitrification (GN) to I NH 4 (GN/ I NH 4 ) and of soil nitrate to ammonium (NO3/NH4+) less than one, but was leaky in subtropical forests with GN/ I NH 4 and NO3/NH4+ higher than one. Soil NH4+ dynamics were mainly controlled by soil substrate (e.g., total N), but climatic factors (e.g., precipitation and/or temperature) were more important in controlling soil NO3 dynamics. Soil texture played a role, as GNM and I NH 4 were positively correlated with silt and clay contents, while I NO 3 and DNRA were positively correlated with sand and clay contents, respectively. The soil N cycle was more sensitive to N deposition in tropical forests than in subtropical forests. Nitrogen deposition leads to a leaky N cycle in tropical forests, as evidenced by the increase in GN/ I NH 4 , NO3/NH4+, and nitrous oxide emissions and the decrease in I NO 3 and DNRA, mainly due to the decrease in soil microbial biomass and pH. Dominant tree species can also influence soil N cycle pattern, which has changed from conservative in deciduous forests to leaky in coniferous forests. We provide global evidence that tropical, but not subtropical, forests are characterized by soil N dynamics sustaining N availability and that N deposition inhibits soil N retention and stimulates N losses in these biomes.  相似文献   

15.
Climate change leads to increasing temperature and more extreme hot and drought events. Ecosystem capability to cope with climate warming depends on vegetation's adjusting pace with temperature change. How environmental stresses impair such a vegetation pace has not been carefully investigated. Here we show that dryness substantially dampens vegetation pace in warm regions to adjust the optimal temperature of gross primary production (GPP) ( T opt GPP ) in response to change in temperature over space and time. T opt GPP spatially converges to an increase of 1.01°C (95% CI: 0.97, 1.05) per 1°C increase in the yearly maximum temperature (Tmax) across humid or cold sites worldwide (37oS–79oN) but only 0.59°C (95% CI: 0.46, 0.74) per 1°C increase in Tmax across dry and warm sites. T opt GPP temporally changes by 0.81°C (95% CI: 0.75, 0.87) per 1°C interannual variation in Tmax at humid or cold sites and 0.42°C (95% CI: 0.17, 0.66) at dry and warm sites. Regardless of the water limitation, the maximum GPP (GPPmax) similarly increases by 0.23 g C m−2 day−1 per 1°C increase in T opt GPP in either humid or dry areas. Our results indicate that the future climate warming likely stimulates vegetation productivity more substantially in humid than water-limited regions.  相似文献   

16.
Climate change and atmospheric nitrogen (N) deposition are two of the most important global change drivers. However, the interactions of these drivers have not been well studied. We aimed to assess how the combined effect of soil N additions and more frequent soil drying–rewetting events affects carbon (C) and N cycling, soil:atmosphere greenhouse gas (GHG) exchange, and functional microbial diversity. We manipulated the frequency of soil drying–rewetting events in soils from ambient and N‐treated plots in a temperate forest and calculated the Orwin & Wardle Resistance index to compare the response of the different treatments. Increases in drying–rewetting cycles led to reductions in soil levels, potential net nitrification rate, and soil : atmosphere GHG exchange, and increases in and total soil inorganic N levels. N‐treated soils were more resistant to changes in the frequency of drying–rewetting cycles, and this resistance was stronger for C‐ than for N‐related variables. Both the long‐term N addition and the drying–rewetting treatment altered the functionality of the soil microbial population and its functional diversity. Our results suggest that increasing the frequency of drying–rewetting cycles can affect the ability of soil to cycle C and N and soil : atmosphere GHG exchange and that the response to this increase is modulated by soil N enrichment.  相似文献   

17.
Functional diversity is critical for ecosystem dynamics, stability and productivity. However, dynamic global vegetation models (DGVMs) which are increasingly used to simulate ecosystem functions under global change, condense functional diversity to plant functional types (PFTs) with constant parameters. Here, we develop an individual‐ and trait‐based version of the DGVM LPJmL (Lund‐Potsdam‐Jena managed Land) called LPJmL‐ flexible individual traits (LPJmL‐FIT) with flexible individual traits) which we apply to generate plant trait maps for the Amazon basin. LPJmL‐FIT incorporates empirical ranges of five traits of tropical trees extracted from the TRY global plant trait database, namely specific leaf area (SLA), leaf longevity (LL), leaf nitrogen content (Narea), the maximum carboxylation rate of Rubisco per leaf area (), and wood density (WD). To scale the individual growth performance of trees, the leaf traits are linked by trade‐offs based on the leaf economics spectrum, whereas wood density is linked to tree mortality. No preselection of growth strategies is taking place, because individuals with unique trait combinations are uniformly distributed at tree establishment. We validate the modeled trait distributions by empirical trait data and the modeled biomass by a remote sensing product along a climatic gradient. Including trait variability and trade‐offs successfully predicts natural trait distributions and achieves a more realistic representation of functional diversity at the local to regional scale. As sites of high climatic variability, the fringes of the Amazon promote trait divergence and the coexistence of multiple tree growth strategies, while lower plant trait diversity is found in the species‐rich center of the region with relatively low climatic variability. LPJmL‐FIT enables to test hypotheses on the effects of functional biodiversity on ecosystem functioning and to apply the DGVM to current challenges in ecosystem management from local to global scales, that is, deforestation and climate change effects.  相似文献   

18.
Traits‐based approaches in microbial ecology provide a valuable way to abstract organismal interaction with the environment and to generate hypotheses about community function. Using macromolecular rate theory (MMRT), we recently identified that temperature sensitivity can be characterized as a distinct microbial trait. As temperature is fundamental in controlling biological reactions, variation in temperature sensitivity across communities, organisms, and processes has the potential to vastly improve understanding of microbial response to climate change. These microbial temperature sensitivity traits include the heat capacity (), temperature optimum (Topt), and point of maximum temperature sensitivity (TSmax), each of which provide unique insights about organismal response to changes in temperature. In this meta‐analysis, we analyzed the distribution of these temperature sensitivity traits from bacteria, fungi, and mixed communities across a variety of biological systems (e.g., soils, oceans, foods, wastewater treatment plants) in order to identify commonalities in temperature responses across these diverse organisms and reaction rates. Our analysis of temperature sensitivity traits from over 350 temperature response curves reveals a wide distribution of temperature sensitivity traits, with Topt and TSmax well within biological relevant temperatures. We find that traits vary significantly depending on organism type, microbial diversity, source environment, and biological process, with higher temperature sensitivity found in fungi than bacteria and in less diverse systems. Carbon dioxide production was found to be less temperature sensitive than denitrification, suggesting that changes in temperature will have a potentially larger impact on nitrogen‐related processes. As climate changes, these results have important implications for basic understanding of the temperature sensitivity of biological reactions and for ecological understanding of species’ trait distributions, as well as for improved treatment of temperature sensitivity in models.  相似文献   

19.
No tillage (NT) has been proposed as a practice to reduce the adverse effects of tillage on contaminant (e.g., sediment and nutrient) losses to waterways. Nonetheless, previous reports on impacts of NT on nitrate ( NO 3 ) leaching are inconsistent. A global meta-analysis was conducted to test the hypothesis that the response of NO 3 leaching under NT, relative to tillage, is associated with tillage type (inversion vs non-inversion tillage), soil properties (e.g., soil organic carbon [SOC]), climate factors (i.e., water input), and management practices (e.g., NT duration and nitrogen fertilizer inputs). Overall, compared with all forms of tillage combined, NT had 4% and 14% greater area-scaled and yield-scaled NO 3 leaching losses, respectively. The NO 3 leaching under NT tended to be 7% greater than that of inversion tillage but comparable to non-inversion tillage. Greater NO 3 leaching under NT, compared with inversion tillage, was most evident under short-duration NT (<5 years), where water inputs were low (<2 mm day−1), in medium texture and low SOC (<1%) soils, and at both higher (>200 kg ha−1) and lower (0–100 kg ha−1) rates of nitrogen addition. Of these, SOC was the most important factor affecting the risk of NO3 leaching under NT compared with inversion tillage. Globally, on average, the greater amount of NO3 leached under NT, compared with inversion tillage, was mainly attributed to corresponding increases in drainage. The percentage of global cropping land with lower risk of NO3 leaching under NT, relative to inversion tillage, increased with NT duration from 3 years (31%) to 15 years (54%). This study highlighted that the benefits of NT adoption for mitigating NO 3 leaching are most likely in long-term NT cropping systems on high-SOC soils.  相似文献   

20.
Sustainably feeding the growing population amid a changing climate and dwindling resources is a grand challenge facing mankind. Decades‐long advancement in crop breeding has progressively elevated yield potential, markedly enhancing global food production capacity. However, relevant impact on reactive N (Nr) emissions associated with crop variety improvement has not been explicitly described. Here, we report multitiered evidence that newer and select maize, wheat, and rice varieties developed in China have the capacity to substantially lower Nr losses while producing more grain. First, we pooled studies featuring side‐by‐side comparison of different varieties, totaling 269 paired observations, to demonstrate that collectively, relatively newer varieties of maize, wheat, and rice had less Nr emissions (9.6%–23.5%) while yielding more grains (7.3%–11.2%) compared to older varieties under wide‐ranging conditions. Next, we built an extended database (142 field studies with 833 observations) and comprehensively evaluated the Nr‐loss reduction potential of newer varieties (2000 and after) versus older ones (1985–1999). We found that newer varieties had Nr emission factors (N loss as a percentage of N applied after correcting for background emissions) 18.2%–75.7% less for N2O, 18.3%–75.7% less for , and ?8.5% to 22.8% less for NH3, while producing more grains (16.0%–24.4%). Individual varieties differed markedly in yield‐emission scores. A nationwide farmer survey (2.47 million responses) indicated tremendous opportunities for a new way of management intervention. Coupling variety selection with sound N and other agronomic management can help lower N footprint while producing more grain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号